1 Introduction

Data-intensive applications such as transaction processing and information
retrieval, data mining and analysis and multimedia services have provided
a new challenge for the modern generation of parallel platforms. Emerging
areas such as computational biology and nanotechnology have implications
for algorithms and systems development, while changes in architectures, pro-
gramming models and applications have implications for how parallel plat-
forms are made available to users in the form of grid-based services.

High performance may come from fast dense circuitry, packaging technol-
ogy, and parallelism. Parallel processors are computer systems consisting of
multiple processing units connected via some interconnection network plus
the software needed to make the processing units work together. There are
two major factors used to categorize such systems: the processing units them-
selves, and the interconnection network that ties them together.

e Uniprocessor — Single processor supercomputers have achieved great
speeds and have been pushing hardware technology to the physical
limit of chip manufacturing.

— Physical and architectural bounds (Lithography, ym size, destruc-
tive quantum effects.

— Proposed solutions are maskless lithography process and nanoim-
print lithography for the semiconductor).

— While clock rates of high-end processors have increased at roughly
40% per year over the past decade, DRAM access times have only
improved at the rate of roughly 10% per year over this interval
(presents a tremendous performance bottleneck). This growing
mismatch between processor speed and DRAM latency is typically
bridged by a hierarchy of successively faster memory devices called
caches that rely on locality of data reference to deliver higher
memory system performance. In addition to the latency, the net
effective bandwidth between DRAM and the processor poses other
problems for sustained computation rates.

— Uniprocessor systems can achieve to a limited computational power
and not capable of delivering solutions to some problems in rea-
sonable time.

e Multiprocessor — Multiple processors cooperate to jointly execute a sin-
gle computational task in order to speed up its execution.

e New issues arise;

) Numerous Application Programs
High | W | ; |
‘/ ‘/ ‘ Skeletons
OpenMP
Pthreads Jav/aThreads \
Mg MPI PVM
Threads g g
Hiding Details Shared M Message Passin .
g RIZO ey . s Parallel Tools 'Smart Compiler
/ Distributed sM /
\\Cluster\
P
SMP CC-NUMA Myrinet ATM
| | | |
Low \ % | \
Concrete Architectures. :

Figure 1: View of the Field and Abstraction Layers

— Multiple threads of control vs. single thread of control
— Partitioning for concurrent execution

— Task Scheduling

— Synchronization

— Performance

e Past Trends in Parallel Architecture (inside the box)

— Completely custom designed components (processors, memory, in-
terconnects, 1/O). The first three are the major components for
the aspects of the parallel computation.

* Longer R&D time (2-3 years).
*x Expensive systems.
* Quickly becoming outdated.

— While parallel computing, in the form of internally linked pro-

cessors, was the main form of parallelism, advances in computer

networks has created a new type of parallelism in the form of
networked autonomous computers.

e New Trends in Parallel Architecture (outside the box)

— Instead of putting everything in a single box and tightly couple
processors to memory, the Internet achieved a kind of parallelism
by loosely connecting everything outside of the box.

— Network of PCs and workstations connected via LAN or WAN
forms a Parallel System. Compete favorably (cost/performance).

2

Interconnection Networks

]] (][] [n]]
ééé@é@ é Interconnection Networks

| Programming Environment |

e BER BER B | Middleware |
R0 N VS T 0s 0S
B BN B .
b M M M M
rocessot] -
Memory B N . .
Mo M EME M
von Neumann Computer P P P P
M M M M
Some Interconnection Network

Figure 2: MIMD Shared Memory, MIMD Distributed Memory, SIMD Dis-
tributed Computers, and Clusters.

— Utilize unused cycles of systems sitting idle.

e Parallel and Distributed Computers. The processing units can com-
municate and interact with each other using either shared memory
or message passing methods. The interconnection network for shared
memory systems can be classified as bus-based versus switch-based.

— MIMD Shared Memory

— Bus based

— Switch based

- CC-NUMA

— MIMD Distributed Memory
— SIMD Computers

— Clusters

— Grid Computing

*x Grids are geographically distributed platforms for computa-
tion.

