Lecture 8
Programming Shared Memory Il

Synchronization Primitives; Mutex

Ceng505 Parallel Computing at November 29, 2010

Dr. Cem Ozdogan
Computer Engineering Department
Cankaya University

Programming Shared
Memory Il

Dr. Cem Ozdo gan

CE

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation
Joining and Detaching
Threads
Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.1

Contents

@ Thread Basics: Passing Arguments, Cancellation and Joinin
Passing Arguments to Threads
Thread Cancellation

Joining and Detaching Threads

@ Synchronization Primitives in Pthreads
Mutual Exclusion for Shared Variables

Programming Shared
Memory Il

Dr. Cem Ozdo gan

yead Basics:
assing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation
Joining and Detaching
Threads
Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.2

Thread Basics: Passing Arguments |

e Passing Arguments to Threads

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Thread Cancellation

Joining and Detaching

Threads
Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

83

Thread Basics: Passing Arguments |

e Passing Arguments to Threads

e The pthread_create() function allows the programmer to
pass one argument to the thread function.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Thread Cancellation
Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

83

Thread Basics: Passing Arguments |

e Passing Arguments to Threads

e The pthread_create() function allows the programmer to
pass one argument to the thread function.

e For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Thread Cancellation

Joining and Detaching

Threads
Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

83

Thread Basics: Passing Arguments | A

Memory Il

Dr. Cem Ozdo gan

Passing Arguments to Threads

The pthread_create() function allows the programmer to
pass one argument to the thread function. Thread Basics:

Passing Arguments,

e For cases where multiple arguments must be passed, this 5™
limitation is easily overcome by creating a structure .
e This structure contains all of the arguments, and then a S e
. . . Threads
pointer is passed to that structure in the pthread_create()

Synchronization

routine. Primitives in Pthreads

Mutual Exclusion for Shared
Variables

83

Thread Basics: Passing Arguments |

e Passing Arguments to Threads

e The pthread_create() function allows the programmer to
pass one argument to the thread function.

e For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .
e This structure contains all of the arguments, and then a

pointer is passed to that structure in the pthread_create()
routine.

o All arguments must be passed by reference and cast to
(void *).

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

83

Thread Basics: Passing Arguments |

Passing Arguments to Threads

The pthread_create() function allows the programmer to
pass one argument to the thread function.

For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

This structure contains all of the arguments, and then a
pointer is passed to that structure in the pthread_create()
routine.

All arguments must be passed by reference and cast to
(void *).

Threads have non-deterministic start-up and scheduling.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching

Threads
Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

83

Thread Basics: Passing Arguments |

Passing Arguments to Threads

The pthread_create() function allows the programmer to
pass one argument to the thread function.

For cases where multiple arguments must be passed, this
limitation is easily overcome by creating a structure .

This structure contains all of the arguments, and then a
pointer is passed to that structure in the pthread_create()
routine.

All arguments must be passed by reference and cast to
(void *).

Threads have non-deterministic start-up and scheduling.
How can you safely pass data to newly created threads?

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

83

Thread Basics: Passing Arguments I

Programming Shared
Memory Il

Dr. Cem Ozdo gan

e Example: Demonstrates how to pass a simple integer to
each thread.

Thread Basics:

Passing Arguments,
. Cancellation and
long *taskids[NUM_THREADS];

Joining

for(t=0; t=NUM THREADS; t++)
{

Thread Cancelation
taskids[t] = (long *) malloc(sizeof (long)); LI B PEE
*#taskids[t] = t;

Synchi \
printf("Creating thread %ldyn", t); SIS

. . . Primitives in Pthreads
rc = pthread_create(&threads[t], WULL, PrintHello, (void *) taskids[t]);

Mutual Exclusion for Shared
Variables

Figure: Passing single argument to thread function.

8.4

Thread Basics: Passing Arguments IlI

e Example: Demonstrates how to pass/setup multiple
arguments to thread function via a structure.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Thread Cancellation
Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

85

Thread Basics: Passing Arguments IlI

e Example: Demonstrates how to pass/setup multiple
arguments to thread function via a structure.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Thread Cancellation
Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

85

Thread Basics: Passing Arguments IlI

e Example: Demonstrates how to pass/setup multiple
arguments to thread function via a structure.

struct thread_dataf{
int thread_id;
int sum;
char *message;

};

struct thread_data thread_data_array[NUM_THREADS] ;
void *PrintHello(void *threadarg)

f struct thread_data *my_data;

my_data = (struct thread_data *) threadarg;
izt = chr-stbrereLack

sum = my_data->sum;

e e

b

int main (int arge, char *argv[])

thread_data_arrayl[t]l.thread_id = t;

thread_data_array[t].sum = sum;

thread_data_array[t].message = messages[t];

rc = pthread create(&threads[t], NULL, PrintHello,
(void *) &thread_data_array[tl);

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Thread Cancellation

Joining and Detaching
Threads

Synchronization

Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Figure: Passing multiple arguments to thread function
via a structure.

