
1 Programming Using the Message-Passing

Paradigm

• A message passing architecture uses a set of primitives that allows
processes to communicate with each other. These include the send,
receive, broadcast, and barrier primitives.

• Numerous programming languages and libraries have been developed
for explicit parallel programming. These differ in their view of the ad-
dress space that they make available to the programmer, the degree of
synchronization imposed on concurrent activities, and the multiplicity
of programs.

2 Principles of Message-Passing Programming

• There are two key attributes that characterize the message-passing pro-
gramming paradigm.

1. the first is that it assumes a partitioned address space

2. the second is that it supports only explicit parallelization.

• There are two immediate implications of a partitioned address space.

– First, each data element must belong to one of the partitions of
the space; hence, data must be explicitly partitioned and placed.
This adds complexity to programming, but encourages locality of
access that is critical for achieving high performance on non-UMA
architecture, since a processor can access its local data much faster
than non-local data on such architectures.

– The second implication is that all interactions (read-only or read/write)
require cooperation of two processes (the process that has the data
and the process that wants to access the data). This requirement
for cooperation adds a great deal of complexity for a number of
reasons.

• The process that has the data must participate in the interaction even
if it has no logical connection to the events at the requesting process. In
certain circumstances, this requirement leads to unnatural programs.
In particular, for dynamic and/or unstructured interactions the com-
plexity of the code written for this type of paradigm can be very high
for this reason.
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• However, a primary advantage of explicit two-way interactions is that
the programmer is fully aware of all the costs of non-local interactions,
and is more likely to think about algorithms (and mappings) that min-
imize interactions.

• Another major advantage of this type of programming paradigm is that
it can be efficiently implemented on a wide variety of architectures.

• The programmer is responsible for analyzing the underlying serial al-
gorithm/application and identifying ways by which he or she can de-
compose the computations and extract concurrency.

• As a result, programming using the message-passing paradigm tends
to be hard and intellectually demanding. However, on the other hand,
properly written message-passing programs can often achieve very high
performance and scale to a very large number of processes.

2.0.1 Structure of Message-Passing Programs

• Message-passing programs are often written using the asynchronous or
loosely synchronous paradigms.

– In the asynchronous paradigm, all concurrent tasks execute asyn-
chronously. This makes it possible to implement any parallel al-
gorithm. However, such programs can be harder to reason about,
and can have non-deterministic behavior due to race conditions.

– Loosely synchronous programs are a good compromise between
these two extremes. In such programs, tasks or subsets of tasks
synchronize to perform interactions. However, between these in-
teractions, tasks execute completely asynchronously. Since the
interaction happens synchronously, it is still quite easy to reason
about the program. Many of the known parallel algorithms can
be naturally implemented using loosely synchronous programs.

• In its most general form, the message-passing paradigm supports exe-
cution of a different program on each of the p processes. This provides
the ultimate flexibility in parallel programming, but makes the job of
writing parallel programs effectively unscalable.

• For this reason, most message-passing programs are written using the
single program multiple data (SPMD) approach. In SPMD programs
the code executed by different processes is identical except for a small
number of processes (e.g., the ”root” process).
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• This does not mean that the processes work in lock-step. In an ex-
treme case, even in an SPMD program, each process could execute a
different code (the program contains a large case statement with code
for each process). But except for this degenerate case, most processes
execute the same code. SPMD programs can be loosely synchronous
or completely asynchronous.

2.1 The Building Blocks: Send and Receive Opera-

tions

• Since interactions are accomplished by sending and receiving messages,
the basic operations in the message-passing programming paradigm are
send and receive. In their simplest form, the prototypes of these
operations are defined as follows:

send(void *sendbuf, int nelems, int dest)

receive(void *recvbuf, int nelems, int source)

– sendbuf points to a buffer that stores the data to be sent,

– recvbuf points to a buffer that stores the data to be received,

– nelems is the number of data units to be sent and received,

– dest is the identifier of the process that receives the data,

– source is the identifier of the process that sends the data.

1 P0 P1

2

3 a = 100; receive(&a, 1, 0)

4 send(&a, 1, 1); printf("%d\n", a);

5 a=0;

• Process P0 sends a message to process P1 which receives and prints the
message.