& Feature Batch Time-Sharin Deskto Network
Interconnection Network - =
Decade 1960s 1970s 1980s 1990s
Location Computer room Terminal room Desktop Maobile
. Users Experts Specialists Individuals Groups
Static Dynamlc Data Alphanumeric Text, numbers Fonts, graphs ~ Multimedia
/_H Objective Caleulate Access Present Communicate
Interface Punched card Keyboard and CRT ~ See and point ~ Ask and tell
1-D 2-D HC Bus-based Switch-based Operation Process Edit Layout Orchestrate
r_/;\ Connectivity None Peripheral cable LAN Internet
Owners Corporate computer Divisional IS shops Departmental Everyone
centers end-users

Single Multiple SS MS Crossb
ar

Figure 3: Interconnection Network Taxonomy and Four Decades of Comput-

ing.

x They provide dependable, consistent, general, and inexpen-

sive access to high end computational capabilities.

e In message passing systems, the interconnection network is divided into

static and dynamic.

— Static connections have a fixed topology that does not change

while programs are running.

— Dynamic connections create links on the fly as the program exe-

cutes.

1.1 Four Decades of Computing

Most computer scientists agree that there have been four distinct paradigms
or eras of computing. These are: batch, time-sharing, desktop, and network.

1. Batch Era
2. Time-Sharing Era
3. Desktop Era

4. Network Era. They can generally be classified into two main categories:
(1) shared memory, and (2) distributed memory systems. The number
of processors in a single machine ranged from several in a shared mem-
ory computer to hundreds of thousands in a massively parallel system.
Examples of parallel computers during this era include Sequent Sym-
metry, Intel iPSC, nCUBE, Intel Paragon, Thinking Machines (CM-2,

CM-5), MsPar (MP), Fujitsu (VPP500), and others.

5. Current Trends: Clusters, Grids.

1.2 Flynn’s Taxonomy of Computer Architecture

e The most popular taxonomy of computer architecture was defined by
Flynn in 1966. Flynn’s classification scheme is based on the notion of
a stream of information.

— Two types of information flow into a processor: instructions and
data.

— The instruction stream is defined as the sequence of instructions
performed by the processing unit.

— The data stream is defined as the data traffic exchanged between
the memory and the processing unit.

According to Flynn’s classification, either of the instruction or data
streams can be single or multiple. Computer architecture can be clas-
sified into the following four distinct categories:

1. single instruction single data streams (SISD)

2. single instruction multiple data streams (SIMD)

3. multiple instruction single data streams (MISD)

4. multiple instruction multiple data streams (MIMD).

e Parallel computers are either SIMD or MIMD.

— When there is only one control unit and all processors execute the
same instruction in a synchronized fashion, the parallel machine
is classified as SIMD.

— In a MIMD machine, each processor has its own control unit and
can execute different instructions on different data.

— In the MISD category, the same stream of data flows through a lin-
ear array of processors executing different instruction streams. In
practice, there is no viable MISD machine; however, some authors
have considered pipelined machines as examples for MISD.

1.3 SIMD Architecture

e The SIMD model of parallel computing consists of two parts: a front-
end computer of the usual von Neumann style, and a processor array
as shown in Fig. 2c.

Daia Stream

Tnsiruction Stream

Processor Memory
(P) (M)

Control
o Unit

Instruction Stream Data Stream

Instruction Stream Data Stream

Control M
— n :

Instruction Stream

Instruction Stream Data Stream

Instruction Stream

Figure 4: SISD, SIMD, amd MIMD Architectures.

Each processor in the array has a small amount of local memory where
the distributed data resides while it is being processed in parallel.

The processor array is connected to the memory bus of the front end
so that the front end can randomly access the local processor memories
as if it were another memory.

The application program is executed by the front end in the usual serial
way, but issues commands to the processor array to carry out SIMD
operations in parallel.

The similarity between serial and data parallel programming is one of
the strong points of data parallelism.

Synchronization is made irrelevant by the lock-step synchronization
of the processors. Processors either do nothing or exactly the same
operations at the same time.

In SIMD architecture, parallelism is exploited by applying simultaneous
operations across large sets of data.