85

Thread Basics: Passing Arguments |l| A

Memory Il

o Example: Demonstrates how to pass/setup multiple Dr. Cem ©zdo gan
arguments to thread function via a structure.
struct thread_dataf{

int thread_id;
int sum;

char *message;
};
Thread Basics:
struct thread_data thread_data_array[NUM_THREADS] ; Passing Arguments
. . Cancellation and
void *PrintHello(void *threadarg) Joining

struct thread_data *my_data;

Tt Thread Cancellati

my_data = (struct thread_data *) threadarg;) rea a:;e?u:‘

taskid = my_data->thread_id; ey Creeag
- — Thread:

sun = ny_data->sun; Each thread reacs

hello_msg = my_data->message;

receives a unique mimiveen

B Primitives in Pthreads
1 1l I for Shared
instance of the Jpocusonerse

int main (int arge, char *argv([])

structure.
thread_data_arrayl[t]l.thread_id = t;
thread_data_array[t].sum = sum;
thread_data_array[t].message = messages[t];
rc = pthread create(&threads[t], NULL, PrintHello,
(void *) &thread_data_array[tl);
T

Figure: Passing multiple arguments to thread function
via a structure.

85

Thread Basics: Cancellation | ARG

Memory Il

Dr. Cem Ozdo gan

e Cancellation.

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.6

Programming Shared

Thread Basics: Cancellation | Memory I

Dr. Cem Ozdo gan

e Cancellation.

e Consider a simple program to evaluate a set of positions in
a ChESS game. Thread Basics:

Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation | R

Dr. Cem Ozdo gan

e Cancellation.

e Consider a simple program to evaluate a set of positions in
a CheSS game. Thread Basics:

Passing Arguments,

e Assume that there are k moves, each being evaluated by prisi
an independent thread. e I
| Thvead Cancelation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation | AEZEHI SEE

Memory Il

Dr. Cem Ozdo gan

e Cancellation.
e Consider a simple program to evaluate a set of positions in

a CheSS game. Thread Basics:
Passing Arguments,

« Assume that there are k moves, each being evaluated by Joming o
an independent thread. Passing Argumens to

Threads

o If at any point of time, a position is established to be of a g ara Decng
certain quality, the other positions that are known to be of Synchronization
worse quality must stop being evaluated. FllnisEs(Fliezis

Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation |

e Cancellation.

e Consider a simple program to evaluate a set of positions in
a chess game.

e Assume that there are k moves, each being evaluated by
an independent thread.

¢ If at any point of time, a position is established to be of a
certain quality, the other positions that are known to be of
worse quality must stop being evaluated.

¢ In other words, the threads evaluating the corresponding
board positions must be canceled.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation |

e Cancellation.

e Consider a simple program to evaluate a set of positions in
a chess game.

e Assume that there are k moves, each being evaluated by
an independent thread.

¢ If at any point of time, a position is established to be of a
certain quality, the other positions that are known to be of
worse quality must stop being evaluated.

¢ |n other words, the threads evaluating the corresponding
board positions must be canceled.

e Posix threads provide this cancellation feature.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation
Joining and Detaching
Threads
Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.6

Thread Basics: Cancellation | AEZEHI SEE

Memory Il

Dr. Cem Ozdo gan

e Cancellation.
e Consider a simple program to evaluate a set of positions in

a CheSS game Thread Basics:
Passing Arguments,
« Assume that there are k moves, each being evaluated by Joming o
an independent thread. RS ATIESE
. . o . . Thread Cancellation
¢ If at any point of time, a position is established to be of a g ara Decng
. . . Threads
certain quality, the other positions that are known to be of s
. . ynchronization
worse quality must stop being evaluated. Primives n Phveads
e In other words, the threads evaluating the corresponding vorenes

board positions must be canceled.
e Posix threads provide this cancellation feature.
o A thread may cancel itself or cancel other threads.

8.6

Thread Basics: Cancellation |1 R

Dr. Cem Ozdo gan

e pthread_cancel .
1 i nt
2 pt hread_cancel (
8 pt hread_t t hread) ;

Thread Basics:
Passing Arguments,
Cancellation and
Joining
Passing Arguments to
Threads

Joining and Detaching
Threads
Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.7

Programming Shared

Thread Basics: Cancellation Il Memory I

Dr. Cem Ozdo gan

e pthread_cancel .

1 i nt
2 pt hread_cancel (
3 pt hread_t t hread) ;
Thread Basics:
e Here, thread is the handle to the thread to be canceled. Cancotetion and
When a call to this function is made, a cancellation is sent o e o
to the specified thread. Pu——

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.7

Programming Shared

Thread Basics: Cancellation Il Memory I

Dr. Cem Ozdo gan

e pthread_cancel .

1 i nt

2 pt hread_cancel (

3 pt hread_t t hread) ;

Thread Basics:

e Here, thread is the handle to the thread to be canceled. Coneamon and

When a call to this function is made, a cancellation is sent o e o

to the specified thread. Pu——
e Itis not guaranteed that the specified thread will receive or e "

act on the cancellation. Threads can protect themselves SO

ag ainst cancellation. Mutual Exclusion for Shared

Variables

8.7

Programming Shared

Thread Basics: Cancellation Il Memory I

Dr. Cem Ozdo gan

e pthread_cancel .

1 i nt
2 pt hread_cancel (
3 pt hread_t t hread) ;
Thread Basics:

o Here, thread is the handle to the thread to be canceled. Cancalation ana
When a call to this function is made, a cancellation is sent oo
to the specified thread. P

e Itis not guaranteed that the specified thread will receive or e """
act on the cancellation. Threads can protect themselves Synchronization

) N rimitives in Pthreads
against cancellation. St for s

e When a cancellation is actually performed, cleanup
functions are invoked for reclaiming the thread data
structures.

