1 Object-Oriented Programming: Polymor-
phism

1.1 Introduction

e Polymorphism

— "Program in the general”
— Treat objects in same class hierarchy as if all base class

— Virtual functions and dynamic binding; will explain how polymor-
phism works

— Makes programs extensible; new classes added easily, can still be
processed

e In our examples

— Use abstract base class Shape

* Defines common interface (functionality)

x Point, Circle and Cylinder inherit from Shape

— Class Employee for a natural example

1.2 Relationships Among Objects in an Inheritance
Hierarchy

e Previously (Section 9.4),

— Circle inherited from Point

— Manipulated Point and Circle objects using member functions
e Now

— Invoke functions using base-class/derived-class pointers

— Introduce virtual functions
e Key concept

— Derived-class object can be treated as base-class object
x "is-a” relationship

x Base class is not a derived class object



1.2.1 Invoking Base-Class Functions from Derived-Class Objects

Aim pointers (base, derived) at objects (base, derived)

e Base pointer aimed at base object

e Derived pointer aimed at derived object; both straightforward

e Base pointer aimed at derived object

— "is a” relationship; Circle "is a” Point

— Will invoke base class functions

e Function call depends on the class of the pointer/handle

— Does not depend on object to which it points

— With virtual functions, this can be changed (more later)

1 T ot i o SRS B 1 e B 7 o o € ) L

2 // Point class definition represents an x-y coordinate pair.
3 Hifndef POINT H

4 Hdefine POINT H

5

6 clase Point {

7

8 public:

-] Point{ int = 0, inkt = 0 }; // default constructor
10

11 void setX{ int }; // set x in coordinate pair

12 int getI{) const; // return x f

13 Base class print function.
14 woid set¥{ int }; [/ =et in cocordinate palr

15 int get¥{} const; [ eturn ¥ from coordinate pair
16

17 wvoid print() const; // output Point cbject

18

19 private:

20 int x; // x part of coordinate pair

21 int ¥; // ¥ part of coordinate pair

2=

23 }; // end class Point

24

25 Hendif

Figure 1:

Point class header file.

&

pointh (1 of 1)

Qutline

© 2003 Prentice Hall. Inc.
All rights reserved.



(- BT B R I - )

i a
- o

12

24
25

EBRBER

B
32
33
34
35
36
37
38
38

b -

ST Ig . A0 s painE Rl

// Point class member-function definitions.

#include <iostream>

uzing std::cout;

Hinclude "point.h® £/ Point class definition

JJ default constructor

Point::Point{ int xValue, int yValue }

: x{ xvValue }, y( yValue )

f[ empty body

} // end Peint conetructor

J// set x in coordinate pair

void Point::setX{ int xValue )

{

x = xValue; // no need for wvalidation

} /{ end function setX

/[ return x from coordinate pair
int Point::getX{) censt
{

return x;
} // end function getX
/[ 2et ¥ in coordinate pair

void Point::setY({ int yValue )
{

¥ = yValue; // no need for validation

} // end function set¥

/[ return ¥ from coordinate pair
int Point::get¥{) const
{

return ¥;
} // end function get¥
/[ output Point obfect

wvoid Point::print{) const

{

‘Output the x.y coordinates of
the Point.

gout << '[! =< getX() << ", " << get¥{) << ']';

} // end function print

Qutline

point.cpp (1 of 2)

© 2003 Prentice Hall. Inc.
All rights reserved.

Outline

point.cpp (2 of 2)

© 2003 Prentice Hall, Inc.
All rights reserved.

Figure 2: Point class represents an xy-coordinate pair.



(- BT B R I - )

P
- o

12

0 NG R QN =

o
- O

SFIg. 1035 eixeledh

J/J Circle class contains x-y
f#ifndef CIRCLE H

fidefine CIRCLE H

Hinclude "point.h® [/ Point
class Cirecle : publie Point [

public:

/] default constructor
Cirele{ int = 0, int = 0,

wvoid setRadius( double };
double getRadius() const;

double getDiameter{} congt;

}

double getCircumferenc
double getArea() consy}

void print() const;

private:
double radius; [/ Circle!

