0.0.1 Condition Variables for Synchronization

e As it is noted in the previous section, indiscriminate use of locks can
result in idling overhead from blocked threads. While the function
pthread_mutex_trylock alleviates this overhead, it introduces the over-
head of polling for availability of locks.

e For example, if the producer-consumer example is rewritten using pthread_mutex_trylock
instead of pthread_mutex_lock, the producer and consumer threads would
have to periodically poll for availability of lock (and subsequently avail-
ability of buffer space or tasks on queue).

e A natural solution to this problem is to suspend the execution of the
producer until space becomes available (an interrupt driven mechanism
as opposed to a polled mechanism).

e The availability of space is signaled by the consumer thread that con-
sumes the task. The functionality to accomplish this is provided by a
condition variable.

e A condition variable is a data object used for synchronizing threads.
This variable allows a thread to block itself until specified data reaches
a predefined state.

e In the producer-consumer case, the shared variable task_available must
become 1 before the consumer threads can be signaled.

e The boolean condition task_available == 1 is referred to as a predicate.
A condition variable is associated with this predicate.

e When the predicate becomes true, the condition variable is used to
signal one or more threads waiting on the condition.

e A single condition variable may be associated with more than one pred-
icate. However, this is strongly discouraged since it makes the program
difficult to debug.

e A condition variable always has a mutex associated with it. A thread
locks this mutex and tests the predicate defined on the shared variable
(in this case: task_available); if the predicate is not true, the thread
waits on the condition variable associated with the predicate using the
function pthread_cond_wait.

1 int pthread_cond_wait(pthread_cond_t *cond,
2 pthread_mutex_t *mutex) ;

A call to this function blocks the execution of the thread until it receives
a signal from another thread or is interrupted by an OS signal.

In addition to blocking the thread, the pthread_cond_wait function
releases the lock on mutex. This is important because otherwise no
other thread will be able to work on the shared variable task_available
and the predicate would never be satisfied.

When the thread is released on a signal, it waits to reacquire the lock
on mutex before resuming execution.

It is convenient to think of each condition variable as being associated
with a queue. Threads performing a condition wait on the variable
relinquish their lock and enter the queue.

When the condition is signaled (using pthread_cond signal), one
of these threads in the queue is unblocked, and when the mutex be-
comes available, it is handed to this thread (and the thread becomes
runnable).

In the context of our producer-consumer example, the producer thread
produces the task and, since the lock on mutex has been relinquished
(by waiting consumers), it can insert its task on the queue and set
task_available to 1 after locking mutex. Since the predicate has now
been satisfied, the producer must wake up one of the consumer threads
by signaling it.

1 int pthread_cond_signal (pthread_cond_t *cond);

The function unblocks at least one thread that is currently waiting on
the condition variable cond. The producer then relinquishes its lock on
mutex by explicitly calling pthread_mutex_unlock, allowing one of the
blocked consumer threads to consume the task.

Before our producer-consumer example is rewritten using condition
variables, we need to introduce two more function calls for initializing

and destroying condition variables, pthread_cond_init and pthread_cond_destroy;
respectively.

1 int pthread_cond_init(pthread_cond_t *cond,
2 const pthread_condattr_t *attr);
3 int pthread_cond_destroy(pthread_cond_t *cond);

The function pthread_cond_init initializes a condition variable (pointed to by
cond) whose attributes are defined in the attribute object attr. Setting this
pointer to NULL assigns default attributes for condition variables.

If at some point in a program a condition variable is no longer required, it
can be discarded using the function pthread_cond_destroy.

These functions for manipulating condition variables enable us to rewrite
our producer-consumer segment.

Producer-consumer using condition variables

— Condition variables can be used to block execution of the producer
thread when the work queue is full and the consumer thread when the
work queue is empty.

— We use two condition variables cond_queue_empty and cond_queue_full
for specifying empty and full queues respectively.

— The predicate associated with cond_queue_empty is task_available ==
0, and cond_queue_full is asserted when task_available == 1.

— The producer queue locks the mutex task_queue_cond_lock associated
with the shared variable task_available.