8.7

Thread Basics: Cancellation Il

pthread_cancel .

1 i nt
2 pt hread_cancel (
3 pt hr ead_t t hread) ;

Here, thread is the handle to the thread to be canceled.
When a call to this function is made, a cancellation is sent
to the specified thread.

It is not guaranteed that the specified thread will receive or
act on the cancellation. Threads can protect themselves
against cancellation.

When a cancellation is actually performed, cleanup
functions are invoked for reclaiming the thread data
structures.

The pthread_cancel function returns after a cancellation
has been sent. The cancellation may itself be performed
later.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.7

Thread Basics: Joining and Detaching |

e Joining and Detaching Threads.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching | A

Memory Il

Dr. Cem Ozdo gan

e Joining and Detaching Threads.

e The main program must wait for the threads to run to
completion.

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to

Threads

Thread Cancellation

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching |

e Joining and Detaching Threads.

e The main program must wait for the threads to run to
completion.

e “Joining“ is one way to accomplish synchronization
between threads.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching |

e Joining and Detaching Threads.

e The main program must wait for the threads to run to
completion.

e “Joining" is one way to accomplish synchronization
between threads.

e Function pthread_join which suspends execution of the
calling thread until the specified thread terminates.

1 int

2 pthread_ join |

3 pthread_t thread,
4 woid ++ptr);

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching |

Joining and Detaching Threads.

The main program must wait for the threads to run to
completion.

“Joining"“ is one way to accomplish synchronization
between threads.

Function pthread_join which suspends execution of the
calling thread until the specified thread terminates.

1 int

2 pthread_ join |

3 pthread_t thread,
4 woid ++ptr);

e A call to this function waits for the termination of the thread
whose id is given by thread.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.8

Thread Basics: Joining and Detaching Il

e A call to this function waits for the termination of the thread
whose id is given by thread.

Master T
thread create() ———» thread join() —
Thread L[; L =3

Worker
Thread
DOWORK ———® pthread exit()

Worker
Thread

Figure: Threads joining.

Programming Shared
Memory |1

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to

Threads

Thread Cancellation

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

8.9

Programming Shared

Thread Basics: Joining and Detaching Il Memory I

Dr. Cem Ozdo gan

e A call to this function waits for the termination of the thread
whose id is given by thread.

:_n:s‘edr pthread create()) ————————® pthread join()| ——p
rea Thread Basics:
Passing Arguments,
Cancellation and

Joining
Worker Passing Arguments to
Thread Threads
DOWORK ———® pthread exit() Thread Cancellation
Worker
Thread
Synchronization
Primitives in Pthreads
) .. Mutual Exclusion for Shared
Figure: Threads joining. variables

e On a successful call to pthread_join , the value passed to
pthread_exit is returned in the location pointed to by ptr.

8.9

Thread Basics: Joining and Detaching |1 Rt

Dr. Cem Ozdo gan

e A call to this function waits for the termination of the thread
whose id is given by thread.

1"!':9'3; pthread create()) —————m pthread join()| —
rea Thread Basics:

Passing Arguments,
Cancellation and

Joining
P
Thread Threads
DOWORK ———® pthread exit() Thread Cancellation
Worker
Thread
Synchronization
Primitives in Pthreads
. .. Mutual Exclusion for Shared
Figure: Threads joining. variables

e On a successful call to pthread_join , the value passed to
pthread_exit is returned in the location pointed to by ptr.

e On successful completion, pthread_join returns 0, else it
returns an error-code.

8.9

Thread Basics: Joining and Detaching

e When a thread is created, one of its attributes defines
whether it is joinable or detached

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to

Threads

Thread Cancellation

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Thread Basics: Joining and Detaching Ill A

Memory Il

Dr. Cem Ozdo gan
e When a thread is created, one of its attributes defines
whether it is joinable or detached

e Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Thread Basics: Joining and Detaching Ill A

Memory Il

Dr. Cem Ozdo gan
e When a thread is created, one of its attributes defines
whether it is joinable or detached

e Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

Thread Basics:
e The final draft of the POSIX standard specifies that Passing Arguments,
threads should be created as joinable. Joining

Passing Arguments to
Threads

Thread Cancellation

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Thread Basics: Joining and Detaching Ill A

Memory Il

Dr. Cem Ozdo gan

¢ When a thread is created, one of its attributes defines
whether it is joinable or detached .

e Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

Thread Basics:

e The final draft of the POSIX standard specifies that Passing Argumens,
threads should be created as joinable. g
e To explicitly create a thread as joinable or detached, the i —

attr argument in the pthread_create() routine is used.

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Thread Basics: Joining and Detaching

e When a thread is created, one of its attributes defines
whether it is joinable or detached

e Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

e The final draft of the POSIX standard specifies that
threads should be created as joinable.

e To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.

e Detaching :

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation
Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Thread Basics: Joining and Detaching Il A

Memory Il

Dr. Cem Ozdo gan

¢ When a thread is created, one of its attributes defines
whether it is joinable or detached .

e Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

Thread Basics:

e The final draft of the POSIX standard specifies that Passing Argumens,
threads should be created as joinable. sonng
assing Arguments to
e To explicitly create a thread as joinable or detached, the i —
attr argument in the pthread_create() routine is used. e
O DetaChlng . ?r/lrl]rflzr/zr;lﬁtl;[mreads
e The pthread_detach() routine can be used to explicitly Varaios = 110

detach a thread even though it was created as joinable.