Yy // end class Circle
Hendif
Jf Fig. 10.4: eircle.cpp
/[ Circle class member-functi
H#include <iostream>
uzing std::cout;
Hinclude "circle.h®
L[ default constructer
Cireles::Circle( int xValue, i
: Peint( xValue, yValue )
setRadius{ radiusValue );
} // end Circle construcktor
/[ eet radiue
void Cirele::setRadius( doubl
{

radius = { radiusValue < 0

} // end function setRadius

Figure 3: Circle class header file.

coordinate pair and radius.

class definition

Circle inherits from
Point, but redefines its
_| print function.

doubl

[ met radius

J{ return radius
[/ return diameter
congt; [/ return circumference

[/ return area

[/ output Cirele cbject

s radius

on definitions.

J[ tircle class definition

nt yValue, deouble radiusValue )

/f call base-class constructor

e radiusValue )

.0 ? 0.0 : radiusValue };

Qutline

circle.h (1 of 1)

© 2003 Prentice Hall. Inc.
All rights reserved.

Outline

circle.cpp (1 of 3)

© 2003 Prentice Hall, Inc.
All rights reserved.



24
25

EBRBYR

a
32
33
34
35
36
37
38
38

885885208588

8839882ap2

J/ return radius
double Circle::getRadius{) const
{

return radius;

} // end functicn getRadius

// calculate and return diameter
double Circle::getDiameter({) const
{

return 2 * getRadius();

I // end functicn getDiameter

// calculate and return circumference
double Circle::getCircumference() const
{

return 3.1415% * getDiameter();

1} // end function getCircumference
/f caleulate and return area
double Circle::getAreal) const

{

return ¥.1415% * getRadius(} * getRadius();

} // end function getArea

circle redefines its print

/[ ocutput Circle cbhbject " .
function. It calls Point’s

void Cirele::print() const

{ print function to output the
cout << "center = "; X,y coordinates of the center,
Points::print(}; // invoke Point's print { then prints the radius.
cout << "; radius = " << getRadius();

1 /f end function print

Qutline

circle.cpp (2 of 3)

© 2003 Prentice Hall. Inc.
All rights reserved.

Outline

circle.cpp (3 of 3)

© 2003 Prentice Hall, Inc.
All rights reserved.

Figure 4: Circle class that inherits from class Point.



1 Jf Fig. 10.5: figlO 05.cpp Outline
2 /f Aiming base-glage and derived-clase peointers at base-glase =S
3 // and derived-class cbjects, respectiwvely.

& f#include <iostream> figI0,0S‘C[J[J

5 (1af3)

[ using std::cout;

x using std::endl;

8 using std::fixed;

2

10 Hineclude <iemanip>

1

12 ‘using std::setprecision;

13

14 Hinclude "point.h® /[ Point class definition

15 #Hinclude "eirele.h®™ [// Circle class definition

16

17  int main(}

18 {

19 Peint peint{ 30, 50 );

20 Point *peointPtr = 0; // base-class pointer

21

22 Cirele cirelef 120, B9; 2.7 };

23 Circle *cireclePtr = 0; [/ derived-class pointer

29
© 2003 Prentice Hall, Inc.
All rights reserved.

25 S/ set floating-point numeric formaf Usﬁbbjcétsand pomle!s to Outline

26 cout << fixed << setprecision{ 2z ); | call the print function. The —_—

27 pointers and objects are of the

28 // output ebjects point and eir samCClaS$EQ?hﬂ proper ﬁg]O_Oj‘Cp[J

29 gout << "Print point and cirgle q prini function is called. (2 DfS)

30 << "\nPeoint: ";

31 point.print() ; B ES ‘s print

32 cout << "\nCircle:

33 circle.print{); // invokes /Circle's print

34

35 /[ #im base-class pointe ase-class cbject and print

36 pointPtr = &point;

