
Process 0 Process 1

A:

B:

Send Recv

Figure 1: MPI messages.

1 Sending and Receiving messages

Questions:

• To whom is data sent?

• What is sent?

• How does the receiver identify it?

1.1 Current Message-Passing

Message = data + envelope

Figure 2: Data+Envelope.

• MPI Data; Arguments

– startbuf (starting location of data)

– count (number of elements)

∗ receive count ≥ send count

1

– datatype (basic or derived)

∗ receiver datatype = send datatype (unless MPI PACKED)

∗ elementary (all C and FORTRAN types)

∗ derived datatype

· mixed datatypes

· contiguous arrays of datatypes

· strided blocks of datatypes

· indexed array of blocks of datatypes

· general structure

∗ Specifications of elementary datatypes allows heterogeneous
communication.

∗ MPI basic datatypes for C:

Figure 3: MPI basic datatypes for C.

• MPI Envelope; Arguments

– destination or source

∗ rank in a communicator

∗ receive = sender or MPI ANY SOURCE

– tag

∗ integer chosen by programmer

∗ receive = sender or MPI ANY TAG (wild cards allowed)

– communicator

∗ defines communication ”space”

∗ group + context

2

∗ receive = send

– Collective operations typically operated on all processes.

– MPI provides groups of processes

∗ initial ”all” group.

∗ group management routines (build, delete groups).

– All communication (not just collective operations) takes place in
groups.

– A context partitions the communication space

∗ A message sent in one context cannot be received in another
context.

∗ Contexts are managed by the system.

– A group and a context are combined in a communicator.

– Source/destination in send/receive operations refer to rank in group
associated with a given communicator.

All of these specifications are a good match to hardware, easy to understand,
but too inflexible.

1.2 The Buffer

Sending and receiving only a contiguous array of bytes. Specified in MPI by
starting address, datatype, and count

• hides the real data structure from hardware which might be able to
handle it directly.

• requires pre-packing dispersed data

– rows of a matrix stored columnwise.

– general collections of structures.

• prevents communications between machines with different representa-
tions (even lengths) for same data type

1.3 Sample Program using Library Calls

Sub1 and Sub2 are from different libraries.

Sub1();

Sub2();

3

Figure 4: left-top; Correct Execution of Library Calls, right-top; Incor-
rect Execution of Library Calls, left-bottom; Correct Execution of Library
Calls with Pending Communcication, right-bottom; Incorrect Execution of
Library Calls with Pending Communication.

Sub1a and Sub1b are from the same library

Sub1a();

Sub2();

Sub1b();

1.4 MPI Basic Send/Receive

Thus the basic (blocking) send has become:

MPI_Send(start, count, datatype, dest, tag,

comm)

and the receive:

4

MPI_Recv(start, count, datatype, source, tag,

comm, status)

The source, tag, and count of the message actually received can be retrieved
from status.

MPI_Status status;

MPI_Recv(..., &status);

... status.MPI_TAG;

... status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &count);

MPI Get count may be used to determine how much data of a particular
type was received.

Two simple collective operations:

MPI_Bcast(start, count, datatype, root, comm)

MPI_Reduce(start, result, count, datatype,

operation, root, comm)

1.5 Exercise/Example: Translate this Fortran code to

C

program main

include ’mpif.h’

integer rank, size, to, from, tag, count, i, ierr

integer src, dest

integer st_source, st_tag, st_count

integer status(MPI_STATUS_SIZE)

double precision data(100)

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

print *, ’Process ’, rank, ’ of ’, size, ’ is alive’

dest = size - 1

src = 0

C

if (rank .eq. src) then

to = dest

count = 10

tag = 2001

5

http://siber.cankaya.edu.tr/ParallelComputing/cfiles/sendreceive.f

do 10 i=1, 10

10 data(i) = i

call MPI_SEND(data, count, MPI_DOUBLE_PRECISION, to,

+ tag, MPI_COMM_WORLD, ierr)

else if (rank .eq. dest) then

tag = MPI_ANY_TAG

count = 10

from = MPI_ANY_SOURCE

call MPI_RECV(data, count, MPI_DOUBLE_PRECISION, from,

+ tag, MPI_COMM_WORLD, status, ierr)

call MPI_GET_COUNT(status, MPI_DOUBLE_PRECISION,

+ st_count, ierr)

st_source = status(MPI_SOURCE)

st_tag = status(MPI_TAG)

C

print *, ’Status info: source = ’, st_source,

+ ’ tag = ’, st_tag, ’ count = ’, st_count

print *, rank, ’ received’, (data(i),i=1,10)

endif

call MPI_FINALIZE(ierr)

end

1.6 Computation of PI as an example

This example evaluates π by numerically evaluating the integral

∫
1

0

1

1 + x2
dx =

π

4

• The master process reads number of intervals from standard input, this
number is then broadcast to the pool of processes.

• Having received the number of intervals, each process evaluates the
total area of n/pool size rectangles under the curve

• The contributions to the total area under the curve are collected from
participating processes by the master process, which at the same time
adds them up, and prints the result on standard output.

This program computes PI (with a very simple method) but does not use
MPI Send and MPI Recv. Instead, it uses collective operations to send
data to and from all of the running processes.

• The routine MPI Bcast sends data from one process to all others.

6

http://siber.cankaya.edu.tr/ParallelComputing/cfiles/pi.c

• The routine MPI Reduce combines data from all processes (by adding
them in this case), and returning the result to a single process.

#include "mpi.h"

#include <math.h>

int main(argc,argv)

int argc;

char *argv[];

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done)

{

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

}

7

1.7 Exercise

• Experiment with send/receive.

• Run program for PI. Write new versions that replace the calls to MPI Bcast
and MPI Reduce with MPI Send and MPI Recv.

8

	Sending and Receiving messages
	Current Message-Passing
	The Buffer
	Sample Program using Library Calls
	MPI Basic Send/Receive
	Exercise/Example: Translate this Fortran code to C
	Computation of PI as an example
	Exercise