Thread Basics: Joining and Detaching

e When a thread is created, one of its attributes defines
whether it is joinable or detached

Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

The final draft of the POSIX standard specifies that
threads should be created as joinable.

To explicitly create a thread as joinable or detached, the
attr argument in the pthread_create() routine is used.

Detaching :

The pthread_detach() routine can be used to explicitly
detach a thread even though it was created as joinable.

If a thread requires joining, consider explicitly creating it as
joinable (portability).

Programming Shared
Memory Il

Dr. Cem Ozdo gan

CE

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation
Joining and Detaching
Threads

Synchronization

Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Thread Basics: Joining and Detaching Ill A

Memory Il

Dr. Cem Ozdo gan

¢ When a thread is created, one of its attributes defines
whether it is joinable or detached .

e Only threads that are created as joinable can be joined. If
a thread is created as detached, it can never be joined.

Thread Basics:

e The final draft of the POSIX standard specifies that Passing Argumens,
threads should be created as joinable. g
assing Agurtents 0
e To explicitly create a thread as joinable or detached, the i —
attr argument in the pthread_create() routine is used. e
O DetaChlng . ixrlﬁl::/zr;lﬁt;)tﬂreads
e The pthread_detach() routine can be used to explicitly Varaios = 110

detach a thread even though it was created as joinable.

e If a thread requires joining, consider explicitly creating it as
joinable (portability).

¢ If you know in advance that a thread will never need to join
with another thread, consider creating it in a detached
state (resources).

Thread Basics: Joining and Detaching IV

e Reentrant function s are those that can be safely called
when another instance has been suspended in the middle
of its invocation.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to

Threads

Thread Cancellation

Synchronization

Primitives in Pthreads
Mutual Exclusion for Shared
Variables

Thread Basics: Joining and Detaching IV A

Memory Il

Dr. Cem Ozdo gan

¢ Reentrant function s are those that can be safely called s el S

when another instance has been suspended in the middle o eI
of its invocation.

Passing Arguments to
Threads

e All thread functions must be reentrant because a thread e
can be preempted in the middle of its execution.

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Thread Basics: Joining and Detaching IV A

Memory Il

Dr. Cem Ozdo gan

¢ Reentrant function s are those that can be safely called Thread Basics:

Passing Arguments,

when another instance has been suspended in the middle o eI
of its invocation.

Passing Arguments to
Threads

e All thread functions must be reentrant because a thread e
can be preempted in the middle of its execution.
Synchronization

o If another thread starts executing the same function at this ~ 7/miveshn Pivesds

point, a non-reentrant function might not work as desired. varebes

Synchronization Primitives: Mutex |

Programming Shared
Memory Il

Dr. Cem Ozdo gan

¢ While communication is implicit in shared-address-space
programming,

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex | Rt

Dr. Cem Ozdo gan

e While communication is implicit in shared-address-space

programming,

e much of the effort associated with writing correct threaded e B
programs is spent on synchronizing concurrent threads TSI
with respect to their data accesses or scheduling. —

Passing Arguments to
Threads

Thread Cancellation
Joining and Detaching
Threads

Synchronization

Primitives in Pthreads

Synchronization Primitives: Mutex | A

Memory Il

Dr. Cem Ozdo gan

e While communication is implicit in shared-address-space
programming,

e much of the effort associated with writing correct threaded

Thread Basics:

programs is spent on synchronizing concurrent threads ;;;;‘gﬁaﬁgi“;;z"‘&
with respect to their data accesses or scheduling. o e o
. . . Threads
e Using pthread_create and pthread_join calls, we can i T
create concurrent tasks. Tovonca e
Synchronization

Primitives in Pthreads

Synchronization Primitives: Mutex |

e While communication is implicit in shared-address-space
programming,

e much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

e Using pthread_create and pthread_join calls, we can
create concurrent tasks.

e These tasks work together to manipulate data and
accomplish a given task.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex |

e While communication is implicit in shared-address-space
programming,

e much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

e Using pthread_create and pthread_join calls, we can
create concurrent tasks.

e These tasks work together to manipulate data and
accomplish a given task.

e When multiple threads attempt to manipulate the
same data item,

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Synchronization Primitives: Mutex |

While communication is implicit in shared-address-space
programming,

much of the effort associated with writing correct threaded
programs is spent on synchronizing concurrent threads
with respect to their data accesses or scheduling.

Using pthread_create and pthread_join calls, we can
create concurrent tasks.

These tasks work together to manipulate data and
accomplish a given task.

When multiple threads attempt to manipulate the
same data item,

the results can often be incoherent if proper care is not
taken to synchronize them.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Synchronization Primitives: Mutex Il

e Consider the following code fragment being executed by
multiple threads.

/+ sach thread tries to update wariakle best_cost

as follows =/
if (my_cost < kbest_cost)

AT A

best_cost = my_cost;

Programming Shared
Memory |1

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex

e Consider the following code fragment being executed by
multiple threads.

/+ sach thread tries to update wariakle best_cost

as follows =/
if (my_cost

AT A

< kest_cost)

best_cost = my_cost;

e The variable my_cost is thread-local and best_cost is a
global variable shared by all threads.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex || A

Memory Il

Dr. Cem Ozdo gan

e Consider the following code fragment being executed by
multiple threads.