37 cout << "\n\nCalling p¥int with base-class pointer to ™

38 << "\nhbase-class invekes base-class print ®

39 << "functiom:\p™;

40 peintPtr->print{}; [/ infokes Peint's print

41

42 /[ aim deriwved-class poijnter at derived-class cbject

43 /[ and print

44 cireclePtr = &ecircle;

45 gout << "‘\m\nCalling print with derived-clas= pointer to "

45 << "\nderived-cjass cbject invekes derived-class 9

47 << "print func .1on:\n';

48 circlePtr->print(); // invokes Circle's print

49

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 5: Assigning addresses of base-class and derived-class objects to base-
class and derived-class pointers. (part 1 of 2)



However, it calls Point’s
print function, determined by
the pointer type. virtual
functions allow us to change
this.

50 /f aim bage-clasz= pointer at derived-class cobject and print Outline
51 pointPtr = kecircle; =S
52 cout << "\n\nCalling print with base-class pointer to ¥

53 << "derived-class object\ninvokes base-class print ® 1’ig]07%‘(:pp

54 << "function on that derived-class object:\n"; {3 Df3)

55 pointPtr-»print{}; // invokes Point's print

o deuk G (eadly Aiming a hase-class pointer at

57 a derived object is allowed

2 Eaturo iy (the circle “is a” Point).

&0

} // end main

© 2003 Prentice Hall, Inc.
All rights reserved.

Print point and circle cbjects: O H
utline
Point: [30, 50] = —
Cirele: center = [120, B9]; radius = 2.70
fig10_05.cpp

Callin rint with base-class pointer to
s 5 output (1 of 1)

base-class cbject invokes base-class print function:
[30, s50]

Calling print with derived-class peinter to
derived-clags object inwvokez derived-eclass print funection:
center = [120, 89]; radius = 2.70

Calling print with base-class pointer to derived-class ocbject

invekes base-class print function en that derived-class object:
[120, 89]

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 6: Assigning addresses of base-class and derived-class objects to base-
class and derived-class pointers. (part 2 of 2)



1.2.2 Aiming Derived-Class Pointers at Base-Class Objects

e Previous example

e Aim a derived-class pointer at a base-class object

LB G- T T T I

14
15
16

— Aimed base-class pointer at derived object; Circle ”is a” Point

— Compiler error

x No ”is a” relationship
x Point is not a Circle

* Circle has data/functions that Point does not
setRadius (defined in Circle) not defined in Point

— Can cast base-object”s address to derived-class pointer

« Called downcasting (more in 10.9)

x Allows derived-class functionality

Lo FIg. 10065 Eigll 06, cpp
J/ Biming a derived-class pointer at a base-class object.
finclude "point.h® /[ Point class definition
fiinclude "ecircle.h™ // Circle class definition
int main ()
{
Point point( 30, 50 }:

Circle *circlePtr = 0;

/J aim derived-class pointer at base-class object

circlePtr = &point; [/ Error: a Point i= not a Circle
return 0;

} // end main

C:\cpphtpd\examplesichl0\figl0 06%\Figl0 06.cpp(12) : error C2440:

: cannot convert from 'class Point *' teo 'eclass Cirecle *'
Types pointed to are unrelated; converszion reguires
reinterpret cast, C-style cast or function-style cast

|l Qutline :

fig 10_06.cpp
(lof1)

fig10_06.cpp
output (1 of 1)

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 7: Aiming a derived-class pointer at a base-class object.



1.2.3 Derived-Class Member-Function Calls via Base-Class Point-

ers

e Handle (pointer /reference)

— Base-pointer can aim at derived-object; but can only call base-

class functions

— Calling derived-class functions is a compiler error; functions not

defined in base-class

e Common theme

— Data type of pointer/reference determines functions it can call

1 Jf Fig. 10.7: figlO 07.cpp

2 /[ Attempting te invoke derived-class-only member functions
3 // through a base-class pointer.

