
Figure 1: SalesPerson class definition

1 Access Functions and Utility Functions

Not all member functions need be made public to serve as part of the inter-
face of the class.

• Access functions

• public

– Read/display data

– Predicate functions

– Check conditions

– Utility functions (helper functions)

• private

– Support operation of public member functions

– Not intended for direct client use

The program of Figs. 1-4 demonstarates the notion of a utility function (also
called helper function).

1

Figure 2: SalesPerson class member-function definitions (part 1 of 2)

2

Figure 3: SalesPerson class member-function definitions (part 2 of 2)

3

Figure 4: Utility function demonstration

4

2 Initializing Class Objects: Constructors

• Constructors

– Initialize data members; Or can set later

– Same name as class

– No return type

• Initializers

– Passed as arguments to constructor

– In parentheses to right of class name before semicolon

Class-type ObjectName(value1,value2,...};

The programmer provides the constructor, which is then invoked each
time an object of that class is created (instantiated).

3 Using Default Arguments with Construc-

tors

• Constructors

– Can specify default arguments

– Default constructors

– Defaults all arguments

– OR

– Explicitly requires no arguments

– Can be invoked with no arguments

– Only one per class

The program of Figs. 5-9 enhances class Time to demonstrate how argu-
ments are implicitly passed to a constructor.

5

Figure 5: Time class containing a constructor with default arguments.

6

Figure 6: Time class member-function definitions including a constructor
that takes arguments. (part 1 of 2)

7

Figure 7: Time class member-function definitions including a constructor
that takes arguments. (part 2 of 2)

8

Figure 8: Constructor with default arguments. (part 1 of 2)

9

Figure 9: Constructor with default arguments. (part 2 of 2)

4 Destructors

• Special member function

• Same name as class; Preceded with tilde (˜)

• No arguments

• No return value

• Cannot be overloaded

• Performs ”termination housekeeping”

– Before system reclaims object’s memory; Reuse memory for new
objects

• No explicit destructor; Compiler creates ”empty destructor”

10

5 When Constructors and Destructors Are

Called

• Constructors and destructors; Called implicitly by compiler

• Order of function calls

– Depends on order of execution; When execution enters and exits
scope of objects

– Generally, destructor calls reverse order of constructor calls

• Order of constructor, destructor function calls

– Global scope objects

∗ Constructors; Before any other function (including main)

∗ Destructors

· When main terminates (or exit function called)

· Not called if program terminates with abort

– Automatic local objects

∗ Constructors

· When objects defined; Each time execution enters scope

∗ Destructors

· When objects leave scope; Execution exits block in which
object defined

· Not called if program ends with exit or abort

– static local objects

∗ Constructors

· Exactly once

· When execution reaches point where object defined

∗ Destructors

· When main terminates or exit function called

· Not called if program ends with abort

11

The program of Figs. 10-13 demonstrates the order in which constructors
and destructors are called for objects of class CreateAndDestroy of various
storage classes in several scopes.

Figure 10: CreateAndDestroy class definition.

12

Figure 11: CreateAndDestroy class member-function definitions.

13

Figure 12: Order in which constructors and destructors are called. (part 1
of 2)

14

Figure 13: Order in which constructors and destructors are called. (part 2
of 2)

15

6 Using Set and Get Functions

A class’s private data members can be accessed only by member functions
(and friends) of the class. Classes often provide public member functions
to allow clients of the class to set (i.e., write) or get (,.e., read) the values
of private data members. These functions need not be called set and get

specifically, but they often are.

• Set functions

– Perform validity checks before modifying private data

– Notify if invalid values

– Indicate with return values

• Get functions

– ”Query” functions

– Control format of data returned

The program of Figs. 14-18 enhances class Time to include set and get

functions for the private data members hour, minute, and second.

16

Figure 14: Time class definition with set and get functions.

17

Figure 15: Time class member-function definitions,including set and get

functions. (part 1 of 2)

18

Figure 16: Time class member-function definitions,including set and get

functions. (part 2 of 2)

19

Figure 17: Set and get functions manipulating an object’s private data.
(part 1 of 2)

20

Figure 18: Set and get functions manipulating an object’s private data.
(part 2 of 2)

21

7 Default Memberwise Assignment

The assignment operator (=) can be used to assign an object to another
object of the same type.

• Assigning objects

– Assignment operator (=)

– Can assign one object to another of same type

– Default: memberwise assignment

– Each right member assigned individually to left member

• Passing, returning objects

– Objects passed as function arguments

– Objects returned from functions

– Default: pass-by-value

∗ Copy of object passed, returned

· Copy constructor; Copy original values into new object

Member wise assignment can cause serious problems when used with a class
whose data members contain pointers to dynamically allocated storage.

22

Figure 19: Default memberwise assignment. (part 1 of 2)

23

Figure 20: Default memberwise assignment. (part 2 of 2)

8 Software Reusability

• Class libraries

– Well-defined

– Carefully tested

– Well-documented

– Portable

– Widely available

• Speeds development of powerful, high-quality software

– Rapid applications development (RAD)

• Resulting problems

– Cataloging schemes

– Licensing schemes

– Protection mechanisms

24

	Access Functions and Utility Functions
	Initializing Class Objects: Constructors
	Using Default Arguments with Constructors
	Destructors
	When Constructors and Destructors Are Called
	Using Set and Get Functions
	Default Memberwise Assignment
	Software Reusability

