
1 Classes and Data Abstraction I, Exercise -

date Example

We begin looking at object-oriented aspects of C++. There are two parallel
versions of an application which uses date computation. There is an object-
oriented C version and a C++ version. Both compile to about the same
object. At this point, all C++ supplies is a superior organizational notation
and tools. At the machine level, the code generated is about the same in
either case.

• C version written using best practice to avoid confusion and name
clashes with other libraries.

• Consider date routines as a separate library. Show how declarations
and definitions work in C++ compared with C. What goes in header
files? What goes in implementation files?

• C++ member functions get unqualified access to object members (data,
types and functions) Don’t need to qualify with object name as C
routines do. this keyword to get at object itself. Can also be used
(needlessly) to qualify access to object data members. Unqualified
member names can hide global functions/objects. Use :: prefix if you
need to get at these.

• using private: keyword to protect data members. client code versus
implementation code. implementation code for one object might be
client code for another object it uses. Protecting data members al-
lows implementation to change without code in client objects having
to change. (They will most likely need to be recompiled.)

• using class instead of struct

• declaring methods const. const key word appears directly after paren-
theses. Must appear in decl and def. Part of ”signature”.

• static keyword

Associating functions with objects. They get declared as members of the ob-
jects they are to manipulate. These members (unless they are declared vir-
tual) don’t take up space in the object. Declaration and definition. Defining
function in class declaration makes it inline. Don’t do this just because it’s
convenient - remember about code duplication.
Constructors - a special member function for initialization. A behind-the-
scenes function call. No return value. No address.

1

• date constructors. No-arg constructor: In defining vars, parentheses
must be left off, otherwise compiler thinks its a function declaration; in
creating temporaries, parentheses must be included, e.g. cout ¡¡ date()
prints today’s date. When using new, either notation can be used, e.g.
new date or new date().

• () vs = variation for single arg constructor

• effect of making constructor private

• specifying construction of contained or inherited objects.

In speaking of pieces of C++ code and their relationship to the various
classes, it is useful to differentiate between ”implementation” code and ”client”
code. Implementation code for a particular class is the code used to define
its methods. Client code is other code which manipulates instances of the
class. This terminology is always used with respect to a particular class. A
piece of implementation code for one class may be client code for another
class.
Write both the following codes, compile and compare the differ-

encies.

–object-oriented C version

/* date.c C code for date example - based on example in

B. Stroustrup, The C++ Programming Language (2nd ed.), pp. 145.

The implementation code for the date library is written so it could be

used with a host of other libraries with minimum confusion, and minimum

possibility of name clashes with the other libraries.

*/

#include <stdio.h>

#include <time.h>

struct date

{

enum month_names

{DATE_JAN, DATE_FEB, DATE_MAR, DATE_APR, DATE_MAY, DATE_JUN,

DATE_JUL, DATE_AUG, DATE_SEP, DATE_OCT, DATE_NOV, DATE_DEC} month;

char day;

short year;

};

2

const char date_limits[12] =

{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

void date_set(struct date *dt, enum month_names m, int d, int y)

{

dt->month = m;

dt->day = d;

if ((dt->year = y) < 100) dt->year += 1900 ;

}

void date_set_today(struct date *dt)

{

time_t t;

struct tm *localt;

time(&t);

localt = localtime(&t);

dt->month = localt->tm_mon;

dt->day = localt->tm_mday;

dt->year = 1900 + localt->tm_year;

}

struct date *date_next(struct date *dt)

{

if /* is more work than just incrementing the day needed? */

(

/* only if the result is > 28 */

++dt->day > 28 &&

/* and leap year does not apply */

(dt->month != DATE_FEB || dt->day != 29 ||

dt->year % 4 != 0 || (dt->year % 100 == 0 && dt->year % 400 != 0)) &&

/* and the fixed monthly constraints are exceeded */

dt->day > date_limits[dt->month]

)

{

dt->day = 1;

if (++dt->month > DATE_DEC)

{

dt->month = DATE_JAN;

++dt->year;

3

}

}

return dt;

}

FILE *date_print(const struct date *dt, FILE *f)

{

fprintf(f, "%02u/%02u/%02u", dt->month + 1, dt->day, dt->year % 100);

return f;

}

int main()

{

struct date today, bjarnes_bday, day;

date_set_today(&today);

printf("Today is ");

date_print(&today, stdout); puts(".");

date_set(&bjarnes_bday, DATE_DEC, 30, 1950);

printf("Bjarne’s birthday is ");

date_print(&bjarnes_bday, stdout); puts(".");

day = bjarnes_bday;

printf("On "); date_print(date_next(&day), stdout);

printf(", he was one day old.\n");

printf("On "); date_print(date_next(&day), stdout);

printf(", he was two days old.\n");

return 0;

}

4

–and a C++ version

// datecpp.C C++ code for date example - based on example in B. Stroustrup,

// The C++ Programming Language (2nd ed.), pp. 145.