4 Hinclude "point.h® // Point class definition

5 Hinclude "circle.h®™ // Circle class definition

6

7 int main()

8 {

9 Boint *pointPtr = 0;

10 Circle circle( 120, B9, 2.7 };

1

12 /[ aim base-class peinter at derived-class cbject
13 pointPtr = &circle;

14

15 /[ invoke base-class member functions on derived-class
16 [/ object through base-class pointer

17 int x = pointPtr->getZ();

18 int ¥ = peintPtr->get¥();

19 pointPtr->setI( 10 };

20 pointPtr->set¥( 10 };

21 pointPtr->print{);

22

|| Outline .

figl0_07.cpp
(10f2)

© 2003 Prentice Hall, Inc.
All rights reserved.

Figure 8: Attempting to invoke derived-class-only functions via a base-class

pointer. (part 1 of 2)



23 J// attempt te inveke derived-class-enly member functions Outline
24 /[ on derived-clase object through base-class pointer =S
25 double radius = pointPtr->getRadius();

26 pointPtr->setRadius( 33.33 ); ﬁg]OﬁO’]"_cpp
27 double diameter = pointPtr->getDiameter(); {2 sz)

28 double circumference = pointPtr->getCircumference();

29 double area = pointPtr-rgethAreal);

30

31 return 0;

32

33 } // end main

These functions are only
defined in Circle.
However, pointPtr is of
class Point.

© 2003 Prentice Hall, Inc.
All rights reserved.

C:\cpphtpd\examples\chl0\figl0 07\figl0_07.cpp{25) : error C2039:
'getRadius' : is not a member of 'Point’

C:\cpphtpd\examples\chl0\figl0_07\point.h (6)
see declaration of 'Point’

Qutline

fig10_07.cpp
C:\ecpphtpd\examples\ch10\figl0_07\figl0_07.cpp(26) : error C2039: output (1 of 1)
'setRadius' : is not a member of 'Point®
C:\cpphtpd\examples\chlo\figlo 07\point.h (§)
see declaration of 'Point®

C:\cpphtpd\exampleshchl10\£igl0 07\figl0 07.cpp{27) : error C2039:
'getDiameter' : isg not a member of 'Peoint®
C:\cpphtpd4\examples\chl0\figl0d 07\peint.h(6) =
see declaration of 'Point!

C:\cpphtpd\examplesichl0\figl0 07%\figl0 07.cpp(28) : error C2039%:
'getCircumference' : is not a member of 'Point'
C:\cpphtpd\examples\chl0\figlo_07\point.h (6)

see declaration of 'Point!'

C:\cpphtpd\examples\chl10\figl0_07\figl0 07.cpp(29) : error C2039:
'getArea’ : i= not a member of 'Point’

C:\ecpphtp4\examples\chl0\figl0 07\point.h(6)
see declaration of 'Point!

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 9: Attempting to invoke derived-class-only functions via a base-class
pointer. (part 2 of 2)

10



1.2.4 Virtual Functions
e Typically, pointer-class determines functions
e virtual functions; object (not pointer) determines function called
e Why useful?
— Suppose Circle, Triangle, Rectangle derived from Shape; each
has own draw function

— To draw any shape

x Have base class Shape pointer, call draw

* Program determines proper draw function at run time (dy-
namically)

x Treat all shapes generically
e Declare draw as virtual in base class
— Override draw in each derived class; like redefining, but new func-
tion must have same signature
— If function declared virtual, can only be overridden

« virtual void draw() const;

x Once declared virtual, virtual in all derived classes; good
practice to explicitly declare virtual

e Dynamic binding

— Choose proper function to call at run time

— Only occurs off pointer handles; if function called from object,
uses that object”s definition

e Example

— Redo Point, Circle example with virtual functions

— Base-class pointer to derived-class object; will call derived-class
function

e Polymorphism

— Same message, "print”, given to many objects; all through a base
pointer

— Message takes on "many forms”

