Mcs 331 Numerical Methods

Midterm

Dec 06, 2013 10.40—-12.30
Good Luck!

f(x) =3xx+ sin(x) —e”

Solve all the questions. Each question is 25 pts.

This nonlinear equation is solved by using three methods, namely Bi-
section, Newton’s, Muller’s methods. Then, the following tables are

obtained.
iteration ()1 ()2 ()3
1 0.50000000000000 | 0.33333333333333 | 0.50000000000000
2 0.25000000000000 | 0.36017071357763 | 0.35491389049015
3 0.37500000000000 | 0.36042168047602 | 0.36046467792776
4 0.31250000000000 | 0.36042170296032 | 0.36042169766326
5 0.34375000000000 | 0.36042170296032 | 0.36042170296032
iteration | (f(2)) (f(x))s (f(x))s
1 3.3070e-01 | -1.0000e+00 | 3.3070e-01
2 -2.8662e-01 | -6.8418e-02 | -1.3807e-02
3 3.6281e-02 | -6.2799¢-04 | 1.0751e-04
4 -1.2190e-01 | -5.6252e-08 | -1.3252¢-08
5 -4.1956e-02 | -6.6613e-16 | 2.2204e-16

i If the exact value is given as 0.36042170296032, fill the following
tables (use scientific notation as %12.4e, see the table above);

iteration Errory Errors Errors ErrorRatioy ErrorRatios ErrorRatios
1
2
3
4
5

iteration Errory Errors Errors ErrorRatiop ErrorRatios ErrorRatios
1 1.3958e-01 -2.7088e-02 1.3958e-01 7.1644e+4-00 -3.6916e+01 7.1644e+-00
2 -1.1042e-01 | -2.5099e-04 | -5.5078e-03 -1.2640e+-00 1.0793e+02 -2.5342e+01
3 1.4578e-02 -2.2484e-08 4.2975e-05 -7.5744e+4-00 1.1163e+04 -1.2816e+02
4 -4.7922e-02 | -1.6653e-16 | -5.2971e-09 -3.0421e-01 1.3501e+08 -8.1130e+03
5 -1.6672e-02 1.1102e-16 2.2204e-16 2.8744e4-00 -1.5000e+-00 -2.3856e+07

ii Analyze the obtained tables. Is the convergence sustained for the
each methods? For the sustained ones; at which iteration and

why?

First method does not converge, while the second method converges

faster than the third one. The second method converges at the fourth

iii

v

step because the next step is also at the same error level and they are
small enough. The third one seems to converge at the fifth step since
it is small enough.

What can you say about the speed of convergences for each method?
From the error ratio table, first method has a monotonic behavior and
it is also seen that it does not converge. The second method is the
fastest method and it approaches to the exact value with the square of
the error of the previous step in each iteration. The third one is also
fast method but with the same ratio of the previous step.

By using your answers for the previous items, fill the following

table. You should explain your decision.
Method, Method, Methods

Name

Method; Methods Methods
Name | Bisection Newton Muller
Bisection; since it halves at each iteration.

Newton; since it converges quadratically.
Muller; since is is the remaining one.

Which method is the best one? Why?

Since we do not care about the prices for each method, dealing just
with the numbers. Newton’s method is the best one since it converges
quadratically, so it is the fastest one.

2. Consider the function:

f(z) =2z — 6log(x)

Plot of the function is given at the following figure;

Figure 1: Plot of the function, 2*x-6*log(x)

i Use two iterations of Newton’s method to estimate only one of the
roots of this function. Hint: [Ldx = log(x)
Newton’s method uses the algorithm

x =2 —-ll———
n+l — 4n f/(xn)

where, for this function

flx)=2~6/x
>>solve (’2*xx-6*xlog(x)’)
ans =
-3*lambertw(-1/3)

-3xlambertw(-1,-1/3)

