
1 Object-Oriented Programming: Inheritance

1.1 Introduction

• Inheritance

– Software reusability

– Create new class from existing class

∗ Absorb existing class’s data and behaviors

∗ Enhance with new capabilities

– Derived class inherits from base class

∗ Derived class

· More specialized group of objects

· Behaviors inherited from base class; can customize

· Additional behaviors

• Class hierarchy

– Direct base class; inherited explicitly (one level up hierarchy)

– Indirect base class; inherited two or more levels up hierarchy

– Single inheritance; inherits from one base class

– Multiple inheritance; Inherits from multiple base classes (Base
classes possibly unrelated ); Chapter 22

• Three types of inheritance

– public

∗ Every object of derived class also object of base class

· Base-class objects not objects of derived classes

· Example: All cars vehicles, but not all vehicles cars

∗ Can access non-private members of base class

· Derived class can effect change to private base-class mem-
bers

· Through inherited non-private member functions

– private

∗ Alternative to composition

∗ Chapter 17

1



– protected

∗ Rarely used

• Abstraction

– Focus on commonalities among objects in system; ”is-a” vs. ”has-
a”

– ”is-a”

∗ Inheritance

∗ Derived class object treated as base class object

∗ Example: Car is a vehicle; Vehicle properties/behaviors also
car properties/behaviors

– ”has-a”

∗ Composition

∗ Object contains one or more objects of other classes as mem-
bers

∗ Example: Car has a steering wheel

1.2 Base Classes and Derived Classes

• Base classes and derived classes

– Object of one class ”is an” object of another class

∗ Example: Rectangle is quadrilateral.

· Class Rectangle inherits from class Quadrilateral

· Quadrilateral: base class

· Rectangle: derived class

– Base class typically represents larger set of objects than derived
classes

∗ Example:

· Base class: Vehicle
Cars, trucks, boats, bicycles, . . .

· Derived class: Car
Smaller, more-specific subset of vehicles

• Inheritance examples (see Fig. 1)

• Inheritance hierarchy (see Fig. 2 Top)

2



Figure 1: Inheritance examples

– Inheritance relationships: tree-like hierarchy structure

– Each class becomes

∗ Base class; supply data/behaviors to other classes

∗ OR

∗ Derived class; inherit data/behaviors from other classes

• public inheritance

– Specify with:

– Class TwoDimensionalShape : public Shape
Class TwoDimensionalShape inherits from class Shape (see
Fig. 2 Bottom)

– Base class private members

∗ Not accessible directly

∗ Still inherited; manipulate through inherited member func-
tions

3



Figure 2: Inheritance hierarchy for university CommunityMembers and
Inheritance hierarchy for Shapes

4



– Base class public and protected members; inherited with origi-
nal member access

– friend functions; not inherited

1.3 protected Members

Protected access

• Intermediate level of protection between public and private

• protected members accessible to

– Base class members

– Base class friends

– Derived class members

– Derived class friends

• Derived-class members

– Refer to public and protected members of base class; simply use
member names

1.4 Relationship between Base Classes and Derived

Classes

• Base class and derived class relationship

• Example: Point/circle inheritance hierarchy

– Point
x-y coordinate pair

– Circle
x-y coordinate pair
Radius

5



Figure 3: Point class header file

6



Figure 4: Point class represents an xy-coordinate pair. (part 1 of 2)

7



Figure 5: Point class represents an xy-coordinate pair. (part 2 of 2)

8



Figure 6: Point class test program.

9



1.4.1 Creating a Circle class without using inheritance

Figure 7: Circle class header file.

10



Figure 8: Circle class contains an xy-coordinate pair and a radius. (part 1
of 2)

11



Figure 9: Circle class contains an xy-coordinate pair and a radius. (part 2
of 2)

12



Figure 10: Circle class test program. (part 1 of 2)

13



1.4.2 Point/Circle Hierarchy using Inheritance

Figure 11: Circle class test program. (part 2 of 2) and Circle2 class header
file. (part 1 of 2)

14



Figure 12: Circle2 class header file (part 2 of 2) and Private base-class data
can not be accessed from derived class. (part 1 of 2)

15



Figure 13: Private base-class data can not be accessed from derived class.
(part 2 of 2)

16



1.4.3 Point/Circle Hierarchy using protected data

Figure 14: Point2 class header file.

17



Figure 15: Point2 class represents an xy-coordinate pair as protected data.

18



Figure 16: Circle3 class header file.

19



Figure 17: Circle3 class that inherits from class Point2.

20



Figure 18: Protected base-class data can be accessed from derived class.
(part 1 of 2)

21



Figure 19: Protected base-class data can be accessed from derived class.
(part 2 of 2)

22



• Using protected data members

– Advantages

∗ Derived classes can modify values directly

∗ Slight increase in performance; avoid set/get function call
overhead

– Disadvantages

∗ No validity checking; derived class can assign illegal value

∗ Implementation dependent

· Derived class member functions more likely dependent on
base class implementation

· Base class implementation changes may result in derived
class modifications; fragile (brittle) software

23


	Object-Oriented Programming: Inheritance
	Introduction
	Base Classes and Derived Classes
	 protected Members
	Relationship between Base Classes and Derived Classes
	Creating a Circle class without using inheritance
	Point/Circle Hierarchy using Inheritance
	Point/Circle Hierarchy using protected data