11



(=]
LA

1 Jf Fig. 10.8: point.h Outline
2 // Peint clase definition represents an x-¥ coordinate pair. =S
3 fifndef POINT H
4  Hdefine POINT H pointh (1 of 1)
5
& class Point {
T
8 public:
] Point{ int = 0, int = 0 }; /[ default constructeor
10
11 void setX{ int }; [/ set x in coordinate pair
12 int getX{) const; [/ return x from coordinate pair
13 ‘Print declared virtual. It
14 void set¥( int }; [/ will be virtual in all
15 int get¥({) const; return v | derived classes.
16
17 virtual wveoid print{} censt; // cutput Point chject
18
18 private:
20 int x; // x part of coordinate pair
21 int ¥; J/ v part of coordinate pair
22
23 }:; // end class Point
29
25 Hendif
© 2003 Prentice Hall, Inc.
All rights reserved.
26
1 LfTag. 1059 cixalech Outline
2 JJ Circle class contains x-¥ coordinate pair and radius. —_—
3 Hifndef CIRCLE H
4  Hdefine CIRCLE H circle.h (1 of 1)
5
6 fiinclude "point.h® J/ Peoint clase definitieon
7
B8 class Circle : publie Peoint [
]
10 public:
11
12 /] default constructor
13 Cirele{ int = 0, int = 0, double = 0.0 };
14
15 wvoid setRadius( double }; [/ set radius
16 double getRadius() const; [{ return radius
17
18 double getDiameter{} const; // return diameter
19 double getCircumference(} const; // return circumference
20 double getArea({) const; // return area
21
22 wirtual wveid print(} conet; [/ output Circle cbject
23
24 private:
25 double radius; [/ Circle's radius
26
27 }; // end elass Circle
i © 2003 Prentice Hall. Inc.
29 Hendif

All rights reserved.

Figure 10: Point class header file declares print function as virtual (upper)
and Circle class header file declares print function as virtual.

12



1 // Fig. 10.10: £igl0_10.cpp Outline
2 // Introdueing pelymerphism, wvirtual functiones and dynamic =S
3 /f binding.

& f#include <iostream> 1‘ig]0710‘cpp

5 (1af3)

[ using std::cout;

x using std::endl;

8 using std::fixed;

2

10 Hineclude <iemanip>

1

12 ‘using std::setprecision;

13

14 Hinclude "point.h® /[ Point class definition

15 #Hinclude "eirele.h®™ [// Circle class definition

16

17  int main(}

18 {

19 Peint peint{ 30, 50 );

20 Point *peointPtr = 0;

21

22 Cirele cireclef 120, B9; 2.7 };

23 Circle *circlePtr = 0;

29
© 2003 Prentice Hall, Inc.
All rights reserved.

28

25 S/ set floating-point numeric formatting Outline

26 cout <= fixed << setprecision{ 2 }; —_—

27

28 /[ output ebjectsz point and cirecle using static binding fig]O_lO‘cpp

29 gout << "Invoking print function on point and circle * (2 DfS)

30 << "\nobjects with static binding "

31 << "\n\nPoint: ";

a2 point.print () ; [/ static binding

33 cout << "\nlircle: ";

34 circle.print{); // static binding

35

36 /[ output objectsz peoint and circle using dynamic binding

37 cout << "\n\nInveking print funetion on point and circle ™

38 << ®\nobjects with dynamic binding®;

39

40 // 8im base-class pointer at base-class object and print

41 pointPtr = &point;

4z cout << "‘\ninCalling wvirtual function print with base-class"

43 << "\npointer to base-clasgs object™

44 << "\ninvokes base-class print function:\n";

45 pointPtr->print();

46

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 11: Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (part 1 of 2)

13



J// aim derived-class peinter at derived-class Ou‘tline
/[ cbject and print =S
circlePtr = Beoircle;
cout <= "\n\nCalling virtual function print with * ﬁg]OﬁlO,cpp

<< "\nderived-class pointer to derived-class object ® {3 Df3)

<< "\minvokes derived-class print function:\n";

circlePtr->print();

ff aim bage-class pointer at derived-oclass cbject and print
pointPtr = ecircle;
cout <% "\n\nCalling virtual function print with base-class®
<< "\npointer to deriwved-class cbject ®
<< "\mninvokes derived-class print functiom:\n";
pointPtr-»print{}; // pelymorphism: inwvokes circle's print

cout << endl;

T28R228B8983 888288885

return 0; At run time, the program
determines that pointPtr is
65 } // end main aiming ata Circle object,

and calls Circle’s print
function. This is an example
of polymorphism.