>> —-3*%lambertw(-1/3)
ans = 1.8572

>> =-3*lambertw(-1,-1/3)
ans = 4.5364

write the function
function fx=func(x)
fx=2*xx-6*log(x) ;

save as func.m

write the function
function fx=funcdiff (x)
£fx=2-6/x;

save as funcdiff.m

o = 1.5

>> format long

>> x0=1.5;x1=x0- (func (x0) /funcdiff (x0))
x1l = 1.78360467567551

>> x2=x1-(func(x1)/funcdiff(x1))
X2 = 1.85354064971539

>> x3=x2-(func(x2)/funcdiff (x2))
x3 = 1.85717450334217

>> x4=x3-(func(x3) /funcdiff (x3))
x4 = 1.85718386014596

>> x5=x4-(func(x4) /funcdiff (x4))
x5 = 1.85718386020784

>> x6=x5-(func(x5)/funcdiff (x5))
X6 = 1.85718386020784

>> x7=x6-(func(x6) /funcdiff (x6))
X7 = 1.85718386020784

or start with
o = 3.1

>> x0=3.1;x1=x0-(func (x0) /funcdiff (x0))
x1 = 12.22039636867234

>> x2=x1-(func(x1)/funcdiff(x1))
X2 = 5.97649660388231

>> x3=x2-(func(x2) /funcdiff (x2))
x3 = 4.74567026655091

>> x4=x3-(func(x3) /funcdiff (x3))
x4 = 4.54457398303521

>> x5=x4-(func(x4)/funcdiff (x4))
x5 = 4.53641793698142

>> x6=x5-(func(x5)/funcdiff (x5))
x6 = 4.53640365501743

>> x7=x6-(func(x6)/funcdiff (x6))
X7 = 4.53640365497353

>> x8=x7-(func(x7)/funcdiff (x7))
x8 = 4.53640365497353

>> x9=x8-(func (x8) /funcdiff (x8))
X9 = 4.53640365497353

i Estimate the error in your answer to part i.
To estimate the error, compute one more iteration (fourth iteration),

o = 1.5

es = r4—x3 = (1.85718386014596)—(1.85717450334217) = 9.356803789994927e—06

4

iii

or start with
Trog — 3.1

es = r4—x3 = (4.74567026655091)—(5.97649660388231) = —1.23082633733140

Approximately how many iterations of the bisection method would
have been required to achieve for the error value of 0.00047
Hint: Take the interval as ((initial+1)-initial)

The error in the bisection method satisfies

Original Interval
en = | on |

xo = 1.5 In this case, taking the original interval to be [1.5, 2.5, we

would have 1

6n:|2_n|

Therefore, to achieve approximately the same error as we obtained
with two iteration of Newton’s method here, would require sufficient
iterations of bisection to ensure

L 0.0004

on

this gives

0.0004

In(5g001) _
In(2)
n =12

1 onin(2)

Tro = 3.1

same result.

3. Solve this system by Gaussian elimination with pivoting

1 -2 46
8 =3 2 2
-1 10 2 4

i How many row interchanges are needed?

ii Repeat without any row interchanges. Do you get the same re-
sults?

iii You could have saved the row multipliers and obtained a LU equiv-
alent of the coefficient matrix. Use this LU to solve but with
right-hand sides of [-3,7, —2]T

Answer:

%**

%i) Ax=b
>> A=[1 -2 4; 8 -3 2; -1 10 2]
>> b=[6 2 4]

>> GEPivShow(A,b’)
Begin forward elimination with Augmented system:

1 -2 4 6
-3 2 2
-1 10 2 4

Swap rows 1 and 2; new pivot = 8

After elimination in column 1 with pivot = 8.000000
8.0000 -3.0000 2.0000 2.0000
0 -1.6250 3.7500 5.7500
0 9.6250 2.2500 4.2500
Swap rows 2 and 3; new pivot = 9.625
After elimination in column 2 with pivot = 9.625000
8.0000 -3.0000 2.0000 2.0000
0 9.6250 2.2500 4.2500
0 0 4.1299 6.4675
ans = -0.1132 0.0755 1.5660 %these are x1, x2, x3
>> det(A)
ans = 318

>> 8.0000%9.6250 *4.1299 Yproduct of the diagonal of U
ans = 318.0023

% For LU-decomposition

>> [L,U,pv] = luPiv(A)