Thread Basics:

. i . Passing Arguments,
1 f/+% 2ach thread tries to update wvariskls bast_ccocst Cancellation and
) . I, Joining
2 as follows =/
.) Passing Arguments to
3 if (my_cost < kbest_cost) Threads
Thread Cancellation
4 best_cost = my_cost; Joining and Detaching
Threads
. . . Synchronization
e The variable my_cost is thread-local and best_cost is a Primitives in Pthreads

global variable shared by all threads.

e This is an undesirable situation, sometimes also referred
to as a race condition

Synchronization Primitives: Mutex || A

Memory Il

Dr. Cem Ozdo gan

e Consider the following code fragment being executed by
multiple threads.

Thread Basics:
Passing Arguments,

1 /+* 2ach thread tries to update wariakle best_cost Cancellation and
2 as follows +/ Joining
.) . Passing Arguments to
3 if (my_cost < kbest_cost) Threads
Thread Cancellation
4 best_cost = my_cost; Joining and Detaching
Threads
. . . Synchronization
e The variable my_cost is thread-local and best_cost is a Primitives in Pthreads

global variable shared by all threads.

e This is an undesirable situation, sometimes also referred
to as a race condition

e So called because the result of the computation depends
on the race between competing threads.

Synchronization Primitives: Mutex Il

Programming Shared

Memory Il
Dr. Cem Ozdo gan
e To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex Il

e To understand the problem with shared data access, let us

examine one execution instance of the above code
fragment.

e Assume that there are two threads,

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex Il

e To understand the problem with shared data access, let us

examine one execution instance of the above code
fragment.

e Assume that there are two threads,
e The initial value of best_cost is 100,

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex Il

e To understand the problem with shared data access, let us

examine one execution instance of the above code
fragment.

e Assume that there are two threads,
e The initial value of best cost is 100,

e The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex Il

e To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

e Assume that there are two threads,

e The initial value of best cost is 100,

e The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

e |f both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex Il

To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

Assume that there are two threads,

The initial value of best_cost is 100,

The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

CE

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Synchronization Primitives: Mutex Il

e To understand the problem with shared data access, let us
examine one execution instance of the above code
fragment.

Assume that there are two threads,

The initial value of best_cost is 100,

The values of my_cost are 50 and 75 at threads t1 and t2,
respectively.

If both threads execute the condition inside the if
statement concurrently, then both threads enter the then
part of the statement.

Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.

There are two problems here:

Programming Shared
Memory Il

Dr. Cem Ozdo gan

CE

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Synchronization Primitives: Mutex |11 A

Memory Il

Dr. Cem Ozdo gan

e To understand the problem with shared data access, let us
examine one execution instance of the above code %

fragment.

e Assume that there are two threads,

o The initial value of best_cost is 100, Fassing Argumests,

Cancellation and

e The values of my_cost are 50 and 75 at threads t1 and t2, Jg;::ngg rmene s
respectively.

¢ If both threads execute the condition inside the if e
statement concurrently, then both threads enter the then Synchronization

Primitives in Pthreads

part of the statement.
¢ Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.
e There are two problems here:
@ non-deterministic nature of the result;

Mutual Exclusion for Shared
Variables

Synchronization Primitives: Mutex |11 A

Memory Il

Dr. Cem Ozdo gan

e To understand the problem with shared data access, let us
examine one execution instance of the above code %

fragment.

e Assume that there are two threads,

o The initial value of best_cost is 100, Fassing Argumests,

Cancellation and

e The values of my_cost are 50 and 75 at threads t1 and t2, J:;::fg rmene s
respectively.

¢ If both threads execute the condition inside the if e
statement concurrently, then both threads enter the then Synchronization

Primitives in Pthreads

Mutual Exclusion for Shared
Variables

part of the statement.

¢ Depending on which thread executes first, the value of
best_cost at the end could be either 50 or 75.
e There are two problems here:
@ non-deterministic nature of the result;
@® more importantly, the value 75 of best_cost is inconsistent

in the sense that no serialization of the two threads can
possibly yield this result.

Synchronization Primitives: Mutex IV

e Race condition occurred because the test-and-update
operation is an atomic operation ;

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex IV

e Race condition occurred because the test-and-update
operation is an atomic operation ;

e i.e., the operation should not be broken into sub-operations.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex IV

e Race condition occurred because the test-and-update
operation is an atomic operation ;

e i.e., the operation should not be broken into sub-operations.

e Furthermore, the code corresponds to a critical segment ;

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex IV Rt

Dr. Cem Ozdo gan

e Race condition occurred because the test-and-update
operation is an atomic operation ;

e i.e., the operation should not be broken into sub-operations.

e Furthermore, the code corresponds to a critical segment ;

Thread Basics:
Passing Arguments,
Cancellation and
Joining
e i.e., a segment that must be executed by only one thread at Passing Arguments o
any time.