— It checks to see if task_available is 0 (i.e., queue is empty). If this is
the case, the producer inserts the task into the work queue and signals
any waiting consumer threads to wake up by signaling the condition
variable cond_queue_full. It subsequently proceeds to create additional
tasks.

— If task_available is 1 (i.e., queue is full), the producer performs a con-
dition wait on the condition variable cond_queue_empty (i.e., it waits
for the queue to become empty).

— The reason for implicitly releasing the lock on task_queue_cond_lock
becomes clear at this point. If the lock is not released, no consumer
will be able to consume the task and the queue would never be empty.
At this point, the producer thread is blocked.

— Since the lock is available to the consumer, the thread can consume
the task and signal the condition variable cond_queue_empty when the
task has been taken off the work queue.

— The consumer thread locks the mutex task_queue_cond_lock to check if
the shared variable task_available is 1. If not, it performs a condition
wait on cond_queue_full. (Note that this signal is generated from the
producer when a task is inserted into the work queue.)

— If there is a task available, the consumer takes it off the work queue and
signals the producer. In this way, the producer and consumer threads
operate by signaling each other. It is easy to see that this mode of
operation is similar to an interrupt-based operation as opposed to a
polling-based operation of pthread_mutez_trylock.

1 pthread_cond_t cond_queue_empty, cond_queue_full;
2 pthread_mutex_t task_queue_cond_lock;

3 int task_available;

4

5 /* other data structures here */

6

7 main() {

8 /* declarations and initializations */

9 task_available = 0;

10 pthread_init();

11 pthread_cond_init(&cond_queue_empty, NULL);

12 pthread_cond_init(&cond_queue_full, NULL);

13 pthread_mutex_init (&task_queue_cond_lock, NULL);
14 /* create and join producer and consumer threads */
15 %}

16

17 void *producer(void *producer_thread_data) {

18 int inserted;

19 while (!done()) {

20 create_task();

21 pthread_mutex_lock(&task_queue_cond_lock);
22 while (task_available == 1)

23 pthread_cond_wait (&cond_queue_empty,
24 &task_queue_cond_lock);

25 insert_into_queue();

26 task_available = 1;

27 pthread_cond_signal (&cond_queue_full);

28 pthread_mutex_unlock(&task_queue_cond_lock) ;
29 }

30 }

31

32 void *consumer(void *consumer_thread_data) {

33 while (!done()) {

34 pthread_mutex_lock(&task_queue_cond_lock);
35 while (task_available == 0)

36 pthread_cond_wait (&cond_queue_full,

37 &task_queue_cond_lock) ;

38 my_task = extract_from_queue();

4

39 task_available = 0;

40 pthread_cond_signal (&¥cond_queue_empty) ;

41 pthread_mutex_unlock(&task_queue_cond_lock) ;
42 process_task(my_task) ;

43 by

44 '}

An important point to note about this program segment is that
the predicate associated with a condition variable is checked in a
loop.

One might expect that when cond_queue_full is asserted, the value
of task_available must be 1. However, it is a good practice to check
for the condition in a loop because the thread might be woken up
due to other reasons (such as an OS signal).

In other cases, when the condition variable is signaled using a
condition broadcast (signaling all waiting threads instead of just
one), one of the threads that got the lock earlier might invalidate
the condition.

In the example of multiple producers and multiple consumers, a
task available on the work queue might be consumed by one of
the other consumers.

When a thread performs a condition wait, it takes itself off the
runnable list consequently, it does not use any CPU cycles until it
is woken up. This is in contrast to a mutex lock which consumes
CPU cycles as it polls for the lock.

In the above example, each task could be consumed by only one
consumer thread. Therefore, we choose to signal one blocked
thread at a time.

In some other computations, it may be beneficial to wake all
threads that are waiting on the condition variable as opposed to a
single thread. This can be done using the function pthread_cond_broadcast.

1 int pthread_cond_broadcast(pthread_cond_t *cond) ;

An example of this is in the producer-consumer scenario with
large work queues and multiple tasks being inserted into the work
queue on each insertion cycle. Another example of the use of
pthread_cond_broadcast is in the implementation of barriers.