#include <iostream.h>

#include <iomanip.h>

#include <time.h>

class date

{

public:

enum month_names

{JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC};

date();

date(month_names m, int d, int y) { set(m, d, y); }

date &set(month_names m, int d, int y);

date &next();

ostream &print(ostream &) const;

private:

month_names month;

char day;

short year;

static const char limits[12];

};

const char date::limits[12] =

{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

date::date()

{

time_t t;

tm *localt;

::time(&t);

localt = ::localtime(&t);

month = (month_names)localt->tm_mon;

day = localt->tm_mday;

year = 1900 + localt->tm_year;

}

5

date &date::set(month_names m, int d, int y)

{

month = m;

day = d;

if ((year = y) < 100) year += 1900 ;

return *this;

}

date &date::next()

{

if // is more work than just incrementing the day needed?

(

// only if the result is > 28

++day > 28 &&

// and leap year does not apply

(month != FEB || day != 29 ||

year % 4 != 0 || (year % 100 == 0 && year % 400 != 0)) &&

// and the fixed monthly constraints are exceeded

day > limits[month]

)

{

int m = month;

day = 1;

if (++m > DEC)

{

m = JAN;

++year;

}

month = (month_names)m;

}

return *this;

}

ostream &date::print(ostream &os) const

{

char fill = os.fill(’0’);

os << setw(2) << month + 1 << ’/’ << setw(2) << (int)day << ’/’

<< setw(2) << year % 100;

os.fill(fill);

return os;

}

6

int main()

{

cout << "Today is "; date().print(cout) << ".\n";

date bjarnes_bday(date::DEC, 30, 1950);

cout << "Bjarne’s birthday was "; bjarnes_bday.print(cout) << ".\n";

date day = bjarnes_bday;

cout << "On "; day.next().print(cout) << ", he was one day old.\n";

cout << "On "; day.next().print(cout) << ", he was two days old.\n";

return 0;

}

2 Classes and Data Abstraction I, Lab Exer-

cise 1 - Complex Numbers

Create a class called Complex for performing arithmetic with complex num-
bers. Write a driver program to test your class. Complex numbers have the
form

realpart + imaginarypart ∗ i

where i is √
−1

Use floating–point variables to represent the private data of the class. Pro-
vide a constructor function that enables an object of this class to be initialized
when it is declared. The constructor should contain default values in case no
initializers are provided. Provide public member functions for each of the
following:

• Addition of two Complex numbers: The real parts are added together
and the imaginary parts are added together

• Substraction of two Complex numbers: The real part of the right
operand is subtracted from the real part of the left operand and the
imaginary part of the right operand is subtracted from the imaginary
part of the left operand.

• Printing Complex numbers in the form (a,b) where a is the real part
and b is the imaginary part.

The output should appear as follows:
(1,7) + (9,2) = (10,9)
(10,1) - (11,5) = (-1,-4)

7

#include <iostream>

using std::cout;

using std::endl;

/* Write class definition for Complex */

// member function definitions for class Complex

Complex::Complex(double real, double imaginary)

{

setComplexNumber(real, imaginary);

}

void Complex::addition(const Complex &a)

{

/* Write statement to add the realPart of a to the class

realPart */

/* Write statement to add the imaginaryPart of a to the

class imaginaryPart */

}

void Complex::subtraction(const Complex &s) {

/* Write a statement to subtract the realPart of s from the

class realPart */

/* Write a statement to subtract the imaginaryPart of s from

the class imaginaryPart */

}

void Complex::printComplex(void)

{

cout << ’(’ << realPart << ", " << imaginaryPart << ’)’;

}

void Complex::setComplexNumber(double real, double imaginary)

{

realPart = real;

imaginaryPart = imaginary;

}

int main() {

Complex b(1, 7), c(9, 2);

b.printComplex();

cout << " + ";

c.printComplex();

cout << " = ";

b.addition(c);

b.printComplex();

cout << ’\n’;

b.setComplexNumber(10, 1);

c.setComplexNumber(11, 5);

8

b.printComplex();

cout << " - ";

c.printComplex();

cout << " = ";

b.subtraction(c);

b.printComplex();

cout << endl;

return 0;

}

Tips:

• You must write the definition for class Complex. Use the details
provided in the member function definitions (see above) to assist you.

• Remember to use member–access specifiers public and private to
specify the access level of data members and functions. Carefully con-
sider which access specifier to use for each class member. In general,
data members should be private and member functions should be pub-
lic.

Questions

1. Why do you think const was used in the parameter list of addition
and subtraction?

2. Can addition and subtraction’s parameters be passed call–by–value
instead of call–by–reference? How might this affect the design of class
Complex? Write a new class definition.

9

	Classes and Data Abstraction I, Exercise - date Example
	Classes and Data Abstraction I, Lab Exercise 1 - Complex Numbers