Threads

Thread Cancellation
Joining and Detaching
Threads

Synchronization

Primitives in Pthreads

Synchronization Primitives: Mutex IV

e Race condition occurred because the test-and-update
operation is an atomic operation ;

e i.e., the operation should not be broken into sub-operations.
e Furthermore, the code corresponds to a critical segment ;

e i.e., a segment that must be executed by only one thread at
any time.

e Many statements that seem atomic in higher level
languages such as C may in fact be non-atomic.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex IV

e Race condition occurred because the test-and-update
operation is an atomic operation ;

e i.e., the operation should not be broken into sub-operations.
e Furthermore, the code corresponds to a critical segment ;

e i.e., a segment that must be executed by only one thread at
any time.

e Many statements that seem atomic in higher level
languages such as C may in fact be non-atomic.
e i.e., a statement of the form global_count+ = 5 may

comprise several assembler instructions and therefore must
be handled carefully.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex IV

e Race condition occurred because the test-and-update
operation is an atomic operation ;

e i.e., the operation should not be broken into sub-operations.
e Furthermore, the code corresponds to a critical segment ;

e i.e., a segment that must be executed by only one thread at
any time.

e Many statements that seem atomic in higher level
languages such as C may in fact be non-atomic.
e i.e., a statement of the form global_count+ = 5 may

comprise several assembler instructions and therefore must
be handled carefully.

e Threaded APIs provide support for implementing critical
sections and atomic operations using mutex -locks (mutual
exclusion locks).

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex V

e Mutex-locks have two states: locked and unlocked.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex V Rt

Dr. Cem Ozdo gan
e Mutex-locks have two states: locked and unlocked.

e At any point of time, only one thread can lock a mutex
lock .

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex V

e Mutex-locks have two states: locked and unlocked.

e At any point of time, only one thread can lock a mutex
lock .

e A lock is an atomic operation.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex V

e Mutex-locks have two states: locked and unlocked.

e At any point of time, only one thread can lock a mutex
lock .

e Alock is an atomic operation.

e To access the shared data, a thread must first try to acquire
a mutex-lock.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex V

e Mutex-locks have two states: locked and unlocked.

e At any point of time, only one thread can lock a mutex
lock .

e Alock is an atomic operation.

e To access the shared data, a thread must first try to acquire
a mutex-lock.

¢ If the mutex-lock is already locked, the process trying to
acquire the lock is blocked .

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex V

e Mutex-locks have two states: locked and unlocked.

e At any point of time, only one thread can lock a mutex
lock .

e Alock is an atomic operation.
e To access the shared data, a thread must first try to acquire
a mutex-lock.

o If the mutex-lock is already locked, the process trying to
acquire the lock is blocked .

e This is because a locked mutex-lock implies that there is
another thread currently in the critical section and that no
other thread must be allowed in.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex V

e Mutex-locks have two states: locked and unlocked.

e At any point of time, only one thread can lock a mutex
lock .
e A lock is an atomic operation.

e To access the shared data, a thread must first try to acquire
a mutex-lock.

o If the mutex-lock is already locked, the process trying to
acquire the lock is blocked .

e This is because a locked mutex-lock implies that there is
another thread currently in the critical section and that no
other thread must be allowed in.

e When a thread leaves a critical section, it must

unlock the mutex-lock so that other threads can enter the
critical section.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex V

e Mutex-locks have two states: locked and unlocked.

e At any point of time, only one thread can lock a mutex
lock .
e A lock is an atomic operation.

e To access the shared data, a thread must first try to acquire
a mutex-lock.

o If the mutex-lock is already locked, the process trying to
acquire the lock is blocked .

e This is because a locked mutex-lock implies that there is
another thread currently in the critical section and that no
other thread must be allowed in.

e When a thread leaves a critical section, it must

unlock the mutex-lock so that other threads can enter the
critical section.

e All mutex-locks must be initialized to the unlocked state at
the beginning of the program.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Synchronization Primitives: Mutex VI A

Memory Il

Dr. Cem Ozdo gan

e The function pthread_mutex_lock ;

=

int
pthread_mutex lock |
Thread Basics:
pthread mutex t s*mutex_lock]; Passing Arguments,

Cancellation and
Joining

w ka

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching

Threads
Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex VI

e The function pthread_mutex_lock ;

w ko

¢ A call to this function attempts a lock on the mutex-lock

mutex_lock.

int
pthread mutex lock
pthread mutex_t

{

smutex_lock) ;

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex VI Rt

Dr. Cem Ozdo gan

e The function pthread_mutex_lock ;

int

w ko

pthread_mutex lock |

Thread Basics:
pthread mutex t s*mutex_lock]; Passing Arguments,
Cancellation and
Joining
e A call to this function attempts a lock on the mutex-lock AT
mutex_lock.

e The data type of a mutex_lock is predefined to be freaes
pthread_mutex_t.

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex VI A

Memory Il

Dr. Cem Ozdo gan

e The function pthread_mutex_lock ;

1 int

2 pthread_mutex lock |

Thread Basics:
3 pthread mutex t s*mutex_lock]; Passing Arguments,
Cancellation and
Joining
e A call to this function attempts a lock on the mutex-lock AT
mutex_lock.

Thread Cancellation

Joining and Detaching
« The data type of a mutex_lock is predefined to be ometmonmaton
pthread _mutex t.

Primitives in Pthreads

o If the mutex-lock is already locked, the calling thread

blocks; otherwise the mutex-lock is locked and the calling
thread returns.