© 2003 Prentice Hall, Inc.
All rights reserved.

Inveking print functicn on peoint and circle O H
utline

ocbjects with static binding

Point: [30, 50]

fig10_10.cpp
Cirele: Center = [120, 89]; Radius = 2.70

output (1 of 1)

Inveking print function on point and circle
cbjects with dynamic binding

Calling wirtual funetien print with base-class
pointer to base-class ocbject

inveokes base-class print function:

[30, 50]

Calling wirtual funetien print with
derived-class pointer to derived-class cbhject
invokes derived-class print function:

Center = [120, 89]; Radius = 2.70

Calling wirtual funetien print with base-class
pointer to derived-class object

invokes derived-class print function:
Center = [120, 89]; Radius = 2.70

© 2003 Prentice Hall. Inc.
All rights reserved.

Figure 12: Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (part 2 of 2)

14



e Summary
— Base-pointer to base-object, derived-pointer to derived; straight-
forward
— Base-pointer to derived object; can only call base-class functions
— Derived-pointer to base-object

x Compiler error
« Allowed if explicit cast made (more in section 10.9)

1.3 Polymorphism Examples
e Suppose Rectangle derives from Quadrilateral

— Rectangle more specific Quadrilateral

— Any operation on Quadrilateral can be done on Rectangle (i.e.,
perimeter, area)

e Suppose designing video game

— Base class SpaceObject

x Derived Martian, SpaceShip, LaserBeam
x Base function draw

— To refresh screen

x Screen manager has vector of base-class pointers to objects
x Send draw message to each object
* Same message has "many forms” of results

1.4 Type Fields and switch Structures
e One way to determine object’s class

— Give base class an attribute; shapeType in class Shape

— Use switch to call proper print function
e Many problems

— May forget to test for case in switch

— If add/remove a class, must update switch structures; Time con-
suming and error prone

e Better to use polymorphism

— Less branching logic, simpler programs, less debugging

15



1.5 Abstract Classes

e Abstract classes

— Sole purpose: to be a base class (called abstract base classes)
— Incomplete; derived classes fill in “missing pieces”
— Cannot make objects from abstract class; however, can have point-

ers and references

Concrete classes

— Can instantiate objects
— Implement all functions they define

— Provide specifics

Abstract classes not required, but helpful

To make a class abstract

— Need one or more “pure” virtual functions

* Declare function with initializer of 0
* virtual void draw() const = 0;

— Regular virtual functions; have implementations, overriding is op-
tional

— Pure virtual functions; no implementation, must be overridden

— Abstract classes can have data and concrete functions; required
to have one or more pure virtual functions

e Abstract base class pointers; useful for polymorphism
e Application example

— Abstract class Shape; defines draw as pure virtual function

— Circle, Triangle, Rectangle derived from Shape; each must
implement draw

— Screen manager knows that each object can draw itself
e Iterators (more Chapter 21)

— Walk through elements in vector/array

— Use base-class pointer to send draw message to each

16



	Object-Oriented Programming: Polymorphism
	Introduction
	Relationships Among Objects in an Inheritance Hierarchy
	Invoking Base-Class Functions from Derived-Class Objects
	Aiming Derived-Class Pointers at Base-Class Objects
	Derived-Class Member-Function Calls via Base-Class Pointers
	Virtual Functions

	Polymorphism Examples
	Type Fields and switch Structures
	Abstract Classes