• The important thing to note is that process P0 changes the value of a to
0 immediately following the send. The semantics of the send operation
require that the value received by process P1 must be 100 as opposed
to 0. That is, the value of a at the time of the send operation must be
the value that is received by process P1.
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• It may seem that it is quite straightforward to ensure the semantics of
the send and receive operations. However, based on how the send and
receive operations are implemented this may not be the case.

• Most message passing platforms have additional hardware support for
sending and receiving messages. They may support DMA (direct mem-
ory access) and asynchronous message transfer using network interface
hardware.

• Network interfaces allow the transfer of messages from buffer memory
to desired location without CPU intervention. Similarly, DMA allows
copying of data from one memory location to another (e.g., communica-
tion buffers) without CPU support (once they have been programmed).

• As a result, if the send operation programs the communication hard-
ware and returns before the communication operation has been accom-
plished, process P1 might receive the value 0 in a instead of 100!

2.1.1 Blocking Message Passing Operations

• A simple solution to the dilemma presented in the code fragment above
is for the send operation to return only when it is semantically safe to
do so.

• Note that this is not the same as saying that the send operation returns
only after the receiver has received the data. It simply means that the
sending operation blocks until it can guarantee that the semantics will
not be violated on return irrespective of what happens in the program
subsequently. There are two mechanisms by which this can be achieved.

1. Blocking Non-Buffered Send/Receive

• In the first case, the send operation does not return until the
matching receive has been encountered at the receiving process.
When this happens, the message is sent and the send operation
returns upon completion of the communication operation.

• Typically, this process involves a handshake between the sending
and receiving processes. The sending process sends a request to
communicate to the receiving process. When the receiving process
encounters the target receive, it responds to the request. The
sending process upon receiving this response initiates a transfer
operation (see Fig. 1). Since there are no buffers used at either
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Figure 1: Handshake for a blocking non-buffered send/receive operation.

sending or receiving ends, this is also referred to as a non-buffered
blocking operation.

• Idling Overheads in Blocking Non-Buffered Operations: It is clear
from the figure that a blocking non-buffered protocol is suitable
when the send and receive are posted at roughly the same time.
However, in an asynchronous environment, this may be impossible
to predict. This idling overhead is one of the major drawbacks of
this protocol.

• Deadlocks in Blocking Non-Buffered Operations: Consider the fol-
lowing simple exchange of messages that can lead to a deadlock:

1 P0 P1

2

3 send(&a, 1, 1); send(&a, 1, 0);

4 receive(&b, 1, 1); receive(&b, 1, 0);

The code fragment makes the values of a available to both pro-
cesses P0 and P1. However, if the send and receive operations are
implemented using a blocking non-buffered protocol, the send at
P0 waits for the matching receive at P1 whereas the send at pro-
cess P1 waits for the corresponding receive at P0, resulting in an
infinite wait. Deadlocks are very easy in blocking protocols and
care must be taken to break cyclic waits of the nature outlined.

2. Blocking Buffered Send/Receive

• A simple solution to the idling and deadlocking problem outlined
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above is to rely on buffers at the sending and receiving ends.

Figure 2: Blocking buffered transfer protocols: (a) in the presence of com-
munication hardware with buffers at send and receive ends; and (b) in the
absence of communication hardware, sender interrupts receiver and deposits
data in buffer at receiver end.

• Figure 2a

– On a send operation, the sender simply copies the data into
the designated buffer and returns after the copy operation has
been completed.

– The sender process can now continue with the program know-
ing that any changes to the data will not impact program
semantics.

– The actual communication can be accomplished in many ways
depending on the available hardware resources. If the hard-
ware supports asynchronous communication (independent of
the CPU), then a network transfer can be initiated after the
message has been copied into the buffer.

– Note that at the receiving end, the data cannot be stored
directly at the target location since this would violate program
semantics. Instead, the data is copied into a buffer at the
receiver as well.

– When the receiving process encounters a receive operation, it
checks to see if the message is available in its receive buffer.
If so, the data is copied into the target location.

• Figure 2b
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– In the protocol illustrated Fig. 2a, buffers are used at both
sender and receiver and communication is handled by dedi-
cated hardware. Sometimes machines do not have such com-
munication hardware.

