0.1 Dynamic Memory Management with Operators
new and delete

e Dynamic memory management

— Control allocation and deallocation of memory
— Operators new and delete
x Include standard header <new>; Access to standard version
of new

® New

— Consider

x Time *timePtr;

* timePtr = new Time;
— new operator

x Creates object of proper size for type Time; Error if no space
in memory for object

x Calls default constructor for object
* Returns pointer of specified type
— Providing initializers
* double *ptr = new double(3.14159);
* Time *timePtr = new Time(12, 0, 0);

— Allocating arrays; int *gradesArray = new int[10 |;
e delete

— Destroy dynamically allocated object and free space
— Consider; delete timePtr;
— Operator delete

x Calls destructor for object
x Deallocates memory associated with object; Memory can be
reused to allocate other objects
— Deallocating arrays
x delete [] gradesArray; ; Deallocates array to which grade-
sArray points
x If pointer to array of objects
- First calls destructor for each object in array
- Then deallocates memory

0.2 static Class Members

Each object of a class has its own copy of all the data members of the class.
in certain cases, only one copy of a variable should be shared by all objects
of a class.

e static class variable

— "Class-wide” data; Property of class, not specific object of class

— Efficient when single copy of data is enough; Only the static vari-
able has to be updated

— May seem like global variables, but have class scope; Only acces-
sible to objects of same class

— Initialized exactly once at file scope
— Exist even if no objects of class exist

— Can be public, private or protected
e Accessing static class variables

— Accessible through any object of class
— public static variables

x Can also be accessed using binary scope resolution opera-
tor(::)
x Employee::count

e private static variables

— When no class member objects exist

x Can only be accessed via public static member function

x To call public static member function combine class name,
binary scope resolution operator (::) and function name; Em-
ployee::getCount()

e static member functions

— Cannot access non-static data or functions

— No this pointer for static functions; static data members and
static member functions exist independent of objects

The programs of Figs. [[Hll demonstrates a private static data member called
count and a public static member function called getCount. Figure l] uses
function getCount to determine the number of Employee objects currently
instantiated.

60

1 Sf Fig. 7.17: employeeZ.h

2 // Employee class definition.

3 #ifndef EMPLOYEEZ H

4 #define EMPLOYEEZ H employee2.h (1 0f2)
5

B class Employee {

7

8 public:

9 Employee{ const char *, const char *); // constructor

10 ~Employee () ; JJ/ destructor

11 const char *getFirstName() const; // & static member function
12 const char *getLastName () const; e = _
a can only access static data
14 // static member functi men]b'ers and m'embcr

15 static int getCount(); // return # obi{ functions.

16

17 private:

18 char *firstName; static data member is

19 char *lastName; class-wide data.

i :

21 // statie data memb&r

22 static int count; f/ number of cbjects instantiated

23

24 1; // end class Employee

25

© 2003 Prentice Hall, Inc.
All rights reserved.

Figure 1: Employee class definition with a static data member to track the
number Employee objects in memory.

W0 N ;s W N

ok ok
- 0

12

24
25

gBYR

31
32
33
34
a5
36
37
38
39

a1

Ea R

46
a7

61

#endif 2
Qutline
Jf Fig. 7.18: employeel.cpp employee2.h (2 of 2)
[/ Member-function definiticns for class Employee.
#include <iostream> employee2.cpp
(1ot3)

using std::cout;

using std::endl;

#include <new> [/ C++ standard new operator

#include <cstring> // strepy and strlen prototypes

Initialize statie data

#include "employes2.h" // Employee o
member exactly once at file

Scope.
ic data membs P

[/ define and initialize s

int Employee::count = 0;

static member function
accesses static data
member count.

S/ define static member function €

// Employee cbjects instantia

int Employee::getCount ()
{

return count;

} // end static function getCount

© 2003 Prentice Hall. Inc.
All rights reserved.

62
, Qutline
S/ constructor dynamically allocates space for —
// first and last name and uses strcocpy to copy
Jf first and last names into the object -’.'_’““'-“}“‘*"Z,Cpp
Employee: :Employee{ const char *first, const newopemmrd}rna_[mcally
{ allocates space.

4 Use static data member to
| stote total count of
employees.

++count; [/ increment static count of emplovees

cout << "Employee constructor for " << firstName

<< ' ' << lastName << " called." << endl;

} // end Employee constructor

[/ destructor deallocates dynamically allocated memory
Employee: : ~Employee ()
{

cout << "~Empleyee (] called for " << firstName

<< ' ' << lastName << endl;

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 2: Employee class member-function definitions. (part 1 of 2)

Lo R - T I B =

okl
= O

Lk
N v

15

delete [] firstName;
delete astName;

-~ -gpunt; / decrs
} // end destructor ~Emp

S/ return first name of

[/ recapture memory

S/ recapture memory

63
Qutline

tatic count of employees
I

Use static data memberto [LOCAIES

store total count of

employee2.cpp
(30f3)

employees.

const char *Employee::getFirstName{) const

{

/[conszt before return type preventsz client from modifying

// priwvate data; client should copy returned string before

[/ destructor deletez storage to prevent undefined pointer

return firstName;

} [/ end function getFirstName

[/ return last name of employes

const char *Employee::getLastName ()} const

{

S/ const before return type prevents client from modifving

[/ private data; client should copy returned string before

S/ destructor deletes storage to prevent undefined pointer

return lastName;

1} // end function getLastName

A Fig. T7.18: Figh7 19.cpp
S/ Driver to test clas= Employee.