It is often useful to build time-outs into condition waits. Using
the function pthread_cond_timedwait, a thread can perform a
wait on a condition variable until a specified time expires. At this

0.1

point, the thread wakes up by itself if it does not receive a signal
or a broadcast.

1 int pthread_cond_timedwait(pthread_cond_t *cond,
2 pthread_mutex_t *mutex,
3 const struct timespec *abstime);

If the absolute time abstime specified expires before a signal or
broadcast is received, the function returns an error message. It
also reacquires the lock on mutex when it becomes available.

Controlling Thread and Synchronization Attributes

Threads and synchronization variables can have several attributes as-
sociated with them. For example, different threads may be scheduled
differently (round-robin, prioritized, etc.), they may have different stack
sizes, and so on. Similarly, a synchronization variable such as a mutex-
lock may be of different types.

An attributes object is a data-structure that describes entity (thread,
mutex, condition variable) properties.

When creating a thread or a synchronization variable, we can specify
the attributes object that determines the properties of the entity. Once
created, the thread or synchronization variable’s properties are largely
fixed (Pthreads allows the user to change the priority of the thread).

Subsequent changes to attributes objects do not change the properties
of entities created using the attributes object prior to the change.

There are several advantages of using attributes objects.

— First, it separates the issues of program semantics and implemen-
tation. Thread properties are specified by the user. How these are
implemented at the system level is transparent to the user. This
allows for greater portability across operating systems.

— Second, using attributes objects improves modularity and read-
ability of the programs.

— Third, it allows the user to modify the program easily. For in-
stance, if the user wanted to change the scheduling from round
robin to time-sliced for all threads, they would only need to change
the specific attribute in the attributes object.

e To create an attributes object with the desired properties, we must first
create an object with default properties and then modify the object as
required.

0.1.1 Attributes Objects for Threads

e The function pthread_attr_init lets us create an attributes object for

threads.

1 int

2 pthread_attr_init (

3 pthread_attr_t *attr);

e This function initializes the attributes object attr to the default val-
ues. Upon successful completion, the function returns a 0, otherwise it
returns an error code.

e The attributes object may be destroyed using the function pthread_attr_destroy.

1 int
2 pthread_attr_destroy (
3 pthread_attr_t *attr);

e The call returns a 0 on successful removal of the attributes object attr.

e Individual properties associated with the attributes object can be changed
using the following functions: pthread_attr_setdetachstate,
pthread_attr_setguardsize_np, pthread_attr_setstacksize,
pthread_attr_setinheritsched, pthread_attr_setschedpolicy, and
pthread_attr_setschedparam.

e These functions can be used to set the detach state in a thread at-
tributes object, the stack guard size, the stack size, whether scheduling
policy is inherited from the creating thread, the scheduling policy (in
case it is not inherited), and scheduling parameters, respectively.

e For most parallel programs, default thread properties are generally ad-
equate.

0.2

0.3

Thread Cancellation

Consider a simple program to evaluate a set of positions in a chess
game. Assume that there are k£ moves, each being evaluated by an
independent thread.

If at any point of time, a position is established to be of a certain
quality, the other positions that are known to be of worse quality must
stop being evaluated. In other words, the threads evaluating the corre-
sponding board positions must be canceled. Posix threads provide this
cancellation feature in the function pthread_cancel.

1 int
2 pthread_cancel (
3 pthread_t thread);

Here, thread is the handle to the thread to be canceled. A thread may
cancel itself or cancel other threads.

When a call to this function is made, a cancellation is sent to the
specified thread. It is not guaranteed that the specified thread will
receive or act on the cancellation. Threads can protect themselves
against cancellation.

When a cancellation is actually performed, cleanup functions are in-
voked for reclaiming the thread data structures. After this the thread
is canceled. This process is similar to termination of a thread using the
pthread_exit call.

This is performed independently of the thread that made the original
request for cancellation.

The pthread_cancel function returns after a cancellation has been
sent. The cancellation may itself be performed later. The function
returns a 0 on successful completion. This does not imply that the
requested thread has been canceled; it implies that the specified thread
is a valid thread for cancellation.

