
1 Hands-on; Shared Memory I; Threads

1. Creation and Termination Threads, This example program cre-
ates 5 threads with the pthread create() routine. Each thread prints
a “Hello World!” message, and then terminates with a call to pthread exit().
Compile as

gcc -o code41 code41.c -lpthread

2. Passing Arguments to Threads 1, This example program demon-
strates how to pass a simple integer to each thread.

3. Passing Arguments to Threads 2, This example program shows
how to setup/pass multiple arguments via a structure. Each thread
receives a unique instance of the structure.

4. Passing Arguments to Threads 3 - Incorrectly, This example
program performs argument passing incorrectly.

• It passes the address of variable t, which is shared memory space

and visible to all threads.

• The loop which creates threads modifies the contents of the ad-
dress passed as an argument, possibly before the created threads

can access it.

5. Joining Threads, This example program demonstrates how to “wait”
for thread completions by using the Pthread join routine. Since some
implementations of Pthreads may not create threads in a joinable state,
the threads in this example are explicitly created in a joinable state so
that they can be joined later. Compile as

gcc -o code45 code45.c -lpthread -lm

1

http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code41.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code42.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code43.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code44.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code45.c


6. Exercise: Complete this template; which is a thread program for
finding the minimum of a list of integers;

• The list is partitioned equally among the threads.

• The size of each thread’s partition is stored in the variable (par-
tial list size).

• The pointer to the start of each thread’s partial list is passed to
it as the pointer (list ptr).

• The test-update operation for minimum value is protected by the
mutex-lock minimum value lock.

• Threads execute pthread mutex lock to gain exclusive access to the
variable minimum value.

• Once this access is gained, the value is updated as required, and
the lock subsequently released.

• Since at any point of time, only one thread can hold a lock, only
one thread can test-update the variable.

2

http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code57_template.c

	Hands-on; Shared Memory I; Threads