Synchronization Primitives: Mutex VI A

Memory Il

Dr. Cem Ozdo gan

e The function pthread_mutex_lock ;

1 int

2 pthread_mutex lock |

- . Thread Basics:
3 pthread mutex t s*mutex_lock];

Passing Arguments,
Cancellation and
Joining
¢ A call to this function attempts a lock on the mutex-lock R AT
mutex lock. Thread Cancellation
= . . :'lr(;v\lrr;ggsand Detaching
e The data type of a mutex_lock is predefined to be synctronzaton
pthread mutex t. Primitives in Pthreads

o If the mutex-lock is already locked, the calling thread

blocks; otherwise the mutex-lock is locked and the calling
thread returns.

e A successful return from the function returns a value 0.
Other values indicate error conditions such as deadlocks.

Synchronization Primitives: Mutex VII

e The function pthread_mutex_unlock ;

[T

int

pthread mutex_unlock

pthread mutex_t

{

smutex_laock]) ;

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex VII Rt

Dr. Cem Ozdo gan

e The function pthread_mutex_unlock ;

int Thread Basics:

pthread mutex unleock | Passing Arguments,
pthread mutex_t

Cancellation and
smutex_lock) ; Joining

[T

Passing Arguments to

Threads
¢ On leaving a critical section, a thread must unlock the

Thread Cancellation

S P . . . Joining and Detaching
mutex-lock associated with the section.

Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex VII Rt

Dr. Cem Ozdo gan

e The function pthread_mutex_unlock ;

1 int Thread Basics:
2 pthread mutex unleock | Passing Arguments,
- . Cancellation and
3 pthread mutex_t *mutex_lock]; Joining
Passing Arguments to
Threads
e On leaving a critical section, a thread must unlock the s Caretetn
mutex-lock associated with the section. Threads
.) Synchronization
e |f it does not do so, no other thread will be able to enter Primitives in Pthreads

this section, typically resulting in a deadlock.

Synchronization Primitives: Mutex VII

e The function pthread _mutex_unlock ;

1 int

2 pthread mutex_unlock

3 pthread mutex_t

¢ On leaving a critical section, a thread must unlock the

(
smutex_laock]) ;

mutex-lock associated with the section.

e If it does not do so, no other thread will be able to enter

this section, typically resulting in a deadlock.

e On calling pthread_mutex_unlock

function, the lock is
relinquished and one of the blocked threads is scheduled

to enter the critical section.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex VIII

e The specific thread is determined by the scheduling
policy .

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex VIII

e The specific thread is determined by the scheduling
policy .
e if the thread priority scheduling is not implied, the

assignment will be left to the native system scheduler and
may appear to be more or less random .

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex VIII

e The specific thread is determined by the scheduling
policy .

e if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

e Mutex variables must be declared with type

pthread_mutex_t, and must be initialized before they can
be used.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex VIII

e The specific thread is determined by the scheduling
policy .

e if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

e Mutex variables must be declared with type

pthread_mutex_t, and must be initialized before they can
be used.

e There are two ways to initialize a mutex variable:

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Synchronization Primitives: Mutex VIII

e The specific thread is determined by the scheduling
policy .

e if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

e Mutex variables must be declared with type
pthread_mutex_t, and must be initialized before they can
be used.

e There are two ways to initialize a mutex variable:

@ Statically, when it is declared. For example:
pthread_mutex_t mymutex =
PTHREAD_MUTEX_INITIALIZER;

Programming Shared
Memory Il

Dr. Cem Ozdo gan

CE

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Synchronization Primitives: Mutex VIII

e The specific thread is determined by the scheduling
policy .

e if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and
may appear to be more or less random .

e Mutex variables must be declared with type

pthread_mutex_t, and must be initialized before they can
be used.

e There are two ways to initialize a mutex variable:

@ Statically, when it is declared. For example:
pthread_mutex_t mymutex =
PTHREAD_MUTEX_INITIALIZER;

@® Dynamically, with the pthread_mutex_init() routine. This
method permits setting mutex object attributes, attr.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

CE

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Synchronization Primitives: Mutex VIII A

Memory Il

Dr. Cem Ozdo gan

The specific thread is determined by the scheduling
policy .

if the thread priority scheduling is not implied, the
assignment will be left to the native system scheduler and

may appear to be more or less random . Pasaing Arguments,
Cancellation and
Mutex variables must be declared with type Joiing
P . assing Arguments to
pthread_mutex_t, and must be initialized before they can meas
be used.

Joining and Detaching
Threads

There are two ways to initialize a mutex variable:
@ Statically, when it is declared. For example: T CE D e S
pthread_mutex_t mymutex = VAR
PTHREAD_MUTEX_INITIALIZER;
@ Dynamically, with the pthread_mutex_init() routine. This
method permits setting mutex object attributes, attr.

Synchronization
Primitives in Pthreads

If a programmer attempts a pthread_mutex_unlock on a
previously unlocked mutex or one that is locked by another
thread, the effect is undefined.