L = 1.0000 0 0
-0.1250 1.0000 0
0.12560 -0.1688 1.0000
U= 8.0000 -3.0000 2.0000
0 9.6250 2.2500
0 0 4.1299

pv =
2
3
1
% two times pivoting
Y4k sk ok sk ok sk ok sk ok sk Kok KKK kK ok KKK KK ok KRR K Rk KRR oK KK o
% ii) for not pivoting case;
>> GEshow(A,b?)
Begin forward elimination with Augmented system:

1 -2 4 6

-3 2 2

-1 10 2 4
After elimination in column 1 with pivot = 1.000000

1 -2 4 6

0 13 -30 -46

0 8 6 10
After elimination in column 2 with pivot = 13.000000

1.0000 -2.0000 4.0000 6.0000
0 13.0000 -30.0000 -46.0000

0 0 24.4615 38.3077
ans = -0.1132 0.0755 1.5660
>> 1.0000%13.0000%24.4615
ans = 317.9995

% Solutions are the same. They are same because the system is

% not ill-conditioned.

Yo%k ok sk sk sk sk ok ok sk sk sk ok ke ok sk sk ok sk sk sk sk sk sk ok sksksk sk ok sksk sk ok sk ok

% iii) LUx=bb now bb=[-3 7 -2]

% First Check!

% L an U is found above. Coution: b --> Permutted b

% b=[2 4 6]

% Ly=b : Find y

>> y=GEPivShow(L,b’)

Begin forward elmination with Augmented system:
1.000000000000000 0 0 2.000000000000000
-0.125000000000000 1.000000000000000 0 .000000000000000
0.125000000000000 -0.168831168831169 1.000000000000000 6.000000000000000

NS

After elimination in column 1 with pivot = 1.000000
1.000000000000000 0 0 2.000000000000000
0 1.000000000000000 0 4.250000000000000

0 -0.168831168831169 1.000000000000000 5.750000000000000
After elimination in column 2 with pivot = 1.000000

1.000000000000000 0 0 2.000000000000000
0 1.000000000000000 0 4.250000000000000
0 0 1.000000000000000 6.467532467532467

y =
2.000000000000000
4.250000000000000
6.467532467532467

% Ux=y : Find x

>> xx=GEPivShow (U,y)

Begin forward elmination with Augmented system:

8.000000000000000

0

0

After elimination in
8.000000000000000

0

0

After elimination in
8.000000000000000

0

0

-0.113207547169811
0.075471698113208
1.566037735849056

% Same as before as
% Now for bb=[-3 7 -
>> bb=[-3 7 -2]

bb = -3 7

>> y=GEPivShow(L,bb’)

XX

-3.000000000000000
9.625000000000000

0

column 1 with pivot
-3.000000000000000
9.625000000000000

0

column 2 with pivot
-3.000000000000000
9.625000000000000

0

expected!
2]

-2

2.

B NDN O NN PN

000000000000000
.250000000000000
.129870129870130
.000000

.000000000000000
.250000000000000
.129870129870130
.625000

.000000000000000
.250000000000000
.129870129870130

Begin forward elmination with Augmented system:

1.000000000000000
-0.125000000000000
0.125000000000000
After elimination in
1.000000000000000
0
0
After elimination in
1.000000000000000
0
0

y =
-3.000000000000000
6.625000000000000
-0.506493506493507
>> xx=GEPivShow (U,y)

0

1.000000000000000
-0.168831168831169
column 1 with pivot
0

1.000000000000000
-0.168831168831169
column 2 with pivot
0

1.000000000000000

0

0

0
1.000000000000000
1.000000

0

0
1.000000000000000
1.000000

0

0

1.000000000000000

Begin forward elmination with Augmented system:
2.
.250000000000000
.129870129870130
.000000

