1 Assignment 1 - Solving Nonlinear Equations; Due to December 5, 2011

- The function $f(x) = 5x^2 + sin(x) e^x 10$ is given. Solve f(x) = 0 in [-5 5] as defined in next page by:
 - 1. Halving the Interval (Bisection) Method
 - 2. The Method of False Position (regula falsi)
 - 3. Newton's Method
 - 4. Muller's Method
 - 5. Fixed-point Iteration; x = g(x) Method
- Which methods? See Table 1

Table 1: You should use the following methods depending on the last digit of your Student ID.

Last Digit	Methods	
0-1	1,2,3	
2-3	1,2,4	
4-5	1,2,5	
6-7	1,3,4	
8-9	1,3,5	

• Hints:

- >> fplot(' $5*x^2+\sin(x)-\exp(x)-10$ ',[-5 5])
- >> [X,FVAL]=fzero('5*x^2+sin(x)-exp(x)-10',[-5 -1])
- >> [X,FVAL]=fzero('5*x^2+sin(x)-exp(x)-10',[-1 2])
- >> [X,FVAL]=fzero('5*x^2+sin(x)-exp(x)-10',[2 5])

• Write one complete function.

- You may use mainmulfix_template.m as a starting template for your code.
- You can make use of the available MATLAB codes presented in the Hands-On sessions or lectures.
- An example calling this program;
 - >> myfunction(-5, 5, tol_x, tol_y)
- Tabulate the actual error $(x_n r)$ and function values $(f(x_n))$ as given in Table 2.

Table 2: Error Sequences. The number of iterations is not limited to or defined as 15. r corresponds to exact value of root.

	Method1	Method2	Method3	Method1	Method2	Method3
n	(x_n-r)	(x_n-r)	(x_n-r)	$f(x_n)$	$f(x_n)$	$f(x_n)$
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
12						
13						
14						
15						

- Plot the behaviours of the errors for three methods. Analyse your plots.
- Compare and discuss the rate of convergence (use ratios) for three methods.
- Which method is the best and why?