
0.1 Case Study: Inheriting Interface and Implementa-
tion

Make abstract base class Shape

• Pure virtual functions (must be implemented)

– getName, print

– Default implementation does not make sense

• Virtual functions (may be redefined)

– getArea, getVolume; initially return 0.0

– If not redefined, uses base class definition

• Derive classes Point, Circle, Cylinder

Figure 1: Defining the polymorphic interface for the Shape hierarchy classes.

1



Figure 2: Abstract base class Shape header file and Abstract base class
Shape.

2



Figure 3: Point class header file.

3



Figure 4: Point class implementation file. (part 1 of 2)

4



Figure 5: Point class implementation file. (part 2 of 2)

5



Figure 6: Circle class header file and Circle class that inherits from class
Point. (part 1 of 2)

6



Figure 7: Circle class that inherits from class Point. (part 2 of 2)

7



Figure 8: Cylinder class header file.

8



Figure 9: Cylinder class implementation file. (part 1 of 2)

9



Figure 10: Cylinder class implementation file. (part 2 of 2)

10



Figure 11: Demonstarting polymorphism via a hierarchy headed by an ab-
stract base class. (part 1 of 3)

11



Figure 12: Demonstarting polymorphism via a hierarchy headed by an ab-
stract base class. (part 2 of 3)

12



Figure 13: Demonstarting polymorphism via a hierarchy headed by an ab-
stract base class. (part 3 of 3)

13



0.2 Polymorphism, Virtual Functions and Dynamic Bind-
ing ”Under the Hood”

• Polymorphism has overhead

– Not used in STL (Standard Template Library) to optimize per-
formance

• virtual function table (vtable)

– Every class with a virtual function has a vtable

– For every virtual function, vtable has pointer to the proper func-
tion

– If derived class has same function as base class; function pointer
aims at base-class function

– Detailed explanation in Fig. 10.21 (in book) (will not be covered)

0.3 Virtual Destructors

• Base class pointer to derived object; if destroyed using delete, behavior
unspecified

• Simple fix

– Declare base-class destructor virtual; makes derived-class destruc-
tors virtual

– Now, when delete used appropriate destructor called

• When derived-class object destroyed

– Derived-class destructor executes first

– Base-class destructor executes afterwards

• Constructors cannot be virtual

0.4 Case Study: Payroll System Using Polymorphism

• Base class Employee

– Pure virtual function earnings (returns pay)

∗ Pure virtual because need to know employee type

∗ Cannot calculate for generic employee

14



Figure 14: Class hierarchy for the polymorphic employee-payroll application.

– Other classes derive from Employee

• Downcasting

– dynamic cast operator

∗ Determine object’s type at runtime

∗ Returns 0 if not of proper type (cannot be cast)

∗ NewClass *ptr = dynamic cast ¡ NewClass *¿ ob-
jectPtr;

• Keyword typeid

– Header ¡typeinfo¿

– Usage: typeid(object)

∗ Returns type info object

∗ Has information about type of operand, including name

∗ typeid(object).name()

15



Figure 15: Employee class header file.

16



Figure 16: Employee class implementation file. (part 1 of 2)

17



Figure 17: Employee class implementation file (part 2 of 2) and
SalariedEmployee class header file.

18



Figure 18: SalariedEmployee class implementation file.

19



Figure 19: HourlyEmployee class header file.

20



Figure 20: HourlyEmployee class implementation file.

21



Figure 21: CommissionEmployee class header file.

22



Figure 22: CommissionEmployee class implementation file.

23



Figure 23: BasePlusCommissionEmployee class header file.

24



Figure 24: BasePlusCommissionEmployee class implementation file.

25



Figure 25: Employee class hierarchy driver program.(part 1 of 2)

26



Figure 26: Employee class hierarchy driver program.(part 2 of 2)

27


	Case Study: Inheriting Interface and Implementation
	Polymorphism, Virtual Functions and Dynamic Binding "Under the Hood"
	Virtual Destructors
	Case Study: Payroll System Using Polymorphism