.000000000000000
.250000000000000
.129870129870130
.625000

.000000000000000

8.000000000000000

0

0

After elimination in
8.000000000000000

0

0

After elimination in
8.000000000000000

-3.000000000000000
9.625000000000000

0

column 1 with pivot
-3.000000000000000
9.625000000000000

0

column 2 with pivot
-3.000000000000000

N O H»H NN PHN

000000000000000

NS

I

RS

.000000000000000
.250000000000000
.467532467532467

.000000000000000
.250000000000000
.467532467532467

.000000000000000
.250000000000000
.467532467532467

.000000000000000
.000000000000000
.000000000000000

.000000000000000
.625000000000000
.625000000000000

.000000000000000
.625000000000000
.506493506493507

.000000000000000
.625000000000000
.506493506493507

.000000000000000
.625000000000000
.506493506493507

.000000000000000

0 9.625000000000000 2.250000000000000 6.625000000000000
0 0 4.129870129870130 -0.506493506493507
XX =
-0.075471698113208
0.716981132075472
-0.122641509433962

% solution is completed
Yok ok ok ok ok oK KoK KK ok oK ok KoK KK ok Kok KoK oK ok K ok oK ok ok oK oK K o

. Consider the linear system

7.1’1 - 333‘2 —|—4.T3 =6
—3l‘1 + QI‘Q + 6l‘3 =2
2{L‘1 + 5{L‘2 + 3l‘3 =-5

i Solve this system with the Jacobi method. First rearrange to make
it diagonally dominant if possible. Use [0,0,0] as the starting
vector.

ii Repeat with Gauss-Seidel method. Compare with Jacobi method.

Answer:

Yok ok ok Kok ok KoK KoK KK ok oK ok KK KK ok Kok KoK KoK ok K ok ok ok ok oK oK K o
%Switching rows 2 &3 first
>> A=[7 -3 4; 2 5 3; -3 2 6]
>> B=[6 -5 2]
>> jacobi(A,B’,P’,0.01,20)
k = 1P-=
0.857142857142857
-1.000000000000000
0.333333333333333
k = 2 P =
0.238095238095238
-1.542857142857143
1.095238095238095
k = 3P =
-0.429931972789116
-1.752380952380953
0.966666666666667
k = 4 P =
-0.446258503401361
-1.408027210884354
0.702494331065760
k = 5P =
-0.147722708130871
-1.242993197278911

.579546485260771

6 P =

.006737933268545
.288638807904114
.673803045027535

7P =

.080161229117497
.401586653709102
.759510636000432

8 P =

.177543215018434
.423641889953260
.760448270010952

9P =

.187531249986227
.385251675999198
.719109022475203

10 P =

.147455873985486
.356452913490631
.701318267006619

11 P =

.124947401214053
.361808610609777
.711756367504134

12 P =

.133207328835124
.377074860016859
.724795836262899

13 P =

.147201132157454
.381594570223690
.725754622254725

14 P =

.149686028527138
.376572320489853
.720264290662503

15 P =

.144396303445653
.372284162986646
.717347759233048

16 P =

.140891932270305
.372650134161568
.718563235939389

17 P =

.141743335177466
.374781168655511
.720437411918703

10

k = 18 P =
-0.143727593377335
-1.375565113080236

0.720722055296438

k = 19 P =
-0.144226222918065
-1.374942195826928

0.719991241004744
>> gseid(A,B’,P’,0.001,20)
k = 1 P =
0.857142857142857
-1.342857142857143
1.209523809523809
k = 2 P =
-0.409523809523810
-1.561904761904762
0.649206349206349
k = 3 P =
-0.183219954648526
-1.316235827664399
0.680468631897203
k = 4 P =
-0.095797430083144
-1.369962207105064
0.742088687326783
k = 5 P =
-0.154034481517475
-1.383639419789080
0.717529232504289
k = 6 P =
-0.145862169912057
-1.372172671537751
0.717793138889889
k = 7 P =
-0.141098652881830
-1.374236422181201
0.720862814286152
k = 8 P =
-0.143737217669745
-1.375022801503793
0.719805658333059
k = 9 P =
-0.143470148263374
-1.374495335694486
0.719763371099808
% Gauss-Seidel iterates much faster

11