There are two main configurations that have been used in SIMD ma-
chines (see Fig. 5).

1. In the first scheme, each processor has its own local memory. Pro-
cessors can communicate with each other through the intercon-
nection network.

l

Control Unit
) R
) >
"]
o :]
Intercannection Nerwork |

| Interconnection Network

|

Figure 5: Two SIMD Schemes.

[mmm 6o

Interconnection Metwork

Interconnection Network

HO® o000 @

Figure 6: Two MIMD Categories; Shared Memory and Message Passing
MIMD Architectures.

— If the interconnection network does not provide direct con-
nection between a given pair of processors, then this pair can
exchange data via an intermediate processor.

— The ILLIAC IV used such an interconnection scheme. The
interconnection network in the ILLIAC IV allowed each pro-
cessor to communicate directly with four neighboring proces-
sors in an 8 X 8 matrix pattern such that the i th processor
can communicate directly with the (i — 1), (5 + 1), (5 —
8)t", and(i + 8)™ processors.

2. In the second SIMD scheme, processors and memory modules com-
municate with each other via the interconnection network.

— Two processors can transfer data between each other via in-
termediate memory module(s) or possibly via intermediate
processor(s). The BSP (Burroughs’ Scientific Processor) used
the second SIMD scheme.

1.4 MIMD Architecture

e Multiple instruction multiple data streams (MIMD) parallel architec-
tures are made of multiple processors and multiple memory modules

connected together via some interconnection network.

e They fall into two broad categories: shared memory or message passing.
Figure 6 illustrates the general architecture of these two categories.

e Processors exchange information through their central shared mem-
ory in shared memory systems, and exchange information through their
interconnection network in message passing systems.

1. A shared memory system typically accomplishes interprocessor
coordination through a global memory shared by all processors.

— The bus/cache architecture facilitates the need for expensive
multi-ported memories and interface circuitry as well as the
need to adopt a message-passing paradigm when developing
application software.

— Because access to shared memory is balanced, these systems
are also called SMP (symmetric multiprocessor) systems.

— Commercial examples of SMPs are Sequent Computer’s Bal-
ance and Symmetry, Sun Microsystems multiprocessor servers,
and Silicon Graphics Inc. multiprocessor servers.

2. A message passing system (also referred to as distributed memory)
typically combines the local memory and processor at each node
of the interconnection network.

— There is no global memory, so it is necessary to move data
from one local memory to another by means of message pass-
ing. This is typically done by a Send/Receive pair of com-
mands, which must be written into the application software
by a programmer (data copying and dealing with consistency
issues).

— Commercial examples of message passing architectures were
the nCUBE, iPSC/2, and various Transputer-based systems.
These systems eventually gave way to Internet connected sys-
tems whereby the processor/memory nodes were either Inter-
net servers or clients on individuals’ desktop.

e It was also apparent that distributed memory is the only way effi-
ciently to increase the number of processors managed by a parallel and
distributed system. If scalability to larger and larger systems (as mea-
sured by the number of processors) was to continue, systems had to
use distributed memory techniques.

e These two forces created a conflict: programming in the shared memory
model was easier, and designing systems in the message passing model
provided scalability.

e The distributed-shared memory (DSM) architecture began to appear in
systems like the SGI Origin2000, and others. In such systems, memory
is physically distributed; for example, the hardware architecture fol-
lows the message passing school of design, but the programming model
follows the shared memory school of thought.

e As far as a programmer is concerned, the architecture looks and behaves
like a shared memory machine, but a message passing architecture lives
underneath the software. Thus, the DSM machine is a hybrid that takes
advantage of both design schools.

1.4.1 Shared Memory Organization

e Each processor may have registers, buffers, caches, and local memory
banks as additional memory resources.

e A number of basic issues in the design of shared memory systems have
to be taken into consideration. These include access control, synchro-
nization, protection, and security.

— Access control determines which process accesses are possible to
which resources.

— Synchronization constraints limit the time of accesses from sharing
processes to shared resources.

— Protection is a system feature that prevents processes from making
arbitrary access to resources belonging to other processes.