Composite Synchronization Constructs

While the Pthreads API provides a basic set of synchronization constructs,
often, there is a need for higher level constructs. These higher level constructs
can be built using basic synchronization constructs.

0.3.1 Barriers

e An important and often used construct in threaded (as well as other
parallel) programs is a barrier. A barrier call is used to hold a thread
until all other threads participating in the barrier have reached the
barrier.

e Barriers can be implemented using a counter, a muter and a condi-
tion variable. (They can also be implemented simply using mutexes;
however, such implementations suffer from the overhead of busy-wait.)

e A single integer is used to keep track of the number of threads that
have reached the barrier. If the count is less than the total number of
threads, the threads execute a condition wait. The last thread entering
(and setting the count to the number of threads) wakes up all the
threads using a condition broadcast. The code for accomplishing this
is as follows:

1 typedef struct {

2 pthread_mutex_t count_lock;

3 pthread_cond_t ok_to_proceed;
4 int count;

5 } mylib_barrier_t;
6

7

8

9

void mylib_init_barrier(mylib_barrier_t *b) {
b -> count = 0;
pthread_mutex_init(&(b -> count_lock), NULL);

10 pthread_cond_init(&(b -> ok_to_proceed), NULL);

11 3

12

13 void mylib_barrier (mylib_barrier_t *b, int num_threads) {
14 pthread_mutex_lock(&(b -> count_lock));

15 b -> count ++;

16 if (b -> count == num_threads) {

17 b -> count = 0;

18 pthread_cond_broadcast (&(b -> ok_to_proceed));
19 }

20 else

21 while (pthread_cond_wait(&(b -> ok_to_proceed),
22 &(b -> count_lock)) !'= 0);

23 pthread_mutex_unlock(&(b -> count_lock));

24 }

In the above implementation of a barrier, threads enter the barrier and
stay until the broadcast signal releases them. The threads are released

one by one since the mutex count_lock is passed among them one after
the other. The trivial lower bound on execution time of this function
is therefore O(n) for n threads. This implementation of a barrier can
be speeded up using multiple barrier variables.

Let us consider an alternate barrier implementation in which there are
n/2 condition variable-mutex pairs for implementing a barrier for n
threads.

© 0 N Ok WN -

O e e S T
O O 00 NO O WN = O

— The barrier works as follows: at the first level, threads are paired

up and each pair of threads shares a single condition variable-
mutex pair.

A designated member of the pair waits for both threads to arrive
at the pairwise barrier. Once this happens, all the designated
members are organized into pairs, and this process continues until
there is only one thread.

At this point, we know that all threads have reached the barrier
point. We must release all threads at this point. However, releas-
ing them requires signaling all n/2 condition variables. We use the
same hierarchical strategy for doing this. The designated thread
in a pair signals the respective condition variables.

typedef struct barrier_node {

pthread_mutex_t count_lock;
pthread_cond_t ok_to_proceed_up;
pthread_cond_t ok_to_proceed_down;
int count;

} mylib_barrier_t_internal;

typedef struct barrier_node mylog_logbarrier_t [MAX_THREADS];
pthread_t p_threads[MAX_THREADS] ;

pthread_attr_t attr;

void mylib_init_barrier(mylog_logbarrier_t b) {

int i;

for (i = 0; i < MAX_THREADS; i++) {
b[i] .count = 0;
pthread_mutex_init(&(b[i].count_lock), NULL);
pthread_cond_init(&(b[i].ok_to_proceed_up), NULL);
pthread_cond_init(&(b[i].ok_to_proceed_down), NULL);