#include <iostream>

using std::cout;

uzing std::endl;

#include <new>

#include "employee.h®

int main{)

{

cout << "Number of employees before instantiation is ®

<< Employee::getCount ()} << endl; [us Las=—TaNe

Employee *elPtr
Employees *e2Ptr

cout << "Number

// c++ standard new operator

//{ Employee class definition

© 2003 Prentice Hall. Inc.
All rights reserved.

64
Qutline

figh7_19.cpp
(1of2)

new operator dynamically
allocates space.

s tatic member function

of class.

can be invoked on any object

F employees afbtcy InStonClatlich 1S

<< glPtr->getCount();

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 3: Employee class member-function definitions. (part 2 of 2) and
static data member tracking the number of objects of a class. (part 1 of 2)

5

23 cout << "\n\nEmployees 1: @ Outline
24 << elPtr->getFirstName{) -
25 << " " << glPtr->getLastName ()}

26 << "\pEmployee 2: ® thT_IQCpp

27 << e2Ptr->getFirstName{) (20f2)

o8 << ® ¥ << g2Ptr->getLastName(} << "\n\n";

2

elPtr; [// recapture memory

31 elPtr = 07F ff disconnect pointer from free-store space

32 dele ecapture memory static-mcmber-ﬁ.mcﬁon
2 E2Fkescits invoked using binary scope
34 5
resolution operator (no
35 cout << "Mumber of employees al MCHIONY e : e
existing class objects).
36 << Employee::getCount () << endl;
a7
38 return 0;
39

40 } // end main

© 2003 Prentice Hall, Inc.
All rights reserved.

66
Number of employees before instantiaticn is 0 Outline
Employee constructor for Susan Baker called. ————
Employee constructor for Robert Jones called.
Number of employees after instantiation is 2 ﬁgO?_lg.Cpp

output (1 of 1)

Employee 1: Susan Baker
Employee 2: Robert Jones

~Employee() called for Susan Baker
~Employee (] called for Robert Jones
Number of employees after deletion iz 0

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 4: static data member tracking the number of objects of a class.
(part 2 of 2)

0.3 Data Abstraction and Information Hiding

e Information hiding

— Classes hide implementation details from clients
— Example: stack data structure

Data elements added (pushed) onto top
Data elements removed (popped) from top
Last-in, first-out (LIFO) data structure

Client only wants LIFO data structure; Does not care how
stack implemented

*
*
*
*

e Data abstraction; Describe functionality of class independent of im-
plementation

e Abstract data types (ADTSs)

— Approximations/models of real-world concepts and behaviors; int,
float are models for a numbers

— Data representation
— Operations allowed on those data

— ADTs receive as much as attention today as structured program-
ming did over the last two decades. (ADTs do not replace struc-
tured programming. rather, they provide an additional formaliza-
tion that can further improve the program-development process.)

o C++ extensible; Standard data types cannot be changed, but new data
types can be created

The job of high-level languages is to create a view convenient for programmers
to use. There is no single accepted standard view-that is one reason why there
are so many programming languages. Object-oriented programming in C++
presents yet another view.

The primary activity in C++ is creating new types (i.e., classes) and
expressing the interactions among objects of those types.

0.3.1 Example: Array Abstract Data Type

An array is not much more than a pointer and some space in memory. Prim-
itive capabilities! There are many operations that would be nice to perform

with arrays, but there are not built-in C++. With C++ classes, the pro-
grammer can develop an array ADT is preferable to 'raw’ arrays. Although
the language is easy to extend with these new types, the base language itself
is not changeable.

e ADT array

— Subscript range checking

— Arbitrary range of subscripts; Instead of having to start with 0
— Array assignment

— Array comparison

— Array input/output

— Arrays that know their sizes

— Arrays that expand dynamically to accommodate more elements

0.3.2 Example: String Abstract Data Type
e Strings in C++

— C++ does not provide built-in string data type; Maximizes per-
formance

— Provides mechanisms for creating and implementing string ab-
stract data type; String ADT (Chapter 8)

— ANSI/ISO standard string class (Chapter 19)

0.3.3 Example: Queue Abstract Data Type

A waiting line is also called a queue.
e Queue

— FIFO; First in, first out
— Enqueue; Put items in queue one at a time

— Dequeue; Remove items from queue one at a time
e Queue ADT

— Implementation hidden from clients; Clients may not manipulate
data structure directly

— Only queue member functions can access internal data

— Queue ADT (Chapter 15)
— Standard library queue class (Chapter 20)
The queue ADT guarantees the integrity of its internal data structure. Clients

may not manipulate this data structure directly. Only the queue member
functions have access to its internal data.