Synchronization Primitives: Mutex IX

e The function pthread_mutex_init ;

O Y N

int

pthread mutex_init |

pthread _mutex_t +mutex_lock,

const pthread_mutexattr t

*lack_attr) ;

Programming Shared
Memory |1

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex IX

e The function pthread_mutex_init ;

int

pthread mutex_init |
pthread _mutex_t

O Y N

const pthread_mutexattr t

rmutex_lock,

*lack_attr) ;

e We need one more function before we can start using

mutex-locks, namely, a function to initialize a mutex-lock to

its unlocked state.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex IX

e The function pthread_mutex_init ;
1 int

2 pthread mutex_init |

3 pthread _mutex_t

const pthread_mutexattr t

rmutex_lock,

*lack_attr) ;

e We need one more function before we can start using

mutex-locks, namely, a function to initialize a mutex-lock to

its unlocked state.
e The mutex is initially unlocked.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex IX

e The function pthread_mutex_init ;

1 int

2 pthread mutex_init |

3 pthread _mutex_t +mutex_lock,

4q const pthread _mutexattr t +xlock_attr);

e We need one more function before we can start using

mutex-locks, namely, a function to initialize a mutex-lock to
its unlocked state.

e The mutex is initially unlocked.
e The attributes of the mutex-lock are specified by lock_attr.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Mutex IX

e The function pthread_mutex_init ;
1 int
2 pthread mutex_init |
3 pthread _mutex_t +mutex_lock,
4q const pthread _mutexattr t +xlock_attr);

e We need one more function before we can start using

mutex-locks, namely, a function to initialize a mutex-lock to
its unlocked state.

e The mutex is initially unlocked.
e The attributes of the mutex-lock are specified by lock_attr.

o |f this argument is set to NULL, the default mutex-lock
attributes are used (normal mutex-lock).

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Overheads of Locking |

e Locks represent serialization points since critical sections
must be executed by threads one after the other.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Overheads of Locking | A

Memory Il

Dr. Cem Ozdo gan

e Locks represent serialization points since critical sections
must be executed by threads one after the other.

e Encapsulating large segments of the program within locks

Thread Basics:
can, therefore, lead to significant performance Canateienanl
degradation . Joining

Passing Arguments to
Threads

Thread Cancellation
Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Overheads of Locking | A

Memory Il

Dr. Cem Ozdo gan

e Locks represent serialization points since critical sections
must be executed by threads one after the other.

e Encapsulating large segments of the program within locks

Thread Basics:

can, therefore, lead to significant performance Canceliionand

degradation . e oo
o |t is therefore important to minimize the size of critical et Coctate

sections and to handle critical sections and shared data T

structures with extreme care. SymEEEEER

Primitives in Pthreads

Synchronization Primitives: Overheads of Locking |

Locks represent serialization points since critical sections
must be executed by threads one after the other.

Encapsulating large segments of the program within locks
can, therefore, lead to significant performance
degradation .

It is therefore important to minimize the size of critical
sections and to handle critical sections and shared data
structures with extreme care.

It is often possible to reduce the idling overhead
associated with locks using an alternate function,
pthread_mutex_trylock.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Overheads of Locking |

Locks represent serialization points since critical sections
must be executed by threads one after the other.

Encapsulating large segments of the program within locks
can, therefore, lead to significant performance
degradation .

It is therefore important to minimize the size of critical
sections and to handle critical sections and shared data
structures with extreme care.

It is often possible to reduce the idling overhead
associated with locks using an alternate function,
pthread_mutex_trylock.

It does not have to deal with queues associated with locks
for multiple threads waiting on the lock.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Mutual Exclusion for Shared
Variables

Synchronization Primitives: Overheads of Locking Il

e The function pthread _mutex_trylock

[P O

int

pthread _mutex_trylock |

pthread_mutex_t

rmutex_lock]) ;

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Overheads of Locking Il

e The function pthread_mutex_trylock ;
int

pthread _mutex_trylock |

[P O

pthread _mutex_t *mutex_lock];

e This function attempts a lock on mutex_lock.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Overheads of Locking Il

e The function pthread _mutex_trylock

int

[P O

pthread _mutex_trylock |
pthread _mutex_t *mutex_lock];

e This function attempts a lock on mutex_lock.
e If the lock is successful, the function returns a zero.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Overheads of Locking Il

e The function pthread _mutex_trylock

int

[P O

pthread _mutex_trylock |
pthread _mutex_t *mutex_lock];

e This function attempts a lock on mutex_lock.

e |f the lock is successful, the function returns a zero.
o If itis already locked by another thread, instead of

blocking the thread execution, it returns a value EBUSY.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Overheads of Locking Il

e The function pthread_mutex_trylock ;
int

pthread _mutex_trylock |

W k=

pthread _mutex_t *mutex_lock];

e This function attempts a lock on mutex_lock.

e |f the lock is successful, the function returns a zero.
o If itis already locked by another thread, instead of

blocking the thread execution, it returns a value EBUSY.

e This allows the thread to do other work and
to poll the mutex for a lock.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

Synchronization Primitives: Overheads of Locking Il

e The function pthread_mutex_trylock ;
int

pthread _mutex_trylock |

W k=

pthread _mutex_t *mutex_lock];

e This function attempts a lock on mutex_lock.

e |f the lock is successful, the function returns a zero.
o If itis already locked by another thread, instead of

blocking the thread execution, it returns a value EBUSY.

e This allows the thread to do other work and
to poll the mutex for a lock.

e Furthermore, pthread_mutex_trylock is typically much
faster than pthread_mutex_lock on typical systems.

Programming Shared
Memory Il

Dr. Cem Ozdo gan

Thread Basics:
Passing Arguments,
Cancellation and
Joining

Passing Arguments to
Threads

Thread Cancellation

Joining and Detaching
Threads

Synchronization
Primitives in Pthreads

	Thread Basics: Passing Arguments, Cancellation and Joining
	Passing Arguments to Threads
	Thread Cancellation
	Joining and Detaching Threads

	Synchronization Primitives in Pthreads
	Mutual Exclusion for Shared Variables