— Sharing and protection are incompatible; sharing allows access,
whereas protection restricts it.

e The simplest shared memory system consists of one memory module
that can be accessed from two processors. Requests arrive at the mem-
ory module through its two ports.

e Depending on the interconnection network, a shared memory system
leads to systems can be classified as: uniform memory access (UMA),
nonuniform memory access (NUMA), and cache-only memory architec-
ture (COMA).

— In the UMA system, a shared memory is accessible by all proces-
sors through an interconnection network in the same way a single
processor accesses its memory.

x Therefore, all processors have equal access time to any mem-
ory location.

*x The interconnection network used in the UMA can be a single
bus, multiple buses, a crossbar, or a multi-port memory.

— In the NUMA system, each processor has part of the shared mem-
ory attached.

* The memory has a single address space. Therefore, any pro-
cessor could access any memory location directly using its real
address.

x However, the access time to modules depends on the distance
to the processor. This results in a nonuniform memory access
time.

— Similar to the NUMA, each processor has part of the shared mem-
ory in the COMA. However, in this case the shared memory con-
sists of cache memory. A COMA system requires that data be
migrated to the processor requesting it.

1.4.2 Message Passing Organization

Message passing systems are a class of multiprocessors in which each
processor has access to its own local memory.

Unlike shared memory systems, communications in message passing
systems are performed via send and receive operations.

A node in such a system consists of a processor and its local memory.

Nodes are typically able to store messages in buffers (temporary mem-
ory locations where messages wait until they can be sent or received),
and perform send/receive operations at the same time as processing.

The processing units of a message passing system may be connected
in a variety of ways ranging from architecture-specific interconnection
structures to geographically dispersed networks.

— Of importance are hypercube networks, which have received spe-
cial attention for many years.

10

— The nearest neighbor two-dimensional and three-dimensional mesh
networks have been used in message passing systems as well.

e Two important design factors must be considered in designing inter-
connection networks for message passing systems. These are the link
bandwidth and the network latency.

1. The link bandwidth is defined as the number of bits that can be
transmitted per unit time (bits/s).

2. The network latency is defined as the time to complete a message
transfer.

1.5 Interconnection Networks

Multiprocessors interconnection networks (INs) can be classified based on a
number of criteria.

1. Mode of Operation. According to the mode of operation, INs are clas-
sified as synchronous versus asynchronous.

e In synchronous mode of operation, a single global clock is used
by all components in the system such that the whole system is
operating in a lock-step manner.

e Asynchronous mode of operation, on the other hand, does not
require a global clock. Handshaking signals are used instead in
order to coordinate the operation of asynchronous systems.

e While synchronous systems tend to be slower compared to asyn-
chronous systems, they are race and hazard-free.

2. Control Strategy. According to the control strategy, INs can be classi-
fied as centralized versus decentralized.

e In centralized control systems, a single central control unit is used
to oversee and control the operation of the components of the
system. The function and reliability of the central control unit
can become the bottleneck.

e In decentralized control, the control function is distributed among
different components in the system.

e While the crossbar is a centralized system, the multistage inter-
connection networks are decentralized.

11

3. Switching Techniques. Interconnection networks can be classified ac-
cording to the switching mechanism as circuit versus packet switching
networks.

In the circuit switching mechanism, a complete path has to be
established prior to the start of communication between a source
and a destination. The established path will remain in existence
during the whole communication period.

In a packet switching mechanism, communication between a source
and destination takes place via messages that are divided into
smaller entities, called packets. On their way to the destination,
packets can be sent from a node to another in a store-and-forward
manner until they reach their destination.

While packet switching tends to use the network resources more
efficiently compared to circuit switching, it suffers from variable
packet delays.

4. Topology.An interconnection network topology is a mapping func-
tion from the set of processors and memories onto the same set of
processors and memories.

A fully connected topology, for example, is a mapping in which
each processor is connected to all other processors in the computer.

A ring topology is a mapping that connects processor k to its
neighbors, processors (k — 1) and (k + 1).

In general, interconnection networks can be classified as static
versus dynamic networks.

In static networks, direct fixed links are established among nodes
to form a fixed network, while in dynamic networks, connections
are established as needed.