10

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

void mylib_logbarrier (mylog_logbarrier_t b, int num_threads,

¥

int thread_id) {
int i, base, index;

i=2;
base = 0;
do {
index = base + thread_id / i;
if (thread_id % i == 0) {
pthread_mutex_lock(&(b[index] .count_lock));
blindex] .count ++;
while (b[index].count < 2)
pthread_cond_wait (&(b[index] .ok_to_proceed_up),
&(b[index] .count_lock));
pthread_mutex_unlock(&(b[index].count_lock));
}
else {
pthread_mutex_lock(&(b[index] .count_lock));
blindex] .count ++;
if (b[index].count == 2)
pthread_cond_signal (&(b[index] .ok_to_proceed_up));
while (pthread_cond_wait(&(b[index].ok_to_proceed_down),
&(b[index] .count_lock)) != 0);
pthread_mutex_unlock(&(b[index] .count_lock));
break;
}
base = base + num_threads/i;
1=1i%2;
} while (i <= num_threads);
i=i/2;

for (; i>1;i=1/2){
base = base - num_threads/i;
index = base + thread_id / i;
pthread_mutex_lock(&(b[index] .count_lock));
b[index] .count = 0;
pthread_cond_signal (&(b[index] .ok_to_proceed_down));
pthread_mutex_unlock(&(b[index].count_lock));

In this implementation of a barrier, we visualize the barrier as a binary
tree. Threads arrive at the leaf nodes of this tree.

11

e Consider an instance of a barrier with eight threads. Threads 0 and 1

0.4

are paired up on a single leaf node. One of these threads is designated
as the representative of the pair at the next level in the tree.

In the above example, thread 0 is considered the representative and it
waits on the condition variable ok_to_proceed_up for thread 1 to catch
up. All even numbered threads proceed to the next level in the tree.
Now thread 0 is paired up with thread 2 and thread 4 with thread 6.
Finally thread 0 and 4 are paired. At this point, thread 0 realizes that
all threads have reached the desired barrier point and releases threads
by signaling the condition ok_to_proceed_down. When all threads are
released, the barrier is complete.

Tips for Designing Asynchronous Programs

When designing multithreaded applications, it is important to remem-
ber that one cannot assume any order of execution with respect to
other threads. Any such order must be explicitly established using the
synchronization mechanisms discussed above: mutexes, condition vari-
ables, and joins. In addition, the system may provide other means of
synchronization. However, for portability reasons, we discourage the
use of these mechanisms.

In many thread libraries, threads are switched at semi-deterministic
intervals. Such libraries are more forgiving of synchronization errors in
programs. These libraries are called slightly asynchronous libraries.

On the other hand, kernel threads (threads supported by the kernel)
and threads scheduled on multiple processors are less forgiving. The
programmer must therefore not make any assumptions regarding the
level of asynchrony in the threads library.

The following rules of thumb which help minimize the errors in threaded
programs are recommended.

— Set up all the requirements for a thread before actually creating
the thread. This includes initializing the data, setting thread at-
tributes, thread priorities, mutex-attributes, etc. Once you create
a thread, it is possible that the newly created thread actually runs
to completion before the creating thread gets scheduled again.

— When there is a producer-consumer relation between two threads
for certain data items, make sure the producer thread places the

12

data before it is consumed and that intermediate buffers are guar-
anteed to not overflow.

— At the consumer end, make sure that the data lasts at least until
all potential consumers have consumed the data. This is particu-
larly relevant for stack variables.

— Where possible, define and use group synchronizations and data
replication. This can improve program performance significantly.

e While these simple tips provide guidelines for writing error-free threaded
programs, extreme caution must be taken to avoid race conditions and
parallel overheads associated with synchronization.

0.5 OpenMP: a Standard for Directive Based Parallel
Programming

e While standardization and support for these threaded APIs has come
a long way, their use is still predominantly restricted to system pro-
grammers as opposed to application programmers. One of the reasons
for this is that APIs such as Pthreads are considered to be low-level
primitives.

e Conventional wisdom indicates that a large class of applications can
be efficiently supported by higher level constructs (or directives) which
rid the programmer of the mechanics of manipulating threads.

e Such directive-based languages have existed for a long time, but only
recently have standardization efforts succeeded in the form of OpenMP.
OpenMP is an API that can be used with FORTRAN, C, and C+-+
for programming shared address space machines.

e OpenMP directives provide support for concurrency, synchronization,
and data handling while avoiding the need for explicitly setting up
mutexes, condition variables, data scope, and initialization.

