
0.1 Converting between Types

Sometimes all the operations ”stay within a type”.

• Casting

– Traditionally, cast integers to floats, etc.

– May need to convert between user-defined types

• Cast operator (conversion operator)

– Convert from

∗ One class to another

∗ Class to built-in type (int, char, etc.)

– Must be non-static member function; Cannot be friend

– Do not specify return type; implicitly returns type to which you
are converting

• Example

– Prototype

∗ A::operator char *() const;

∗ Casts class A to a temporary char *

∗ (char *)s calls s.operator char*()

– Also, overloaded cast-operator functions can be defined for con-
verting objects of user-defined types into built-in types or into
objects of other user-defined types.

∗ A::operator int() const;

∗ A::operator OtherClass() const;

• Casting can prevent need for overloading

– Suppose class String can be cast to char *

– cout << s; // s is a String

∗ Compiler implicitly converts s to char *

∗ Do not have to overload <<

1



0.2 Case Study: A String Class

• Build class String

– To handle String creation, manipulation

– Class string in standard library (more Chapter 15)

• Conversion constructor

– Single-argument constructor

– Turns objects of other types into class objects

∗ String s1(”hi”);

∗ Creates a String from a char *

– Any single-argument constructor is a conversion constructor

The programs of Figs. 1-10 demonstrates the building of our own String
class to handle the creation and manipulation of strings.

2



Figure 1: String class definition with operator overloading. (part 1 of 2)

3



Figure 2: String class definition with operator overloading. (part 2 of 2)

4



Figure 3: String class member-function and friend-function definition.
(part 1 of 4)

5



Figure 4: String class member-function and friend-function definition.
(part 2 of 4)

6



Figure 5: String class member-function and friend-function definition.
(part 3 of 4)

7



Figure 6: String class member-function and friend-function definition.
(part 4 of 4)

8



Figure 7: String class test program. (part 1 of 2)

9



Figure 8: String class test program. (part 2 of 2)

10



Figure 9: String class test program, output. (part 1 of 2)

11



Figure 10: String class test program, output. (part 2 of 2)

0.3 Overloading ++ and –

• Increment/decrement operators can be overloaded

– Add 1 to a Date object, d1

– Prototype (member function)

∗ Date &operator++();

∗ ++d1 same as d1.operator++()

– Prototype (non-member)

∗ Friend Date &operator++( Date &);

∗ ++d1 same as operator++( d1 )

• To distinguish pre/post increment

– Post increment has a dummy parameter; int of 0

– Prototype (member function)

∗ Date operator++( int );

12



∗ d1++ same as d1.operator++( 0 )

– Prototype (non-member)

∗ friend Date operator++( Data &, int );

∗ d1++ same as operator++( d1, 0 )

– Integer parameter does not have a name; not even in function
definition

• Return values

– Preincrement

∗ Returns by reference (Date &)

∗ lvalue (can be assigned)

– Postincrement

∗ Returns by value

∗ Returns temporary object with old value

∗ rvalue (cannot be on left side of assignment)

• Decrement operator analogous

0.4 Case Study: A Date Class

• Example Date class. The class uses overloaded preincrement and postin-
crement operators to add 1 to the day in a Date object, while causing
appropriate increments to the month and year if necessary.

– Overloaded increment operator; Change day, month and year

– Overloaded += operator

– Function to test for leap years

– Function to determine if day is last of month

13



Figure 11: Date class definition with overloaded increment operator.

14



Figure 12: Date class member-and friend-function definition. (part 1 of 3)

15



Figure 13: Date class member-and friend-function definition. (part 2 of 3)

16



Figure 14: Date class member-and friend-function definition. (part 3 of 3)

17



Figure 15: Date class test program.

18



Figure 16: Date class test program, output.

0.5 Standard Library Classes string and vector

We learned that we can build a String (Array) class that is better than the
C-style, char * strings (pointer-based arrays) that C++ absorbed from C.

• Classes built into C++

– Available for anyone to use

– string ; Similar to our String class

– vector; Dynamically resizable array

• Redo our String and Array examples

– Use string and vector

• Class string

– Header <string>, namespace std

– Can initialize string s1(”hi”);

19



– Overloaded <<; cout << s1

– Overloaded relational operators; == != >= > <= <

– Assignment operator =

– Concatenation (overloaded +=)

– Substring function substr

∗ s1.substr(0, 14); ; Starts at location 0, gets 14 characters

∗ S1.substr(15) ; Substring beginning at location 15

– Overloaded []

∗ Access one character

∗ No range checking (if subscript invalid)

– at function

∗ s1.at(10)

∗ Character at subscript 10

∗ Has bounds checking; will end program if invalid (learn more
in Chapter 13)

The programs of Figs. 17-19 reimplements the program of Figs. 7-10, using
standart class string.

20



Figure 17: Standart library class string (part 1 of 2).

21



Figure 18: Standart library class string (part 2 of 2).

22



Figure 19: Standart library class string, output.

23



• Class vector

– Header <vector>, namespace std

– Store any type; vector< int > myArray(10)

– Function size ( myArray.size() )

– Overloaded []; get specific element, myArray[3]

– Overloaded !=, ==, and =; inequality, equality, assignment

The programs of Figs. 20-23 reimplements the program of Figs. ??-??, using
standart class vector.

24



Figure 20: Standart library class vector. (part 1 of 3)

25



Figure 21: Standart library class vector. (part 2 of 3)

26



Figure 22: Standart library class vector. (part 3 of 3)

27



Figure 23: Standart library class vector, output.

28


	Converting between Types
	Case Study: A String Class
	Overloading ++ and --
	Case Study: A Date Class
	Standard Library Classes string and vector

