
1 Inheritance, Lab Exercise 4 - Cars

Develop a class Racecar that inherits publicly from class Car, which represents
a car by its maximum speed, the number of engine valves, its color and its name.
A Racecar is distinguished by its gearbox (the number of gears it has), its sponsor
and the presence of a parachute. Provide only set methods for the private data.
The only way to view the private data should be through the print method.

The output should appear as follows:

chevy:
Car: Chevrolette is black and has a 4-valve engine. MAX SPEED = 95 mph.

f1:
Car: Ferrari is red and has a 40-valve engine. MAX SPEED = 360 mph.
Ferrari also has 7 gears and is sponsored by Scuderia.
Ferrari has used its parachute.

//car.h

#ifndef CAR_H

#define CAR_H

#include <iostream>

using std::ostream

class Car {

public:

Car(const char *name, const char *color);

~Car();

void setMaxSpeed(int);

void setEngineValve(int);

void print() const;

protected:

int maxSpeed;

int engineValves;

char *colors;

char *name;

};

#endif

//car.cpp

#include <iostream>

using std::cout;

using std::endl;

#include <cassert>

#include "car.h"

/* write the constructor for Car, which takes the Car’s name and

1

color and assigns them to private data members name and color;

initialize maxSpeed to 95 and engineValves to 4*/

Car::~Car()

{

delete [] name;

delete [] color;

}

void Car::setMaxSpeed(int s)

{

maxSpeed = ((s >= 0 && s < 250) ? s : 40);

}

void Car::setEngineValves(int v)

{

engineValves = ((v >= 0 && v < 50) ? v : 4);

}

void Car::print() const

{

cout << "Car: " << name << " is " << color << " and has a "

<< engineValves << "-valve engine. MAX SPEED = "

<< maxSpeed << " mph. " << endl;

}

// racecar.h

#ifndef RACECAR_H

#define RACECAR_H

#include "car.h"

/* write class header for Racecar, which inherits publicly from

Car */

public:

Racecar(const char *, const char *, const char *);

~Racecar();

void setGearbox(int);

void useParachute(void);

void print() const;

private:

int gearbox; // the number of gears in a car (i.e., 5-speed)

char *sponsor;

bool parachuteDeployed;

};

#endif

// racecar.cpp

#include <iostream>

2

using std::cout;

using std::endl;

#include <cassert>

#include "racecar.h"

Racecar::Racecar(const char *n, const char *c, const char *s)

/* write code to call base-class constructor */

{

/* write code to allocate memory for the sponsor, s, and

copy it into private data member sponsor */

gearbox = 6;

parachuteDeployed = false;

}

Racecar::~Racecar()

{

delete [] sponsor;

}

void Racecar::setGearbox(int gears)

{

gearbox = ((gears <= 10 && gears >= 0) ? gears : 6);

}

void Racecar::useParachute(void) { parachuteDeployed = p;}

void Racecar::print() const

{

/* call base class method print here */

cout << name << " also has " << gearbox

<< " gears and is sponsored by " << sponsor << ". ";

if (parachuteDeployed)

cout << /* access base class version of name here */

<< " has used its parachute." << endl;

else

cout << /* access base class version of name here */

<< " has not used its parachute." << endl;

}

// driver for race car and car

#include <iostream>

using std::cout;

using std::endl;

#include "car.h"

#include "racecar.h"

int main()

{

Car chevy("Chevrolette", "black");

3

cout << "chevy: \n";

/* write code to print Car object */

Racecar f1("Ferrari", "red", "Scuderia");

f1.setEngineValves(40);

f1.setMaxSpeed(360);

f1.setGearBox(7);

f1.useParachute();

cout << "\n\nf1: \n";

f1.print();

return 0;

}

Tips:

• Be sure to allocate sufficient memory when copying character arrays.

• The Racecar constructor should explicitly call the constructor of Car.

Questions

1. What happens if Car’s data members are specified as private instead

of protected?

2. Could Racecar have been derived from Car using protected inheri-

tance? What about private inheritance?

3. Is it possible to call class Car’s print method if you have a Racecar

object? How does the compiler determine which print method to use?

4. Why is it not necessary for Racecar’s print method to use Car::name

in order to print the name of the racecar?

4