– In this case, some of the overhead can be saved by buffer-
ing only on one side. For example, on encountering a send
operation, the sender interrupts the receiver, both processes
participate in a communication operation and the message is
deposited in a buffer at the receiver end.

– When the receiver eventually encounters a receive operation,
the message is copied from the buffer into the target location.

• It is easy to see that buffered protocols alleviate idling overheads
at the cost of adding buffer management overheads.

• In general, if the parallel program is highly synchronous (i.e., sends
and receives are posted around the same time), non-buffered sends
may perform better than buffered sends. However, in general ap-
plications, this is not the case and buffered sends are desirable
unless buffer capacity becomes an issue.

• Impact of finite buffers in message passing; consider the following
code fragment:

1 P0 P1

2

3 for (i = 0; i < 1000; i++) { for (i = 0; i < 1000; i++) {

4 produce_data(&a); receive(&a, 1, 0);

5 send(&a, 1, 1); consume_data(&a);

6 } }

– In this code fragment, process P0 produces 1000 data items
and process P1 consumes them. However, if process P1 was
slow getting to this loop, process P0 might have sent all of its
data.

– If there is enough buffer space, then both processes can pro-
ceed; however, if the buffer is not sufficient (i.e., buffer over-
flow), the sender would have to be blocked until some of the
corresponding receive operations had been posted, thus free-
ing up buffer space.

– This can often lead to unforeseen overheads and performance
degradation. In general, it is a good idea to write programs
that have bounded buffer requirements.
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• Deadlocks in Buffered Send and Receive Operations: While buffer-
ing alleviates many of the deadlock situations, it is still possible
to write code that deadlocks. This is due to the fact that as in
the non-buffered case, receive calls are always blocking (to ensure
semantic consistency). Thus, a simple code fragment such as the
following deadlocks since both processes wait to receive data but
nobody sends it.

1 P0 P1

2

3 receive(&a, 1, 1); receive(&a, 1, 0);

4 send(&b, 1, 1); send(&b, 1, 0);

Once again, such circular waits have to be broken. However, dead-
locks are caused only by waits on receive operations in this case.

2.1.2 Non-Blocking Message Passing Operations

• In blocking protocols, the overhead of guaranteeing semantic correct-
ness was paid in the form of idling (non-buffered) or buffer management
(buffered).

• Often, it is possible to require the programmer to ensure semantic cor-
rectness and provide a fast send/receive operation that incurs little
overhead.

• This class of non-blocking protocols returns from the send or receive
operation before it is semantically safe to do so. Consequently, the user
must be careful not to alter data that may be potentially participating
in a communication operation.

• Non-blocking operations are generally accompanied by a check-status
operation, which indicates whether the semantics of a previously initi-
ated transfer may be violated or not.

• Upon return from a non-blocking send or receive operation, the process
is free to perform any computation that does not depend upon the
completion of the operation. Later in the program, the process can
check whether or not the non-blocking operation has completed, and,
if necessary, wait for its completion.

• As illustrated in Fig. 3, non-blocking operations can themselves be
buffered or non-buffered.
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Figure 3: Space of possible protocols for send and receive operations.

• In the non-buffered case, a process wishing to send data to another
simply posts a pending message and returns to the user program. The
program can then do other useful work. At some point in the future,
when the corresponding receive is posted, the communication operation
is initiated.

• When this operation is completed, the check-status operation indicates
that it is safe for the programmer to touch this data. This transfer is
indicated in Fig. 4a.

• Comparing Figures 4a and 1a, it is easy to see that the idling time
when the process is waiting for the corresponding receive in a blocking
operation can now be utilized for computation, provided it does not
update the data being sent.

• This alleviates the major bottleneck associated with the former at the
expense of some program restructuring. The benefits of non-blocking
operations are further enhanced by the presence of dedicated commu-
nication hardware.

• This is illustrated in Fig. 4b. In this case, the communication overhead
can be almost entirely masked by non-blocking operations. In this case,
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Figure 4: Non-blocking non-buffered send and receive operations (a) in ab-
sence of communication hardware; (b) in presence of communication hard-
ware.

however, the data being received is unsafe for the duration of the receive
operation.