Shared memory systems can be designed using bus-based or switch-
based INs (see Fig. 7).

— The simplest IN for shared memory systems is the bus. How-
ever, the bus may get saturated if multiple processors are
trying to access the shared memory (via the bus) simultane-
ously.

— A typical bus-based design uses caches to solve the bus con-
tention problem.

12

Global Memory

F 3

vy

Figure 7: Bus Based and Switch Based Shared Memory INs, Single Bus
Based and Multiple Bus Based Shared Memory INs.

— Other shared memory designs rely on switches for interconnec-
tion. For example, a crossbar switch can be used to connect
multiple processors to multiple memory modules.

e Message passing INs can be divided into static and dynamic.
— Static networks form all connections when the system is de-
signed rather than when the connection is needed.

— Dynamic INs establish a connection between two or more
nodes on the fly as messages are routed along the links.

— The number of hops in a path from source to destination node
is equal to the number of point-to-point links a message must
traverse to reach its destination.

— The ultimate performance of an interconnection network is
greatly influenced by the number of hops taken to traverse
the network.

— Figure 8 shows a number of popular static topologies.

e €} %J@@

Linear Array Ring Mesh Hypercube

Figure 8: Examples of Static Topologies.

13

00 000 00

001 _D: 00l 001 :‘;8(1]
010 ol 010
on o1l 011

100° 100 100
101 11 101

10 110 110 0
111 11 111 Hy

001

10

00D 001 010 011 100 101 110 111

Figure 9: Single-Stage, Multi-Stage and Crossbar Switch Dynamics INs.

— Figure 9 shows examples of dynamic networks. The single-
stage interconnection network of Fig. 9a is a simple dynamic
network that connects each of the inputs on the left side to
some, but not all, outputs on the right side through a single
layer of binary switches represented by the rectangles.

— The binary switches can direct the message on the left-side
input to one of two possible outputs on the right side.

— If we cascade enough single-stage networks together, they

form a completely connected multistage interconnection net-
work (MIN), as shown in Fig. 9b.

— These are dynamic INs because the connection is made on the
fly, as needed.

— For example, to connect source 111 to destination 001 in the
network, the switches in the first and second stage must be
set to connect to the upper output port, while the switch at
the third stage must be set to connect to the lower output
port (001).

— Similarly, the crossbar switch of Figure 9c provides a path
from any input or source to any other output or destination
by simply selecting a direction on the fly.

— To connect row 111 to column 001 requires only one binary
switch at the intersection of the 111 input line and 011 output

14

- Network Degree Diameter Caost (#links)
MNetwork Delay Cost (Complexity)
: Linear array 2 N—1 N—-1
B K) odl) Binary tree 3 2[loga N) = 1) N-1
Multiple-bus (M) CHm) fcibe loga N loa N niN/2
MINs Ollog N) (N Tog N}y M- mresh 4 Y N —)

Figure 10: Performance Comparisons of Some Dynamics INs and Perfor-
mance Characteristics of Static INs.

line to be set.

The crossbar switch clearly uses more binary switching com-
ponents; for example, N? components are needed to connect
N x N source/destination pairs. The MIN, on the other hand,
connects N x N pairs with N/(2 x (logN)) components.

The major advantage of the crossbar switch is its potential
for speed. In one clock, a connection can be made between
source and destination. The diameter of the crossbar is one.
(Diameter, D, of a network having N nodes is defined as the
maximum shortest paths between any two nodes in the net-
work.)

The MIN, on the other hand requires logN clocks to make a
connection. The diameter of the MIN is therefore log/NV.

If two pairs attempt to communicate at the same time along
a shared path, one pair must wait for the other. This is called
blocking, and such MINs are called blocking networks.
Figure 10a shows a performance comparison among a number
of different dynamic INs. Figure 10b shows a performance
comparison among a number of static INs.

15

	Introduction
	Four Decades of Computing
	Flynn's Taxonomy of Computer Architecture
	SIMD Architecture
	MIMD Architecture
	Shared Memory Organization
	Message Passing Organization

	Interconnection Networks