0.4 Container Classes and Iterators

e Container classes (collection classes)

— Designed to hold collections of objects

— Common services; Insertion, deletion, searching, sorting, or test-
ing an item

— Examples; Arrays, stacks, queues, trees and linked lists
e [terator objects (iterators)
— Returns next item of collection; Or performs some action on next
item

— Can have several iterators per container; Book with multiple book-
marks

— Each iterator maintains own ”position”

— Discussed further in Chapter 20

0.5 Proxy Classes

Sometimes, it is desirable to hide the implementation details of a class to
prevent access to proprietary information (including private data) and pro-
prietary program login in a class. Providing clients of your class with a
proxy class that knows only the public interface to your class enables the
clients to use your class’s services without giving the client access to your
class’s implementation details.

e Proxy class

— Hide implementation details of another class
— Knows only public interface of class being hidden

— Enables clients to use class’s services without giving access to
class’s implementation

e Forward class declaration

— Used when class definition only uses pointer to another class
— Prevents need for including header file
— Declares class before referencing

— Format: class ClassToLoad;

Implementation of a proxy class is demonstrated in Figs. BHA

10

Lo R - T I B =

okl
= O

24
25

88BYR

31
32

S Fig. 7.20: implementaticn.h
S/ Header file for classz Implementation

class Implementation {

public:

// constructor

Implementation{ int v)

sowaluel{ w } // initialize walue with w

// empty body
} // end Implementation constructor
[/ set wvalue to v
void setValue(int v)
{

value = v; J/ should validate v

} // end function setValue

// return wvalue

public member function.

int getValue() const
{ - ;
public member function.
return wvalue; i

} // end function getValue

private:

int wvalue;

}; // end class Implementation

Qutline

implementation.h
(lof2)

© 2003 Prentice Hall. Inc.
All rights reserved.

implementation.h
(20f2)

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 5: Implementation class definition.

11

T4

Lo R - T I B =

okl
= O

Lo R - T I B =

okl
= O

Jf Fig. 7.21: interface.h
S/ Header file for interface.cpp

class Implementation;

/i

class Interface {

public:
Interface(int };
void setValue(int }; //
L

int getValue{) const;

~Interface();

private:

[/ requires previous £ ard declara

Implementation *ptr;

}; // end class Interface

Jf Fig. 7.22: interface.cpp
S/ Definition of clasms Interface

#include "interface.h”

sami public i

clazgzImplemel

forward clas=z declaration

Provide same public
interface as class
Implementation; recall
getValue and getValue
only public member
functions.

Pointer to
Implementation object
requires forward class
declaration.

[/ Interface class definiticn

#include “"implementatien.h® Ldahnain-pohﬂprn) mnition
underlyin

[/ constructor ying . hi £ ~
Interface::L rface(int v Implementation o Ject. prace

: ptr (new Implementatien(v } } / mcludes header tlllc.fgr'dass
[Implementation.

// empty body
} // end Interface constructor
// ©all Implementation's setValue £ Invokc-com:spondmg

void Interface::setValue(int

function on underlying
Impl ementation object.

ptr->setValuel(v };

} // end function setValue

Figure 6: Interface class definition.

12

Qutline

interface.h (1 of 1)

© 2003 Prentice Hall. Inc.
All rights reserved.

Qutline

interface.cpp
(lof2)

© 2003 Prentice Hall. Inc.
All rights reserved.

T6

21 // call Implementation's getValues functi -Invoke-mrrequndin’g Out"ne "
22 int Interface::getValue() const function on underlying ‘ e

23 | Implementation object.

24 return ptr->getValue(]; interface.cpp

22 (2 0f2)

26 } // end function getValue

e

Deallocate underlying

28 /) destructor 7 £ :
Implementation object.

29 Interface::~Interface
30 I
31 delete ptr;

33 1 // end destructor ~Interface

© 2003 Prentice Hall. Inc.
All rights reserved.

1 A T S A e T BT i e AT 1) outline (L
2 S/ Hiding a class's private data with a proxy class. ‘ —
3 #include <iostream>

4 - figO7_23.cpp
5 uging etd::cout; Only mclud_e proxy class (l of 1)

6 using std::endl; header file.

: i i PN fig07_23.cpp
g #Hinclude "interface.h // Interface Create object_ ofpmxy clas_s Omplli U of ”
10 int main() Interface; note no

11 mention of

12 et e Epae Implementation class.

13

14 cout << "Interface contains: * =< j. ue {}

15 << " before setValue" << endl; - Inyoke mmb‘erfun'c’:tions vig

i proxy class object.

17 i.setValue(10 });

18

19 cout << "Interface contains: " << i.getValuef{}

20 << " after setValue® << endl;

21

22 return 0;

23

Interface contains: 5 before setValue

Interface contains: 10 after setWValue

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 7: Interface class member-function definitions and Implementing a
proxy class.

13

	 Dynamic Memory Management with Operators new and delete
	static Class Members
	Data Abstraction and Information Hiding
	Example: Array Abstract Data Type
	Example: String Abstract Data Type
	Example: Queue Abstract Data Type

	 Container Classes and Iterators
	Proxy Classes