• Non-blocking operations can also be used with a buffered protocol. In
this case, the sender initiates a DMA operation and returns immedi-
ately.

• The data becomes safe the moment the DMA operation has been com-
pleted. At the receiving end, the receive operation initiates a transfer
from the sender’s buffer to the receiver’s target location. Using buffers
with non-blocking operation has the effect of reducing the time during
which the data is unsafe.

• Typical message-passing libraries such as Message Passing Interface
(MPI) and Parallel Virtual Machine (PVM) implement both blocking
and non-blocking operations.

– Blocking operations facilitate safe and easier programming and
non-blocking operations are useful for performance optimization
by masking communication overhead.

– One must, however, be careful using non-blocking protocols since
errors can result from unsafe access to data that is in the process
of being communicated.
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Table 1: The minimal set of MPI routines.

MPI Init Initializes MPI
MPI Finalize Terminates MPI
MPI Comm size Determines the number of processes
MPI Comm rank Determines the label of the calling process
MPI Send Sends a message
MPI Recv Receives a message

2.2 MPI: the Message Passing Interface

• Many early generation commercial parallel computers were based on
the message-passing architecture due to its lower cost relative to shared-
address-space architectures.

• Message-passing became the modern-age form of assembly language, in
which every hardware vendor provided its own library, that performed
very well on its own hardware, but was incompatible with the parallel
computers offered by other vendors.

• Many of the differences between the various vendor-specific message-
passing libraries were only syntactic; however, often enough there were
some serious semantic differences that required significant re-engineering
to port a message-passing program from one library to another.

• The message-passing interface, or MPI as it is commonly known, was
created to essentially solve this problem. MPI defines a standard library
for message-passing that can be used to develop portable message-
passing programs using either C or Fortran. The MPI standard defines
both the syntax as well as the semantics of a core set of library routines
that are very useful in writing message-passing programs.

• The MPI library contains over 125 routines, but the number of key
concepts is much smaller. In fact, it is possible to write fully-functional
message-passing programs by using only the six routines (see table 1).

2.2.1 Starting and Terminating the MPI Library

• MPI Init is called prior to any calls to other MPI routines. Its purpose
is to initialize the MPI environment. Calling MPI Init more than once
during the execution of a program will lead to an error.
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• MPI Finalize is called at the end of the computation, and it performs
various clean-up tasks to terminate the MPI environment. No MPI
calls may be performed after MPI Finalize has been called, not even
MPI Init.

• Upon successful execution, MPI Init and MPI Finalize return MPI SUCCESS;
otherwise they return an implementation-defined error code.

2.2.2 Communicators

• A key concept used throughout MPI is that of the communication
domain. A communication domain is a set of processes that are allowed
to communicate with each other.

• Information about communication domains is stored in variables of
type MPI Comm, that are called communicators. These communica-
tors are used as arguments to all message transfer MPI routines and
they uniquely identify the processes participating in the message trans-
fer operation.

• In general, all the processes may need to communicate with each other.
For this reason, MPI defines a default communicator called MPI COMM WORLD
which includes all the processes involved in the parallel execution.

• However, in many cases we want to perform communication only within
(possibly overlapping) groups of processes. By using a different com-
municator for each such group, we can ensure that no messages will
ever interfere with messages destined to any other group.

2.2.3 Getting Information

• The MPI Comm size and MPI Comm rank functions are used to de-
termine the number of processes and the label of the calling process,
respectively. The calling sequences of these routines are as follows:

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

• The function MPI Comm size returns in the variable size the number
of processes that belong to the communicator comm.

• So, when there is a single process per processor, the call
MPI Comm size(MPI COMM WORLD, &size) will return in size the
number of processors used by the program.
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• Every process that belongs to a communicator is uniquely identified by
its rank. The rank of a process is an integer that ranges from zero up
to the size of the communicator minus one.

• A process can determine its rank in a communicator by using the
MPI Comm rank function that takes two arguments: the communi-
cator and an integer variable rank. Up on return, the variable rank

stores the rank of the process. Note that each process that calls ei-
ther one of these functions must belong in the supplied communicator,
otherwise an error will occur.

