1

Operator Overloading, Programming Chal-
lenges 111

Create a class called Complex for performing arithmetic with complex num-

bers.

Complex numbers have the form

realpart + imaginarypart x 1

where i is

V-1

Use floating—point variables to represent the private data of the class. Pro-
vide a constructor function that enables an object of this class to be initialized
when it is declared. The constructor should contain default values 0.0 in case
no initializers are provided. You should do the following things:

Create a copy constructor for class Complex.

Overload the >> operator to input a complex number like a+bi in the
form (a, b) and overload the << operator to output the same complex
number in the form (a, b)

Overload the == operator to compare two complex number for equal-
ity. This function should return a boolean value.

Overload the += operator for the Complex class.

Overload the postincrement and preincrement operators for the class
Complex. When a complex number is incremented, only real part of
the complex number should be increased by one.

Overload the postdecrement and predecrement operators for the class
Complex. When a complex number is decreased, only real part of the
complex number should be decreased by one.

Overload the addition operator to enable addition of two complex num-
bers as in algebra.

Overload the subtraction operator to enable subtraction of two complex
numbers as in algebra.

Overload the multiplication operator to enable addition of two complex
numbers as in algebra. Complex number multiplication is performed
as follows:

(a+ bi) * (c + di) = (ac — bd) + (ad + bc)i



e Overload the division operator to enable addition of two complex num-
bers as in algebra. Complex number division is performed as follows:

(a+bi)/(c+ di) = [(ac + bd) + (—ad + be)i] /(¢ — d?)

Tips:

e When overloading the stream-extraction (>>) operator, use the ignore
method of the class istream.

e Overloaded << and >> should be friend functions.

e All overloaded operators should be const functions.