0.5.1 The OpenMP Programming Model

e We initiate the OpenMP programming model with the aid of a simple
program. OpenMP directives in C and C++ are based on the #pragma
compiler directives. The directive itself consists of a directive name
followed by clauses.

1 #pragma omp directive [clause list]

13

e OpenMP programs execute serially until they encounter the parallel
directive. This directive is responsible for creating a group of threads.

e The exact number of threads can be specified in the directive, set using
an environment variable, or at runtime using OpenMP functions.

e The main thread that encounters the parallel directive becomes the
master of this group of threads and is assigned the thread id 0 within
the group. The parallel directive has the following prototype:

1 #pragma omp parallel [clause list]
2 /% structured block */
3

e Each thread created by this directive executes the structured block spec-
ified by the parallel directive.

e The clause list is used to specify conditional parallelization, number of
threads, and data handling.

— Conditional Parallelization: The clause if (scalar expression) de-
termines whether the parallel construct results in creation of threads.
Only one if clause can be used with a parallel directive.

— Degree of Concurrency: The clause num_threads (integer expres-
sion) specifies the number of threads that are created by the par-
allel directive.

— Data Handling: The clause private (variable list) indicates that
the set of variables specified is local to each thread - i.e., each
thread has its own copy of each variable in the list. The clause
firstprivate (variable list) is similar to the private clause, except
the values of variables on entering the threads are initialized to cor-
responding values before the parallel directive. The clause shared
(variable list) indicates that all variables in the list are shared
across all the threads, i.e., there is only one copy. Special care
must be taken while handling these variables by threads to ensure
serializability.

e [t is easy to understand the concurrency model of OpenMP when
viewed in the context of the corresponding Pthreads translation. In
Figure 1, one possible translation of an OpenMP program to a Pthreads
program is shown (such a translation can easily be automated through
a Yacc or CUP script).

14

:lnL a, by
maini) |

m—1 #/ serial segment
fpragma omp parallel nmum_thraads (8} private (a} shared (bB)

I
B —I| f{ parallel segment

11 } 1 Af rest of serial segment Sample OpenddP progrm
inc &; by
maini} |

— |— J/ Berial gegment

Coe | for (L = 0; 1 < 87 L4}

imserted by pEhread create (2.0 internal thread En name, <.:1;
{he Upemts for (1 = 07 L« B; ise)
compller | pehread Join |,- 1t

.J_ [/ rest of serial segment
L

|

woid #intarnal thread fn nams (void *packaged argument) [
int a;

- |_ Jf paraliel segment
1 Correspanding Prhremds tronslation

Figure 1: A sample OpenMP program along with its Pthreads translation
that might be performed by an OpenMP compiler.

#include <omp.h>
main () A

int varl, var2, vara3;
Serial code

Beginning of parallel section. Fork a team of threads.
Specify variable scoping
#pragma omp parallel private(varl, var2) shared(var3)

{

Parallel section executed by all threads

All threads join master thread and disband

}

Resume serial code

}

ok sk ok ok ok ok ok ok

15

#include <omp.h>
int a,b,num_threads;
int main()
{
printf ("I am in sequential part.\n");
#pragma omp parallel num_threads (8) private (a) shared (b)
{
num_threads=omp_get_num_threads();
printf ("I am openMP parellized part and thread %d \n",omp_get_thread_num());
}
}

Using the parallel directive

1 #pragma omp parallel if (is_parallel == 1) num_threads(8) \
2 private (a) shared (b) firstprivate(c)
3 A

4 /* structured block */

5

Here, if the value of the variable is_parallel equals one, eight threads are
created. Each of these threads gets private copies of variables a and c,
and shares a single value of variable b. Furthermore, the value of each
copy of ¢ is initialized to the value of ¢ before the parallel directive.

The default state of a variable is specified by the clause default (shared)
or default (none).

— The clause default (shared) implies that, by default, a variable is
shared by all the threads.

— The clause default (none) implies that the state of each variable
used in a thread must be explicitly specified. This is generally
recommended, to guard against errors arising from unintentional
concurrent access to shared data.