2.2.4 Sending and Receiving Messages

• The basic functions for sending and receiving messages in MPI are the
MPI Send and MPI Recv, respectively. The calling sequences of these
routines are as follows:

int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Status *status)

• MPI Send sends the data stored in the buffer pointed by buf. This
buffer consists of consecutive entries of the type specified by the pa-
rameter datatype.

• The number of entries in the buffer is given by the parameter count.

• The correspondence between MPI datatypes and those provided by
C is shown in Table 2. Note that for all C datatypes, an equiva-
lent MPI datatype is provided. However, MPI allows two additional
datatypes that are not part of the C language. These are MPI BYTE
and MPI PACKED.

– MPI BYTE corresponds to a byte (8 bits) and MPI PACKED
corresponds to a collection of data items that has been created by
packing non-contiguous data.

– Note that the length of the message in MPI Send, as well as in
other MPI routines, is specified in terms of the number of entries
being sent and not in terms of the number of bytes.
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Table 2: Correspondence between the datatypes supported by MPI and those
supported by C.

MPI Datatype C Datatype
MPI CHAR signed char
MPI SHORT signed short int
MPI INT signed int
MPI LONG signed long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE
MPI PACKED

– Specifying the length in terms of the number of entries has the
advantage of making the MPI code portable, since the number of
bytes used to store various datatypes can be different for different
architectures.

• The destination of the message sent by MPI Send is uniquely specified
by the dest and comm arguments.

• The dest argument is the rank of the destination process in the com-
munication domain specified by the communicator comm.

• Each message has an integer-valued tag associated with it. This is used
to distinguish different types of messages. The message-tag can take
values ranging from zero up to the MPI defined constant MPI TAG UB.
Even though the value of MPI TAG UB is implementation specific, it
is at least 32,767.

• MPI Recv receives a message sent by a process whose rank is given
by the source in the communication domain specified by the comm

argument.

• The tag of the sent message must be that specified by the tag argument.
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If there are many messages with identical tag from the same process,
then any one of these messages is received.

• MPI allows specification of wildcard arguments for both source and
tag.

– If source is set to MPI ANY SOURCE, then any process of the
communication domain can be the source of the message.

– Similarly, if tag is set to MPI ANY TAG, then messages with any
tag are accepted.

• The received message is stored in continuous locations in the buffer
pointed to by buf. The count and datatype arguments of MPI Recv are
used to specify the length of the supplied buffer. The received message
should be of length equal to or less than this length.

• This allows the receiving process to not know the exact size of the
message being sent. If the received message is larger than the supplied
buffer, then an overflow error will occur, and the routine will return
the error MPI ERR TRUNCATE.

• After a message has been received, the status variable can be used
to get information about the MPI Recv operation. In C, status is
stored using the MPI Status data-structure. This is implemented as a
structure with three fields, as follows:

typedef struct MPI_Status {

int MPI_SOURCE;

int MPI_TAG;

int MPI_ERROR;

};

• MPI SOURCE and MPI TAG store the source and the tag of the re-
ceived message. They are particularly useful when MPI ANY SOURCE
and MPI ANY TAG are used for the source and tag arguments. MPI ERROR
stores the error-code of the received message.

• The status argument also returns information about the length of the
received message. This information is not directly accessible from the
status variable, but it can be retrieved by calling the MPI Get count
function. The calling sequence of this function is as follows:
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int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype,

int *count)

MPI Get count takes as arguments the status returned by MPI Recv
and the type of the received data in datatype, and returns the number
of entries that were actually received in the count variable.

• The MPI Recv returns only after the requested message has been re-
ceived and copied into the buffer. That is, MPI Recv is a blocking

receive operation.

• However, MPI allows two different implementations for MPI Send.

1. MPI Send returns only after the corresponding MPI Recv have
been issued and the message has been sent to the receiver.

2. MPI Send first copies the message into a buffer and then returns,
without waiting for the corresponding MPI Recv to be executed.

• In either implementation, the buffer that is pointed by the buf argument
of MPI Send can be safely reused and overwritten.

• MPI programs must be able to run correctly regardless of which of the
two methods is used for implementing MPI Send. Such programs are
called safe.

• In writing safe MPI programs, sometimes it is helpful to forget about
the alternate implementation of MPI Send and just think of it as being
a blocking send operation.
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