Hands-on; Shared Memory I; Threads

. Creation and Termination Threads, This example program cre-

ates 5 threads with the pthread_create() routine. Each thread prints

a “Hello World!” message, and then terminates with a call to pthread_exit().
Compile as

gcc -o coded4l coded4l.c -lpthread

. Passing Arguments to Threads 1, This example program demon-
strates how to pass a simple integer to each thread.

. Passing Arguments to Threads 2, This example program shows
how to setup/pass multiple arguments via a structure. Fach thread
receives a unique instance of the structure.

. Passing Arguments to Threads 3 - Incorrectly, This example
program performs argument passing incorrectly.

e [t passes the address of variable t, which is shared memory space
and visible to all threads.

e The loop which creates threads modifies the contents of the ad-
dress passed as an argument, possibly before the created threads
can access it.

. Joining Threads, This example program demonstrates how to “wait”
for thread completions by using the Pthread join routine. Since some
implementations of Pthreads may not create threads in a joinable state,
the threads in this example are explicitly created in a joinable state so
that they can be joined later. Compile as

gcc —o coded4b coded4b5.c -lpthread -1m


http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code41.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code42.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code43.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code44.c
http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code45.c

6. Exercise: Complete this template; which is a thread program for
finding the minimum of a list of integers;

The list is partitioned equally among the threads.

The size of each thread’s partition is stored in the variable (par-
tial_list_size).

The pointer to the start of each thread’s partial list is passed to
it as the pointer (list_ptr).

The test-update operation for minimum_value is protected by the
mutex-lock minimum_value_lock.

Threads execute pthread_mutex_lock to gain exclusive access to the
variable minimum_value.

Once this access is gained, the value is updated as required, and
the lock subsequently released.

Since at any point of time, only one thread can hold a lock, only
one thread can test-update the variable.


http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code57_template.c

	Hands-on; Shared Memory I; Threads