Just as firstprivate specifies how multiple local copies of a variable are
initialized inside a thread, the reduction clause specifies how multiple
local copies of a variable at different threads are combined into a single
copy at the master when threads exit.

— The usage of the reduction clause is reduction (operator: variable
list).

16

— This clause performs a reduction on the scalar variables specified
in the list using the operator. The variables in the list are implic-

itly specified as being private to threads. The operator can be one
of

+, 0%, =, &, |, 7, &, and |].

Using the reduction clause

1 #pragma omp parallel reduction(+: sum) num_threads(8)
2 {

3 /* compute local sums here */

4 b

5

/* sum here contains sum of all local instances of sums */

In this example, each of the eight threads gets a copy of the variable
sum. When the threads exit, the sum of all of these local copies is
stored in the single copy of the variable (at the master thread).

Computing PI using OpenMP directives (presented a Pthreads program
for the same problem). The omp_get_num_threads() function returns
the number of threads in the parallel region and the omp_get_thread_num()
function returns the integer i.d. of each thread (recall that the master
thread has an i.d. 0).

The parallel directive specifies that all variables except npoints, the
total number of random points in two dimensions across all threads,
are local.

Furthermore, the directive specifies that there are eight threads, and
the value of sum after all threads complete execution is the sum of local
values at each thread.

The function omp_get_num_threads is used to determine the total num-
ber of threads. A for loop generates the required number of random
points (in two dimensions) and determines how many of them are within
the prescribed circle of unit diameter.

/* 3k 3k 3k >k >k 3k 3k 5k >k >k 3k 3k >k %k 3k 5k 5k >k >k 5k 5k >k >k >k 5k 5k >k >k >k >k 5k 5k >k >k %k %k 5k 5k >k >k >k >k 3k >k >k >k >k >k %k >k >k >k k %k

An OpenMP version of a threaded program to compute PI.
stk sk ok ok sk sk sk ok sk ok ok koksk sk sk skok ok ok sk sk sksk sk skokokokokokok sk sksk sk skskokskokokokskskosk sk ok kok sk ok k /

#pragma omp parallel default(private) shared (npoints) \

1
2
3
4
5
6 reduction(+: sum) num_threads(8)

17

7 {

8 num_threads = omp_get_num_threads();

9 sample_points_per_thread = npoints / num_threads;

10 sum = O;

11 for (i = 0; i < sample_points_per_thread; i++) {

12 rand_no_x =(double) (rand_r(&seed))/(double) ((2<<14)-1);
13 rand_no_y =(double) (rand_r(&seed))/(double) ((2<<14)-1);
14 if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

15 (rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)

16 sum ++;

17 by

18 }

Note that this program is much easier to write in terms of specifying
creation and termination of threads compared to the corresponding
POSIX threaded program.

0.6 Assignment:

Write a program to illustrate that errors may arise from incorrect assump-
tions on relative execution times of threads. (Do only 1 question)

1. Say, a thread T1 creates another thread T2. T2 requires some data from
thread T1. This data is transferred using a global memory location.
However, thread T1 places the data in the location after creating thread
T2. The implicit assumption here is that T1 will not be switched until
it blocks; or that T2 will get to the point at which it uses the data only
after T1 has stored it there. Such assumptions may lead to errors since
it is possible that T1 gets switched as soon as it creates T2. In such a
situation, T1 will receive uninitialized data.

2. Assume, as before, that thread T1 creates T2 and that it needs to
pass data to thread T2 which resides on its stack. It passes this data
by passing a pointer to the stack location to thread T2. Consider
the scenario in which T1 runs to completion before T2 gets scheduled.
In this case, the stack frame is released and some other thread may
overwrite the space pointed to formerly by the stack frame. In this
case, what thread T2 reads from the location may be invalid data.
Similar problems may exist with global variables.

18

	Condition Variables for Synchronization
	Controlling Thread and Synchronization Attributes
	Attributes Objects for Threads

	Thread Cancellation
	Composite Synchronization Constructs
	Barriers

	Tips for Designing Asynchronous Programs
	OpenMP: a Standard for Directive Based Parallel Programming
	The OpenMP Programming Model

	Assignment:

