MATLAB

The Language of Technical Computing

Computation
Visualization

Programming

Desktop Tools and Development
Environment ..*‘\The MathWorks

Version 7

X LB

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

508-647-7000
508-647-7001

The MathWorks, Inc.

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

Phone
Fax

Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Desktop Tools and Development Environment
© COPYRIGHT 1984 - 2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered
trademarks, and TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: June 2004 First printing New for MATLAB 7.0 (Release 14).

Formerly part of Using MATLAB.

October 2004 Online only Revised for Version 7.0.1 (Release 14SP1)

Startup and Shutdown

1]

2

Starting MATLAB 1-2
Starting MATLAB on Windows Platforms 1-2
Starting MATLAB on UNIX Platforms 1-2
Startup Directory for MATLAB 1-3
Startup Options i i 14
Toolbox Path Caching in MATLAB 1-10

Quitting MATLAB i, 1-13
Running a Script When Quitting MATLAB 1-13

Desktop

Overview of the Desktop 2-2
Example of Desktop—Default Layout 2-3
Summary of Desktop Tools 2-4

Arranging the Desktop—Overview 2-5
Opening and Arranging Tools 2-6
Opening and Arranging Documents 2-7
Examples of Desktop Arrangements 2-11
Saving Desktop Layouts 2-18

Common Desktop Features 2-19
Start Button for Accessing Tools 2-19
Shortcuts for MATLAB—Easily Run a Group of Statements . 2-21
Web Browser 2-29
Menus and Context Menus, 2-31
Toolbars e 2-32
Status Bar 2-34
Sizing, Arranging, and Sorting Columns in Tools 2-34

Contents

ii

Contents

Keyboard Shortcuts (Accelerators) and Mnemonics 2-35

Selecting Multiple Items 2-38
Cut,Copy,and Paste, 2-39
Page Setup Options for Printing 2-40
Accessing The MathWorksonthe Web 2-43
Fonts, Colors, and Other Preferences 2-45
Fonts Preferences for Desktop Tools 2-45
Colors Preferences for Desktop Tools 2-51
General Preferences for MATLAB 2-55
About Preferences 2-57

Running Functions—Command Window and

3

History
Opening the Command Window 3-2
Running Functions and Programs, and Entering
Variables 3-3
Running Statements at the Command Line Prompt 3-3
Running External Programs 3-6
Evaluating or Opening a Selection 3-7
Hyperlinks for Running Functions 3-8
ControllingInput 3-9
Case and Space Sensitivity 3-9
Syntax Highlighting 3-10
Cut, Copy, Paste, and Undo Features 3-11
Enter Multiple Lines Without Running Them 3-12
Entering Multiple Functionsina Line 3-12
Entering Long Statements 3-12
Recalling Previous Lines 3-13
Tab Completion 3-14
Keyboard Shortcuts in the Command Window 3-18
Navigating Above the Command Line 3-19

Controlling Qutput 3-20

Suppressing Output 3-20
Paging of Output in the Command Window 3-20
Formatting and Spacing Numeric OQutput 3-21
Clearing the Command Window 3-22
Printing Command Window Contents 3-22
KeepingaSessionLog 3-23
Searching in the Command Window 3-24
Find DialogBox 3-24
Incremental Search 3-25
Preferences for the Command Window 3-29
Format, Display, and Accessibility Preferences 3-29

Keyboard and Indenting Preferences for the
Command Windowt 3-31
Command History 3-33
Viewing Statements in the Command History Window 3-34
Using Statements from the Command History 3-35
Searching in the Command History 3-36
Printing the Command History 3-38
Deleting Entries in the Command History Window 3-38
Preferences for Command History 3-40
SettINgS .« o e 3-40
S aAVING ..ttt e 3-40
Help for Using MATLAB

4 |

Types of Documentation 4-2
Accessing Documentationonthe Web 4-3
Documentation in Other Languages 4-4

iii

iv

Contents

Help Browser 4-5

Resizing the Help Browser 4-6
Adding Your Own Help Files to the Help Browser 4-7
Find Information with the Help Browser 4-8
Contents Listing in the Help Browser 4-8
Index for the Help Browser 4-11
Search Documentation with the Help Browser 4-13
Favorites 4-19
View Documentation in the Help Browser 4-20
Browseto Other Pages 4-21
Links . ..o 4-22
Find Text in Displayed Pages 4-22
Copy Information 4-22
Evaluate a Selection, 4-23
View the Page Source (HTML) 4-23
Demos in the Help Browser 4-24
Using Demost 4-24
Adding Your OwnDemos 4-27
Preferences for the Help Browser 4-28
Product Filter 4-28
PDF Reader—Specifying Its Location 4-29
General—Keep Contents Synchronized 4-29
Help Fonts Preferences—Specifying Font Name, Style, and
DIz . it e 4-30
Printed Documentation 4-31
Printing a Page from the Help Browser 4-31
Printing the PDF Version of Documentation 4-31
Help Functions 4-33
View Function Reference Pages—the doc Function 4-34

Getting Help in the Command Window—the help Function . . 4-35

Other FormsofHelp 4-38

Documentation for Other Products 4-38
Product-Specific Help Features 4-38
User-Contributed M-Files 4-39
Technical Support, 4-39
Newsgroup for MathWorks Products 4-40
Other Resources for MATLAB Information 4-40
Version and License Information 4-41
Provide Feedback 4-41

Workspace, Search Path, and File Operations

5]

MATLAB Workspace0iiiiiiiinnnnnnn.. 5-2
Opening the Workspace Browser 5-3
Viewing and Editing Values in the Current Workspace 5-3
Saving the Current Workspace 54
Loading a Saved Workspace and Importing Data 5-6
Changing and Copying Variable Names 5-7
Clearing Workspace Variables 5-7
Viewing Base and Function Workspaces Using the Stack 5-8
Creating Graphics from the Workspace Browser 5-8
Opening Variables and Objects for Viewing and Editing 5-9
Preferences for the Workspace Browser 5-9

Viewing and Editing Workspace Variables with the

Array Editor 5-10
Opening the Array Editor 5-10
Viewing and Editing Cell Arrays, Structures, and
Multidimensional Arraysciiiiiii... 5-12

Navigating and Editing Shortcut Keys for the Array Editor . 5-14
Changing Array Size, Content, and Format of Elements in

the Array Editor 5-14
Cut, Copy, Paste, and Delete in the Array Editor 5-15
Exchanging Data with the Command Window 5-18

Exchanging Datawith Excel 5-18

vi

Contents

Creating Graphs and Variables from the Current Selection . . 5-18

Preferences for the Array Editor 5-18
SearchPath 5-20
About the Search Path 5-20
How the Search Path Determines Which Function to Use ... 5-21
How MATLAB Finds the Search Path, pathdefm 5-22
Viewing and Setting the Search Path 5-22
Using the Path in Future Sessions 5-28
Recovering from Problems with the Search Path 5-29
File Management Operations 5-31
Current Directory Field 5-32
Current Directory Browser 5-32
Viewing and Making Changes to Directories 5-34
Creating, Renaming, Copying, and Removing Directories and
Files ... o 5-35
Opening, Running, and Viewing Information About Files ... 5-39
Finding Files and Content Within Files 5-42
Accessing Source Control Features 5-44
Preferences for the Current Directory Browser 5-45

Editing and Debugging M-Files

Begin with ExistingCode 6-2
Create M-Files from Command Window and History 6-2
Use Existing M-Files and Examples 6-2

Ways to Edit and Debug M-Files 6-4

Starting, Customizing, and Closing the Editor/Debugger . 6-6

Creating a New File in the Editor/Debugger 6-7
Opening Existing Files in the Editor/Debugger 6-8
Opening the Editor Without Starting MATLAB 6-10
Arranging Editor/Debugger Documents 6-10
Preferences for the Editor/Debugger 6-11

Creating and Editing Other Text File Types 6-12

Closing the Editor/Debugger 6-12
Creating, Editing, and Running Files 6-13
Entering Statements 6-13
Appearanceofan M-File 6-19
Navigatinginan M-File 6-22
Finding TextinFiles 6-24
Opening a Selectioninan M-File 6-29
Saving M-Files 6-30
Running M-Files from the Editor/Debugger 6-32
Printing M-Files 6-33
Closing M-Files0iiiiiiiiiiinnnnn. 6-33
Debugging M-Files 6-34
Finding Errorsin M-Files 6-34
Debugging Example—The Collatz Problem 6-37
Debugging Process and Features 6-40
Preparing for Debugging 6-40
Setting Breakpoints 6-41
Running an M-File with Breakpoints 6-44
Stepping Through an M-File 6-46
Examining Values, 6-47
Correcting Problems and Ending Debugging 6-52
Conditional Breakpoints 6-59
Breakpoints in Anonymous Functions 6-61
Error Breakpoints 6-62
Rapid Code Iteration Using Cells 6-65
Defining Cells 6-66
Navigating and Evaluating with Cells 6-71
Using Cells in Function M-Files 6-75

vii

viil Contents

Tuning and Managing M-Files

Visual Directory in Current Directory Browser 7-2
Navigate Directory Hierarchy 74
Viewand EditFiles 7-5
Sort by Contents.m, 7-6
Run, Make Thumbnail, Delete File (Show Actions) 7-7
Show File Sizest i 7-9
Show Function or Script 7-9

Directory Reports in Current Directory Browser 7-11
Accessing and Using Directory Reports 7-11
TODO/FIXME Report, 7-12
HelpReport 7-13
Contents Report 7-17
Dependency Report 7-20
File Comparison Report 7-22
Coverage Report 7-24

M-Lint Code Check Report 7-25
Accessing M-Lint 7-25
M-Lint Graphical User Interface (GUD) 7-25
Making Changes Based on M-Lint Messages 7-28

Profiling for Improving Performance 7-35
What Is Profiling? 7-35
The Profiling Process—Guidelines 7-36
The Profiler i 7-38
Profile Summary Report 7-42
Profile Detail Report 7-45
The profile Function 7-51

Publishing Results

8

Publishing to HTML, XML, LaTeX, Word, and

PowerPoint Using Cells 8-2
Overview of Publishing 8-2
Example of Publishing Without Text Markup 8-3
Example of Publishing with Text Markup 84

Marking Up Text in Cells for Publishing 8-9

Publishing M-Files Using Cells 8-15
How to Publishan M-File 8-15
About Published M-Files 8-16
Modifying Published Output Via Preferences 8-17

Notebook for PublishingtoWord 8-18
Creatingan M-Book 8-18
Entering MATLAB Commands in an M-Book 8-21
Protecting the Integrity of Your Workspace in M-Books 8-22
Ensuring Data Consistency in M-Books 8-22
Debugging and Notebook 8-22

Defining MATLAB Commands as Input Cells for

Notebook 8-23
Defining Cell Groups for Notebook 8-23
Defining Autoinit Input Cells for Notebook 8-25
Defining Calc Zones for Notebook 8-25
Converting an Input Cell to Text with Notebook 8-26

Evaluating MATLAB Commands with Notebook 8-27
Evaluating Cell Groups with Notebook 8-28
Evaluating a Range of Input Cells with Notebook 8-29
Evaluating a Calc Zone with Notebook 8-30
Evaluating an Entire M-Book 8-30
Using a Loop to Evaluate Input Cells Repeatedly with
Notebook oo 8-31
Converting Output Cells to Text with Notebook 8-32
Deleting Output Cells with Notebook 8-32

ix

Printing and Formatting an M-Book 8-33

Printingan M-Book 8-33
Modifying Styles in the M-Book Template 8-33
Choosing Loose or Compact Format for Notebook 8-34
Controlling Numeric Output Format for Notebook 8-35
Controlling Graphic Output for Notebook 8-35
Configuring Notebook 8-39
Notebook Feature Reference 8-41

Source Control

9

Source Control Interface on PC Platforms 9-2
Selecting and Viewing the Source Control System 9-2
Adding Files to the Source Control System 94
Checking Files Out of the Source Control System 9-8
Checking Files Into the Source Control System 9-12
Getting the Latest Version of Files from the Source
Control System 9-15
Undoing the Check-Out 9-18
Removing Files from the Source Control System 9-19
Showing File History 9-20
Comparing the Working Copy of a File to the Latest
Version in Source Control 9-21
Displaying Source Control Properties ofa File 9-24
Starting the Source Control System Client 9-25
Troubleshooting Source Control Problems 9-26

Source Control Interface on UNIX Platforms 9-28
Selecting and Viewing the Source Control System 9-28
Checking Files Into the Source Control System 9-30
Checking Out Files from the Source Control System 9-32
Undoing the Check-Out 9-34

Contents

Index

xi

Xii Contents

Startup and Shutdown

Starting MATLAB (p. 1-2)

Starting MATLAB on Windows
Platforms (p. 1-2)

Starting MATLAB on UNIX Platforms
(p. 1-2)

Startup Directory for MATLAB (p. 1-3)
Startup Options (p. 1-4)
Toolbox Path Caching in MATLAB

(p. 1-10)
Quitting MATLAB (p. 1-13)

General information about starting a MATLAB® session.

Start MATLAB on Windows. Includes troubleshooting
tips.

Start MATLAB on UNIX. Includes troubleshooting tips.

View and change the startup directory for different
platforms.

Instruct MATLAB to perform specified operations upon
startup, including using a startup.m file.

Reduce startup time if you run MATLAB from a network
server.

End a MATLAB session. Instruct MATLAB to perform
specified operations upon shutdown.

1 Startup and Shutdown

Starting MATLAB

Instructions for starting MATLAB depend on your platform. For a list of
supported platforms, see the system requirements in the installation
documentation, or the Products section of the MathWorks Web site,
http://www.mathworks.com.

e “Starting MATLAB on Windows Platforms” on page 1-2

e “Starting MATLAB on UNIX Platforms” on page 1-2

¢ “Startup Directory for MATLAB” on page 1-3

¢ “Startup Options” on page 1-4

¢ “Toolbox Path Caching in MATLAB” on page 1-10

Starting MATLAB on Windows Platforms

To start MATLAB on a Microsoft Windows platform, select the Start ->
Programs -> MATLAB 7.0.1 -> MATLAB 7.0.1, or double-click the MATLAB
shortcut icon on your Windows desktop. The shortcut was automatically
created by the installer.

#

If you start MATLAB from a DOS window, type matlab at the DOS prompt.

After starting MATLAB, the MATLAB desktop opens—see Chapter 2,
“Desktop.” All of the desktop components that were open when you last shut
down MATLAB will be opened on startup.

Starting MATLAB on UNIX Platforms

To start MATLAB on a UNIX platform, type matlab at the operating system
prompt.

After starting MATLAB, the MATLAB desktop opens—see Chapter 2,
“Desktop.” On UNIX platforms, if the DISPLAY environment variable is not set
or is invalid, the desktop will not display.

Starting MATLAB

Startup Directory for MATLAB

The startup directory is the current directory in MATLAB when it first starts,
and depends on your platform and installation. You can specify a different
startup directory.

Startup Directory on Windows Platforms

On Windows platforms, when you installed MATLAB, the default startup
directory was set to $matlabroot/work, where $matlabroot is the directory
where MATLAB files are installed.

Startup Directory on UNIX Platforms

On UNIX platforms, the initial current directory is the directory you are in on
your UNIX file system when you start MATLAB.

Changing the Startup Directory

You can start MATLAB in a different directory from the default. The directory
you specify will be the current working directory when MATLAB starts.

For Windows Platforms Only. To change the startup directory on Windows
platforms:

1 Right-click the MATLAB shortcut icon and select Properties from the
context menu.

The Properties dialog box for matlab.exe opens to the Shortcut page.

2 Enter the new startup directory in the Start in field and click OK.

The next time you start MATLAB using that shortcut icon, the current
directory will be the one you specified in step 2.

You can make multiple shortcuts to start MATLAB, each with its own startup
directory, and with each startup directory having different startup options.

For All Plafforms. To change the startup directory:

1 Create a startup.m file—see “Using the Startup File for MATLAB,
startup.m” on page 1-4.

1-3

1 Startup and Shutdown

14

2 Inthe startup.mfile, include the cd function to change to the new directory.

3 Put the startup.m file in the current startup directory.

Startup Options

You can define startup options for MATLAB that instruct MATLAB to perform
certain operations when you start it. There are two ways to specify startup
options for MATLAB:

¢ “Using the Startup File for MATLAB, startup.m” on page 1-4

¢ “Adding Startup Options for Windows Platforms” on page 1-4 or “Adding
Startup Options for UNIX Platforms” on page 1-7

Using the Startup File for MATLAB, startup.m

At startup, MATLAB automatically executes the master M-file matlabrc.m
and, if it exists, startup.m. The file matlabrc.m, which is in the local
directory, is reserved for use by The MathWorks, and by the system manager
on multiuser systems.

The file startup.mis for you to specify startup options. For example, you can
modify the default search path, predefine variables in your workspace, or
define Handle Graphics® defaults. Creating a startup.m file with the line

addpath /home/me/mytools
cd /home/me/mytools

adds /home/me/mytools to your default search path and makes mytools the
current directory upon startup.

Location of startup.m. Place the startup.m file in the current startup directory,
which is where MATLAB first looks for it. For more information, see “Startup
Directory for MATLAB” on page 1-3. You can instead place it in
$matlabroot/toolbox/local, which is the next place MATLAB looks for
startup.m, where $matlabroot is the directory in which MATLAB is installed.

Adding Startup Options for Windows Platforms

You can add selected startup options (also called command flags or command
line switches) to the target path for your Windows shortcut for MATLAB.
Follow these steps:

Starting MATLAB

1 Right-click the MATLAB shortcut icon.

£

and select Properties from the context menu. The Properties dialog box for
matlab.exe opens to the Shortcut pane.

2 In the Target field, after the target path for matlab.exe, add /r results to
the end of the file path. This instructs MATLAB to run the results file
automatically after startup. The statement in the Target field might appear
as

H:\Programs\matlab.exe /r results

3 Click OK.

The following table lists many of the MATLAB startup options. For a complete
list, see the reference page for matlab (Windows).

Option Description

/automation Start MATLAB as an automation server,
minimized and without the MATLAB splash
screen. For more information, see “COM and
DDE Support” in the External Interfaces
documentation.

/¢ licensefile Set LM_LICENSE_FILE to licensefile. It can
have the form port@host.

/logfile logfilename Automatically write output from MATLAB to the
specified log file.

/minimize Start MATLAB with the desktop minimized. Any
desktop tools or documents that were undocked
when MATLAB was last closed will not be
minimized upon startup.

1-5

1 Startup and Shutdown

1-6

Option

Description (Continued)

/nosplash

/r MATLAB_command

Start MATLAB without displaying the MATLAB
splash screen.

Automatically run the specified MATLAB
command or M-file immediately after MATLAB
starts. This is also referred to as calling
MATLAB in batch mode. Separate multiple
commands with commas or semicolons (;). See
also “Notes About Startup Options” on page 1-6.

/regserver Modify the Windows registry with the
appropriate COM entries for MATLAB. For more
information, see “COM and DDE Support” in the
External Interfaces documentation.

/unregserver Modify the Windows registry to remove the COM
entries for MATLAB. Use this option to reset the
registry. For more information, see “COM and
DDE Support” in the External Interfaces
documentation.

Notes About Startup Options.

® You can use a hyphen (-) instead of a slash (/), for example, -nosplash.

¢ When automatically running M-files or commands at startup with the /r
option, all M-files or commands used must be on the MATLAB path or in the
MATLAB startup directory. For example

. matlab /r myownfile

runs myownfile, where myownfile is in the MATLAB startup directory. Use
only the filename, not the file extension or pathname. For example,
MATLAB produces an error when you run

. matlab /r C:\results.m.

Starting MATLAB

® You can also enter MATLAB startup options with a DOS command by
including the commands in quotation marks. For example, in the DOS
window, run

matlab /r "hf=figure;peaks;print(hf);exit"
When MATLAB starts, it automatically creates a figure, runs peaks, prints
the figure, and exits.

Adding Startup Options for UNIX Platforms

Include startup options (also called command flags or command line switches)
after the matlab startup command.

For example, to start MATLAB without the splash screen, type

matlab -nosplash

For more details, see the matlab reference page.

Option Description
-arch Run MATLAB assuming architecture arch.
-arch/ext Run the version of MATLAB with the

extension ext, if it exists, assuming
architecture arch.

-¢ licensefile Set LM_LICENSE_FILE to licensefile. It can
have the form port@host.

-check_malloc Set the MATLAB_MEM_MGR environment variable
to debug. This starts MATLAB memory
integrity checking.

-Ddebugger [options] Start MATLAB with the specified debugger.
-debug Turn on MATLAB internal debugging.
-display Xserver Send X commands to Xserver.

-ext Run the version of MATLAB with the

extension ext, if it exists.

1-7

1 Startup and Shutdown

1-8

Option

Description (Continued)

-h or -help

-logfile log

-mwvisual visualid

Display startup options (without starting
MATLAB).

Automatically write output from MATLAB to
the specified log file.

Specify the default X visual to use for figure
windows.

Display final values of environment variables
and arguments passed to MATLAB (without
starting MATLAB).

Starting MATLAB

Option

Description (Continued)

-nodesktop

-nodisplay

-nojvm

Start MATLAB without bringing up the
MATLAB desktop. Use this option to run
without an X-window, for example, in VT100
mode, or in batch processing mode. Note that if
you pipe to MATLAB using the > constructor,
the nodesktop option is used automatically.

With nodesktop, you can still use most
development environment tools by starting
them via a function. Specifically use

e commandhistory to open the Command
History

® edit to open the Editor/Debugger
® helpbrowser to open the Help browser

e filebrowser to open the Current Directory
browser

® workspace to open the Workspace browser
® openvar to open the Array Editor

® profile viewer to open the Profiler

® yiimport to open the Import Wizard

Don’t use nodesktop to provide a command
line interface. If you prefer a command line
interface, select Desktop -> Desktop
Layout -> Command Window Only.

MATLAB ignores the display argument.

Start MATLAB without loading the Java VM.
This minimizes memory usage and improves
initial startup speed. With nojvm, you cannot
use the desktop, or any of the tools that require
Java.

1-9

1 Startup and Shutdown

1-10

Option Description (Continued)

-nosplash Start MATLAB without displaying the splash
screen during startup.

-r MATLAB_command Automatically run the specified MATLAB
command immediately after MATLAB starts.
This is also referred to as calling MATLAB in
batch mode. Separate multiple commands with
commas or semicolons (;). See also “Notes
About Startup Options” on page 1-6.

Toolbox Path Caching in MATLAB

For performance reasons, MATLAB caches toolbox directory information
across sessions. The caching features are mostly transparent to you. However,
if MATLAB does not see the latest versions of your M-files or if you receive
warnings about the toolbox path cache, you might need to update the cache.

Startup Using Cache File

Upon startup, MATLAB gets information from a cache file to build the toolbox
directory cache. Because of the cache file, startup is faster, especially if you run
MATLAB from a network server or if you have many toolbox directories. When
you end a session, MATLAB updates the cache file.

MATLAB does not use the cache file at startup if you clear the Enable toolbox
path cache check box in File -> Preferences -> General. Instead, it creates the
cache by reading from the operating system directories, which is slower than
using the cache file.

Starting MATLAB

Updating the Cache

How the Toolbox Path Cache Works. MATLAB caches (essentially, stores in a
known files list) the names and locations of files in $matlabroot/toolbox
directories. These directories are for MathWorks supplied files that should not
change except for product installations and updates. Caching those directories
provides better performance during a session because MATLAB does not
actively monitor those directories.

We strongly recommend that you save any M-files you create and any
MathWorks supplied M-files that you edit in a directory that is not in the
$matlabroot/toolbox directory tree. If you keep your files in
$matlabroot/toolbox directories, they may be overwritten when you install a
new version of MATLAB.

When to Update the Cache. When you add files to $matlabroot/toolbox
directories, the cache and the cache file need to be updated. MATLAB updates
the cache and cache file automatically when you install toolboxes or toolbox
updates using the MATLAB installer. MATLAB also updates the cache and
cache file automatically when you use MATLAB tools, such as when you save
files from the MATLAB Editor to $matlabroot/toolbox directories.

When you add or remove files in $matlabroot/toolbox directories by some
other means, MATLAB might not recognize those changes. For example, when
you

® Save new files in $matlabroot/toolbox directories using an external editor

¢ Use operating system features and commands to add or remove files in
$matlabroot/toolbox directories

MATLAB displays this message

Undefined function or variable

You need to update the cache so MATLAB will recognize the changes you made
in $matlabroot/toolbox directories.

Steps to Update the Cache. To update the cache and the cache file
1 Select File -> Preferences -> General.

The General Preferences pane is displayed.

1-11

1 Startup and Shutdown

1-12

2 Click Update Toolbox Path Cache and click OK.

Preferences o] 4|

£ General Preferences
A T-Files
aurce Contral

Toalbax path caching
+HFoarits
Eolors ¥ Enable toolbo path cache

arnand Yindo

l—Keyboard 5 Indenting [Enable toolbos: path cache diagnostics

—Cornrnand History Lpdate Toolbox Path Cache

[FEditor Debugger

—Help

ek Figure window printing

[Currert Directory Specify how colared lines and text are sent to the printer.
—\Workspace

| array Editar ¥ Use printer detaults

—iUIDE

" mlways send as black and white
[F-Figure Copy Template b

(o Alvways send a5 color

Default hehavior of the delete function
" Maove files to the Recycle Bin

' Delete files permanently

Ok Cancel | Apply | Help |

Function Alternative. To update the cache, use rehash toolbox. To also update
the cache file, use rehash toolboxcache. For more information, see rehash.

Additional Diagnostics with Toolbox Path Caching

To display information about startup time when you start MATLAB, select the
Enable toolbox path cache diagnostics check box in General Preferences.

Quitting MATLAB

Quitting MATLAB

To quit MATLAB at any time, do one of the following:

¢ Click the close box Xl in the MATLAB desktop.
* Select Exit MATLAB from the desktop File menu.
¢ Type quit at the Command Window prompt.

Unless unsaved files are open, MATLAB closes immediately. If you want to see
a warning that allows you to confirm quitting, use the finishdlg.m script, as
described in the next paragraph.

Running a Script When Quitting MATLAB

When MATLAB quits, it runs the script finish.m, if finish.m exists in the
current directory or anywhere on the MATLAB search path. You create the file
finish.m. It contains functions to run when MATLAB terminates, such as
saving the workspace or displaying a confirmation dialog box. There are two
sample files in $matlabroot/toolbox/local that you can use as the basis for
your own finish.m file:

e finishsav.m—Includes a save function so the workspace is saved to a
MAT-file when MATLAB quits.

e finishdlg.m—Displays a confirmation dialog box that allows you to cancel
quitting.

For more information, see finish.

1-13

1 Startup and Shutdown

1-14

Desktop

The easiest way to learn to use the desktop is just by working with it. Refer to this information if you

have problems or questions.

Overview of the Desktop (p. 2-2)

Arranging the Desktop—Overview
(p. 2-5)

Common Desktop Features (p. 2-19)

Fonts, Colors, and Other Preferences
(p. 2-45)

Basic summary of the desktop and its tools.

Open and arrange desktop tools and documents to suit
your needs. Scan the examples and follow the
instructions to arrange your desktop.

Details regarding the Start button, MATLAB shortcuts,
toolbars, menus and context menus, status bar, and
keyboard shortcuts and accelerators. Also includes
selecting multiple items, cut, copy, and paste, using page
setup for printing, and accessing the MathWorks Web
site from MATLAB.

Specify options for desktop tools, including fonts and
colors.

2 o ktop

Overview of the Desktop

When you start MATLAB, the first thing you see is the MATLAB desktop,
consisting of tools (GUIs or graphical user interfaces) for managing files,
variables, and applications associated with MATLAB.

The first time you start MATLAB, the desktop appears with the default layout,
as shown in the following illustration. You can change the desktop
arrangement to meet your needs, including resizing, moving, and closing tools.
For details, see “Arranging the Desktop—Overview” on page 2-5.

The Editor/Debugger and Array Editor support multiple document windows
within them, and similarly, you can group multiple figure windows together.
For information about working with documents in the desktop, see “Opening
and Arranging Documents” on page 2-7 for more information.

If you are using the Help browser, watch the Desktop and Command Window
video demo for an overview of the major functionality.

2-2

Overview of the Deskiop

Example of Desktop—Default Layout

Menus change,

depending onthe Use tabto go
tool you are
currently using. browser.

) MATLAB

View or

toWorkspace Get help. ~ changecurrent

directory.

File Edit Debug Desktop Window [Help

Move Command Window outside of
desktop (undock).

DE’?|¥: By B v ﬁ‘|ﬁﬁ9|l@|lDﬂmymfiI;s

Shaortcuts 2] Howe to Al [2] Whiat's Rlewy

Current Directory {D:A\m ... 2 x
ok & @) -
All Files £ | File Type

[E@ bucky.m hi-file ﬂ
il caution. mdl Model

collatzall asv EditnrALflj
»

Current Directary I Workspace I

Command Window

< MATLAMLE >
Copyright 1984-2004 The MathWorks, Inc.

YVersion 7.0.1 (R14SP1)

To get started, select MATLAR Help or Demos from th

o
Command History A X
$-— 2/23/04 3:50 PH ——i|
ore on
format long =
od d:/mymfiles/sea_tg_J
clear
workspace il hd
K1 o »
4\ start | Ve
| ¥
Click Start View or execute Drag the separator bar nter MATLAB functions at

button for quick previously run functions

access to tools from the Command
and more. History.

to resize windows.

command line prompt.

2 o ktop

Summary of Desktop Tools

The following tools are managed by the MATLAB desktop, although not all of
them appear by default when you first start. If you prefer a command-line
interface, you can often use equivalent functions to accomplish the same result
as using features in desktop tools. You must use these equivalent functions to
perform the operations in M-files. Instructions for using equivalent functions
are provided with the documentation for each tool.

Desktop Tool

Description

Array Editor
Command Window

Command History

Current Directory
Browser

Editor/Debugger
Figures

Help Browser
Profiler

Start Button

Web Browser

Workspace
Browser

View array contents in a table format and edit the values.
Run MATLAB functions.

View a log of the functions you entered in the Command Window, copy
them, execute them, and more.

View files, perform file operations such as open, find files and file content,
and manage and tune your files.

Create, edit, and debug M-files (files containing MATLAB functions).
Create, modify, view, and print MATLAB figures.

View and search the documentation for all your MathWorks products.
Improve the performance of your M-files using this graphical interface.

Run tools and access documentation for all of your MathWorks products,
and create and use MATLAB shortcuts.

View HTML and related information produced by MATLAB.

View and make changes to the contents of the workspace.

2-4

Arranging the Desktop—Overview

Arranging the Desktop—Overview

You can modify the desktop configuration to best meet your needs. Because the
desktop uses many standard user interface conventions, it is easy to learn
about arranging the desktop just by using it. If you are not familiar with any
of the interface elements, refer to the overview information and examples in
this section.

The desktop manages tools and documents differently. The Command History
and Editor/Debugger are examples of tools, and an M-file is an example of a
document that appears in the Editor/Debugger tool.

These are the main actions you perform in arranging your desktop tools and
documents:

® “Opening and Arranging Tools” on page 2-6
® “Opening and Arranging Documents” on page 2-7
® “Saving Desktop Layouts” on page 2-18

See also “Examples of Desktop Arrangements” on page 2-11.

2-5

2 o ktop

Opening and Arranging Tools

This table summarizes actions for arranging desktop tools. For further
information, click the "see more details" links, which provide additional
information, available only online.

Tool Action

Steps to Perform

Opening
Desktop Tools

Navigating
Among Desktop
Tools

Closing Desktop
Tools

Resizing Tools

Moving Tools
Within the
Desktop

To maximize your work area, keep open only those tools you use. To open a
tool, select the tool name from the Desktop menu. Opened tools have a check
mark before them in the menu. The tool appears in the location it occupied
the last time it was open. The sizes of other tools adjust to accommodate the
newly opened tool. See more details online.

Documents and the tools they are associated with can be part of the desktop,
but you do not open them via the Desktop menu. Instead, you open a
document and it opens the associated tool. See “Opening and Arranging
Documents” on page 2-7.

The Window menu displays all open desktop tools and documents, as well as
tools for other MathWorks products. Select an entry in the Window menu to
go directly to that tool or document. Another way to access an undocked
desktop tool is by selecting its entry in the Windows task bar, or the
equivalent for your platform. See more details online.

To close a desktop tool, select the item in the Desktop menu, which clears the
check mark in the menu and closes the tool. Or click the close box (X) in the
title bar for the tool. See more details online.

To resize tools in the MATLAB desktop, drag the separator bar, which is the
bar between two tools. You can hide the title bars for tools in the desktop so
the tools use less space—select Desktop -> Titles. See more details online.

To move a tool in the MATLAB desktop, drag the title bar of the tool toward
where you want the tool to be located. As you drag the tool, an outline of it
appears. When the outline nears a position where you can keep it, the outline
snaps to that location. Release the mouse button. The tool stays at the new
location. Other tools in the desktop resize to accommodate the new
configuration. The inside edges of the desktop container and tools all act as if
they are “sticky,” so you can position a tool along any inside edge.

See more details online.

2-6

Arranging the Desktop—Overview

Tool Action

Steps to Perform (Continued)

Moving Tools
Out of the
Desktop
(Undocking)

Moving Tools
into the Desktop
(Docking)

Grouping
(Tabbing) Tools
Together

Move a tool out of the desktop to make it larger or easier to work with. To
move a tool outside the MATLAB desktop (called undocking), select the tool
to make it active, and then select Desktop -> Undock -> Toolname. The tool
appears outside the MATLAB desktop and an entry for it appears in the
Windows task bar, or the equivalent for your platform. Tools within the
desktop resize accordingly. Another way to undock is by using the undock
arrow 2l in the tool’s title bar. See more details online.

To move a tool that is outside the MATLAB desktop into the desktop, click the
dock arrow 2! in the tool’s menu bar, or select Desktop -> Dock Toolname.
See more details online.

You can group tools so that they overlay each other in the MATLAB desktop,
and then access each tool via tabs. To group tools together, drag the title bar
of one tool in the desktop on top of the title bar of another tool in the desktop.
To make a tool active, click its tab. See more details online.

Opening and Arranging Documents

Open a document, such as an M-file or a variable, and it opens in its tool, for
example, the Editor/Debugger or Array Editor. The following illustration
shows a desktop arrangement that includes Editor/Debugger and Array Editor
documents. See instructions in “Summary of Actions for Arranging
Documents” on page 2-9.

2-7

2 o ktop

Document
bar

Tabs —

2-8

Position documents with these icons.

Example of Documents in the Deskiop

Some common actions for working with documents in the desktop are:

¢ Use tabs to go to open tools. Use the document bar to go to open documents.

¢ Use the Window menu or toolbar icons to position documents.

® Close or undock a tool, including all documents in the tool.

¢ Undock a document from its tool. Use the document close box with the Ctrl
key to close the document without saving or displaying the unsaved

document dialog box.

See also “Examples of Desktop Arrangements” on page 2-11.

Close or undock active tool, including all open documents in the tool.

Undock document from tool.

A AR - O =
File Edit Text Cell Tools Dekug Deskiog Whndow Help
Dﬁ|&gﬂ“|ﬁﬁ|?||&y}ﬁﬁles LIJ
@ Editor - D:\mymfiles\povertystais.m Workspace W &

2 B ¥

DD"|‘XJEIB""I =] 2 x RHER S L-E =]

1 - loasd povertydata - Mane £ | Walue | Class

2 - f = figure: H 1 double

3 - plot(year,families, 'k','Linelic MHfamilies <43x1 d... double

4 - hold on Hfemale «43x1 d... double

5 - nplot(year,female, 'kb','Linelidtk M recfam <43x1 d... double

6 - plotiyear,recfam, 'r','Linelidck M reciem =43x1 d... double

7 - ﬂotwear,recfem,'r','iuinewidtkvl (BH vvear <43x1 d.. double

1 »

J collatz.m ><|| povertystats.m ><| |
Ed'rtorl Array Ed'rtorl LI | »
Command Window A X
>» edit collatz
r> pOVErtyatats
>»> edit povertystats
ESS
4l§tart| seript ln 6 Co @ |OvR

Arranging the Desktop—Overview

Summary of Actions for Arranging Documents

This table summarizes actions for arranging documents in their tool. For
further information, click the “See more details online” links, which provide
additional information, available only online.

Document
Action

Overview

Opening
Documents

Navigating
Among
Documents—
The document
bar

When you open a MATLAB document, it opens in the associated tool. If the
tool is not already open, it opens when you open the document, and appears
in the position it occupied when last used. Figures and Web browsers open
undocked, regardless of the last position occupied.

How to open a document depends on the document type:

e M-file: Select File -> Open and select the M-file. It opens in the
Editor/Debugger.

* Workspace variable: In the Workspace browser, double-click the variable.
It opens in the Array Editor.

e HTML document: In the Current Directory browser, double-click the file.
It opens in the Web browser.

¢ Figure: Type plot or use another graphics function. The plot appears in a
figure window.

There are many additional ways to open documents. See more details online.

When more than one document is open within a tool, each document is either
maximized (the default), or arranged so that multiple documents are visible
at once. Click a document that is in view to make it the active document.

Use the document bar to go to a document that is not in view. The names of
all open documents appear in the document bar. Select a document name in
the document bar to make that document active. To show the document bar if
it is not open, select Desktop -> Document Bar, and select a position for its
location, for example, Right. See more details online.

Entries for undocked documents appear in the Windows task bar, or the
equivalent for your platform. Click the task bar entry for a document to make
that document active.

2-9

2 o ktop

2-10

Document
Action

Overview (Continued)

Positioning,
Moving, and
Resizing
Documents

Closing
Documents

Moving
Documents and
Tools Out of the
Desktop
(Undocking)

To position open documents within their tool, select an arrangement from the
Window menu when the tool is active, or by using an icon on the toolbar for
Maximize, Float, Left/Right Split, Top/Bottom Split, and Tile. On the
Macintosh platform, the tile option is not available in the Window menu so
use the tile icon H instead.

With the split and tile arrangements, you refine the document position by
moving the cursor over the handle (=) on the separator bar. A close box then
appears. When you click the close box between two open documents, both
documents stay open, but one moves over the top of the other. When you click
the close box between a document and an empty tile, the empty tile closes. To
move a document in a tiled or split arrangement, drag the title bar of a
document to another tile. If the documents use the tiled or split arrangement,
drag the separator bar that is between the documents to resize them.

To move or resize maximized documents, you move or resize the tool. Or,
right-click a document name in the document bar to move it.
See more details online.

To close a document, click the close box in that document’s title bar. After
closing all the documents in a tool, the tool remains open with no documents
in it. If you select the close box for the tool, all documents in that tool close.
Upon closing an M-file with unsaved changes, a prompt appears asking if you
want to save the document. To close the document without saving changes
and without seeing the prompt, use Ctrl with the document’s close box.

See more details online.

To undock all documents in a tool from the desktop, click the undock button
2l in the tool’s title bar. The tool and its documents move outside of the
desktop. See more details online.

To undock a document from its tool, click the undock button 2l for the
document. The undock button is either in the document’s title bar, menu bar,
or toolbar, depending on the document type and whether or not the document
is within the desktop or is in its tool outside of the desktop.

Undocked tools and documents have entries in the Windows task bar (or the
equivalent for your platform) and each document type has a unique icon.

Arranging the Desktop—Overview

Document Overview (Continued)
Action
Docking When you dock a document that is external to the desktop, it moves to the

Documents and
Tools

Grouping
Documents in a
Tool Outside the
Desktop

position in the tool that it occupied before you undocked it. To dock a
document, click the dock button 2l in the document’s menu bar. Note that on
Macintosh platforms, you cannot dock figure windows.

See more details online.

To group all of the documents for a tool together outside of the desktop,
undock the tool from the desktop, not just the documents. If you have already
undocked all of the documents and closed the empty tool that had contained
them, select Desktop -> Dock All in Editor. This moves all the documents
into the tool in the desktop. Then undock the tool.

Examples of Desktop Arrangements

Scan the illustrations in the following examples for a desktop arrangement
similar to what you want, and then follow the brief instructions to achieve the
arrangement. There are many different ways to accomplish the result and
instructions present just one way. Depending on how your desktop looks before
you start, the instructions might not apply exactly.

® “T'ool Outside of Desktop and Other Tools Tabbed Inside Desktop Example”
on page 2-12

¢ “Tiled Documents in Desktop Example” on page 2-13

¢ “Maximized Documents Outside of the Desktop Example” on page 2-15

¢ “No Empty Document Tiles Example” on page 2-14

¢ “Floating (Cascaded) Figures in Desktop Example” on page 2-16

¢ “Undocked Tools and Documents Example” on page 2-17

2-11

2 o ktop

2-12

Tool
undocked
from
desktop.

Tools
tabbed
togetherin
desktop:

Tool Outside of Deskitop and Other Tools Tabbed Inside Desktop Example

This example shows two ways you can increase the size of a tool.

The Command Window is outside of the desktop. To achieve this, click the
undock arrow @ in the tool’s title bar when the tool is in the desktop.

You can group tools together inside the desktop and access them via labeled
tabs. Here the Current Directory browser, Workspace browser, and Command
History are tabbed together. To achieve this, drag the title bar of one tool on
top of the title bar of the tool(s) you want to group it with.

- Command Window = =101 %]
File Edit Debug Desktop “Window Help &
>
+) MATLAB M =] E3
File Edit “iew Debug Desktop Window Help
D@|%@n“|ﬁﬁ|@|lﬂxmymﬁles LIJ

Shortcuts [#] How to 2dd [#] what's Mew

Current Directory - D:A\mymfiles

ok W | B -

All Files £ | File Type Last Modified |J

CXihtml ; Folder ar 3, 2004 3:41:37 P ﬂ
Amydemos Folder Feh 3, 2004 1:47:18 PM ...

dresults Falder Feh 22, 2002 10:23:0...

[bucky.m hi-file Mow 27, 1997 5:23:55 ..

[i# caution. mdl Model Mow 13, 1997 1:43:28 ..

collatz.m M-file Mar G, 2004 2:15:32 P ..

[1 collatzall asy Editor Autosave Mar 5, 2004 1:12:55 PM

collatzall.m M-file Jan G, 2004 1:53:34 PM

[Z collatzplat.m h-file Jan 23,2004 538158 ;l

Current Directary I Warkspace I Corntnand History I

 start| 4

Arranging the Desktop—Overview

Tiled Documents in Desktop Example

When you open a document (for example, an M-file), it also opens the tool (for
example, the Editor). You can dock the tool in the desktop, as shown here. If
tools or documents are outside the desktop, to move them inside, click the dock
arrow =l in the tool and in any separate M-file’s menu bars, or use Desktop ->
Dock menu items. Select Left/Right Split from the Window menu or use the
toolbar icon to show two M-files side-by-side.

You can hide a toolbar. Here, the shortcuts toolbar is hidden. Select Desktop
-> Toolbar name to hide (or show) a toolbar. To see or move the document bar,
select Desktop -> Document Bar, and choose its location, for example, Top.

The shortcuts toolbar is hidden. The document bar is at the top of the Editor/Debugger.

<k MATLAB - O] x|

File Edit Text Cell Tools Debug Desktop ‘Window Help
0| & B oo o 8 5 | 2 | [cvwnrerofiesichussm 7] L

N H| iR &S| Arf|aR|AE >0
Jpovertystats.m ><|IW|

= load povertydata = 1 furniction collatzall (m) e

= f = figqure; zZ % Compute and plot lengk

== plot {year, families, 'kE', 'L 3 % Prepare ficure

4 - hold on — 4 - clf

== plot {year, female, 'L’ , 'Lin == set {gof, 'DoubleBuifer' | 'o

& — plot {year,recfam, 'vr', 'Linw 5 — set ({goa, 'Hicale', 'linear'| =

1| I » <| I »

Command Window " X
>

4A§1an| collatzal Ln 1 co 1 |ovR

2-13

2 o ktop

2-14

No Empty Document Tiles Example

You can hide a document under another—drag a document’s title bar on top of
another document. The document on top fully covers the document
underneath. This gives more space to the active document. To see hidden
documents, use the Window menu or document bar.

To show two documents at once use a split arrangement. To see more than two
documents at once, select the tile icon and move the cursor across the grid
menu to select the number of tiles you want. The grid in this example has four
tiles, but there are only three documents open. (The empty tile will be shown
in gray in the menu.) You can move a document to any empty tile by dragging
its title bar to the new location. To close empty tile, position the cursor over the
handle on the separator bar. It becomes a close box, as shown here, which you
click to close the empty tile. After clicking the close box, the empty tile closes
and the neighboring document expands as shown here. Similarly, click the
close box between two tiles containing documents and one becomes hidden.

Before

Tile more than two documents with the grid ico

Close an empty tile using the handle

on the separator bar.

@ Editor =1 3| @ Editor M=K
File Edil Tex Cell Taol: Debur Deskto Wihdow Help [« | File Edit Texd Cell Toal: Debut Deskto Window Help ~ |
i : »
D | R o|&Ed2E & -] IHHZIv
J povertystats m x| collatzallm * || collatz m | | J povertystatz.m || collatzall.m | collatz.m ><|
7 ox A x Al DAAmymfilesicoll
1 - load povertydatﬂ 1 function collatﬂ 1 load povert.‘ydat.ﬂ 1 function collat &
E - f = figure; z % Compute and p z £ = figure; z % Compute and
3 = plot (year, famil 3 % Prepare figur 3 plot (vear, fanil 3 % Prepare figu:
4 — hold on =~ 4 - clf - 4 hold on 7 4 - clf
4| » 4! [» L » 5 — setigcf, 'Double
- x v & — set {goa, 'Hecale
DAmymfilesicoll .. a2 x —[§ R K
1 function sedquer & 1 function SEWEE 2 % Determine anc
Z ¥ Collatz prob | Z 3 Collatz prob a
3 % For any posit 3 % For.ar.ry posit 10 - seq_length zerc
4 % Diwide n b3 ™ d % Diwide n by ™ 11— for =
{I I 3 1| I » il I
|co|latz |Ln 1 Cal 1 |OVR 4 |collatza|l |Ln 1 Cal 1 |O\-"R "

After

Arranging the Desktop—Overview

Maximized Documents Outside of the Desktop Example
Some common actions for working with documents outside of the desktop are

¢ Group all Editor documents together—select Desktop -> Dock All in Editor
from any Editor document.

® Move all Editor documents outside of the desktop—select Desktop ->
Undock Editor when the Editor is the active window.

¢ Make a document occupy the full area in the Editor—click the maximize
document icon, or select Window -> Maximize.

¢ Display the cell toolbar—select Cell -> Enable Cell Mode.

® Access any document using the document bar in the Editor. To show the
document bar on the left side of the Editor, select Desktop -> Document Bar
-> Left from the Editor.

Document bar Cell toolbar for rapid code Maximize document icon.
on left. iteration and publishing.

I“ Editor - d:\mymfiles\collatz.
File Edit Text Cell Tools Debug Desktop “Window Help k] | A X
DS EH| 2B & éFf |88 |6 8E 20
7 BB B - o+l = i x| o o
Sl b 1 function sequence=collatzin) -
m 2 % Collatz problem. Generate a sequence of integers 1
collatz m
|| 3 % For any positive integer, n:
4 % Diwvide n by 2 1f n is ewven
5 % Maltiply n by 3 and add 1 if n iz odd
=] % Fepeat for the result
7 % Continue until the result iz 1%
g
= SeqUENCE = 1}
10 = next wvalue = n; -
B | ,
| collstz tn 1 eol 1 JowR | g

2-15

2 o ktop

2-16

Floating (Cascaded) Figures in Desktop Example

You can show multiple figures at once in the desktop. By default, figures open
outside the desktop. Click the dock button in each figure’s menu bar to move
the figures into the desktop.

You can float (also called cascade) the figures by selecting Window -> Float, or
clicking the float icon &. This arrangement is not available on the Macintosh

platform. To get even more screen area for the figures, hide the document bar
as shown in this example—select Desktop -> Document Bar -> Hide.

Dock figures in the desktop. Document bar is hidden.

File Edit ¥iew Insert Tools| Debug Desktop ‘Window Help

D@|%En“|ﬁﬁf|@|ldﬂmymfiles LIJ

Workspace 7%
e e R T EI SRR

Neme & | value
hid ans sl B0 Figurez 7 0 x|
H 2

B 10000
HH farnilies =43x%1 do

a0c

FA fernale <43x1 do
M recfam =43x%1 do
A recfem <43x1 do
 yvear =43x%1 do

D

0
1840

1860 1980 2000 2020

Command Window 7 X

>» figure; plot (families, 'Displaylams', 'familiss'): figuﬂ
figqure; plot (families, 'DisplavMName', 'families'); figure|
> POVErLFItats

>

Kl | 3
¢§1art| v

Arranging the Desktop—Overview

Undocked Tools and Documents Example

You can use tools and documents outside of the desktop. One way to achieve
this is to first undock the tool from the desktop by selecting Desktop ->
Undock Toolname. Then undock documents from the undocked tool by
selecting Desktop -> Undock Documentname from the tool. If you undock all
documents from a tool, an “empty” tool window remains.

In this example, one of the Editor documents, povertystats.m, includes the
name of the tool with it and the other Editor document, collatz.m, does not.
Contrast this with the Array Editor documents, where neither document
window includes the name of the tool. This is because when documents are
undocked from both the desktop and their tool, you can close the tool but the
tool’s undocked documents remain open. If you closed the Editor, the
collatz.mdocument would remain open. To close all undocked documents and

their tools at once, select Window -> Close All Documents from an undocked
document window.

3 D:\mymﬁlE:E -0l =l adyenl _|ol x|
(Bl ¢ I G i el Dzl Uit [0 = Al e Yl Brep (60 (Dl i i =
; FiE T¢ C To De Des Win He ¥ | 2 x Fi Et Wit Grap De} Des MWin He v |
: D@m= "0 gleem-F g =4
1 function seq’uence=collat.z|:1£ 1 z Tv
z ¥ Collatz problem. Gehnerat I Ba13 ;I
3 % For any positiwve int.egillll [y _I é
. — . e . 5 BETE -
4 ' Kil 0
[tn 10 co 16 [ovR 4 g

File Edit “iew Graphics Debug Deskiop ‘Window Help

D@|%Eﬂﬂ|ﬁﬁ|?|ld:meﬁles LIJ
Workspace LI Command Window 2 X

1 v|E=... =] P |+ tigure: pler (families, 'Displaplaus', 'fauil:
ficuare; plot (families, 'DisplaylName’', 'families
=¥ poOvVeErtystats

f 2 A
families =43x1 double= ¥
] b Ll | ol
A stort| 4

Mame L | Walue

2-17

2 o ktop

Saving Desktop Layouts

When you end a session, MATLAB saves the desktop layout. The next time you
start MATLAB, the desktop is restored the way you left it.

To use a predefined layout, select Desktop -> Desktop Layout, and choose a
configuration. See “Predefined Layouts” in the online documentation for more
information.

To save your own layouts for later reuse, select Desktop -> Save Layout, and
provide a name. Reuse the layout by selecting the name from Desktop ->
Desktop Layout. See “Saving Your Own Desktop Layouts” in the online
documentation for more information.

2-18

Common Deskiop Features

Common Desktop Features

This section presents useful details about common features of desktop tools:

¢ “Start Button for Accessing Tools” on page 2-19

¢ “Shortcuts for MATLAB—Easily Run a Group of Statements” on page 2-21
* “Web Browser” on page 2-29

¢ “Menus and Context Menus” on page 2-31

® “Toolbars” on page 2-32

® “Status Bar” on page 2-34

® “Sizing, Arranging, and Sorting Columns in Tools” on page 2-34

¢ “Keyboard Shortcuts (Accelerators) and Mnemonics” on page 2-35
® “Selecting Multiple Items” on page 2-38

® “Cut, Copy, and Paste” on page 2-39

¢ “Page Setup Options for Printing” on page 2-40

® “Accessing The MathWorks on the Web” on page 2-43

Start Button for Accessing Tools

The MATLAB Start button provides easy access to tools, demos, and
documentation for all your MathWorks products. You can also create and run
MATLAB shortcuts from it, where a shortcut is a group of MATLAB
statements.

Using the Start Button
1 Click the Start button to view a menu of product categories and desktop

tools installed on your system. As an alternative, press Alt+S to view the
Start button contents.

2-19

2 o ktop

] Import Wizard
@k Toolboxes b Profiler
ﬁ Simulink A" GUIDE {GUI Builder)
ﬁ Blocksets 1 Mokebook,
Shortcuts » Plat Tools
ﬁ“ﬁ" Deskiop Tools » @ Help
@ Web » A Demos
A & MATLAE Central (Web)
m Find Files. .. @ Produck Page {web)
@ Help ik Excel Link b
S <l MATLAB Builder For COM »
[k start <l MATLAB Builder For Excel »
<k MATLAB Compiler »
@k MATLAE Repork Generator P
Al MATLAB Web Server »

2 From the menu and submenu items, select an item to open it. Use the icons

to quickly locate a type of product or tool—see the following description of
icons.

For example, select Start -> MATLAB -> GUIDE (GUI Builder) to open that
tool.

2-20

Common Deskiop Features

Icons in the Start Button. Icons help you quickly locate a particular type of product
or tool. This legend describes the action performed when you select an entry
with one of these icons in the Start button.

lcon Description of Action When Opened

& Documentation for that product opens in the Help browser.

L% Demos for the product are listed in the Help browser Demos
pane.

Selected tool opens.

L] Block library opens.

& Document opens in your system Web browser.

Customizing the Start Button

You can add your own toolboxes to the Start button. Select Start -> Desktop
Tools -> View Source Files to open the Start Button Configuration Files
dialog box. For details, click the Help button in the dialog box, which displays
“Adding Your Own Toolboxes to the Development Environment”, a topic in the
online documentation.

Shortcuts for MATLAB —Easily Run a Group of
Statements

A MATLAB shortcut is an easy way to run a group of MATLAB functions that
you use regularly. These topics are covered:

¢ “What Is a Shortcut?” on page 2-22

¢ “Examples of Useful Shortcuts” on page 2-22

® “Creating Shortcuts” on page 2-23

¢ “Running Shortcuts” on page 2-25

¢ “Shortcuts Toolbar” on page 2-25

¢ “Organizing and Editing Shortcuts” on page 2-28

2-21

2 o ktop

What Is a Shortcut?

A MATLAB shortcut is an easy way to run a group of MATLAB statements.
First you create a shortcut that contains all of the statements. Then you select
and run the shortcut to execute all the statements it contains. Create, run, and
organize shortcuts from the Start -> Shortcuts menu or the desktop Shortcuts
toolbar.

Differences Between Shortcuts and M-Files. A shortcut is like an M-file script, but
unlike an M-file, a shortcut does not have to be on the MATLAB search path or
in the current directory when you run it. In addition, you conveniently run the
shortcut by selecting it from the Start button or desktop Shortcuts toolbar,
which are readily accessible.

Although shortcuts run MATLAB statements, they are not M-files and are not
stored as M-files.

Examples of Useful Shortcuts
These are some examples of useful types of shortcuts:

¢ If you frequently run the same group of functions, consider creating a
shortcut for them. An example of this is setting up your environment when
you start working if you do not use a startup file, or if there are statements
you do not want to include in the startup file. Some users create a shortcut
for even a single function they use frequently, such as clc to clear the screen.

¢ Create a shortcut to set the same properties for figures you create, such as
adding a legend and setting the background color.

¢ Create a shortcut for a long statement, such as changing the current
directory (cd), when the pathnames are long.

¢ Create a shortcut for a statement you do not easily remember but need to
use.

2-22

Common Deskiop Features

Creating Shortcuts

This is an example of a shortcut you might create for a project you work on, the
Sea Temperature project. When you work on that project you like to set up your
environment in a certain way by running a series of statements. You create a
shortcut called sea_temp_env, which contains the statements. Then when you
work on the project, you run the shortcut to execute all of the statements with
a single click. The statements are

more on
format long e

cd d:/mymfiles/sea_temp_project
clear

workspace

filebrowser

clc

To create a shortcut, perform the following steps:

1 From the Start button, select Shortcuts -> New Shortcut.

The Shortcut Editor dialog box appears.

2 Create the shortcut by completing the dialog box, as shown in the following
illustration.

Provide a shortcut name in the Label field, for example,
sea_temp_environment.

Put the environment setup statements in the Callback field as shown in
the following illustration. Either type them in, or copy and paste or drag
them from a desktop tool. Edit the statements as needed. The field uses
the key bindings, colors, and fonts preferences you specified for the
Editor. Note that if you copy the statements from the Command Window,
the prompt appears in the shortcut, but MATLAB removes the prompt
when you save the shortcut.

Assign a category, which is like a directory for organizing shortcuts.
Specify sea_temp_project. To add the shortcut to the shortcuts toolbar,
select the Toolbar Shortcuts category.

Use the default shortcuts icon &, or select your own.

Click Save. MATLAB automatically removes any Command Window
prompts (>>)in the Callback field upon saving the shortcuts.

2-23

2 o ktop

<} Shortcut Editor =] E3
Lakel: Isea_temp_envirnnment
Callback: |yore on

format long e

cd di/mywfiles/sea tewmp project
clear

workspace; filehrowser

clo
Category: Isea_tempjaroject LI
Izar: IE Stanciard icon LI J

Saves shortcut to Start button. Selecting "Toolbar Shortcuts"
category also saves to Shortcuts toolbar.

Save Cancel | Hel |

3 MATLAB adds the shortcut to the Shortcuts entry on the Start button, and
to the shortcuts toolbar, if you selected that category.

After creating a shortcut, run it by selecting it from its category in the Start
button. You can also run it from the Shortcuts toolbar if you selected the
Toolbar Shortcuts category.

MATLAB maintains shortcut information in the file shortcuts.xml. Type
prefdir, and MATLAB displays the location of the file. Most likely, you will
not need to access this file, as MATLAB updates the file automatically.

For more information on the options in the Shortcut Editor dialog box, click
the Help button.

2-24

Common Deskiop Features

Additional Ways to Create Shortcuts. You can also use these methods to create
shortcuts:

¢ Add shortcuts to and run them from the desktop Shortcuts toolbar. See
“Shortcuts Toolbar” on page 2-25.

¢ From the Command History, create a shortcut by selecting statements,
right-clicking, and selecting Create Shortcut from the context menu. By
default, shortcuts created from the Command History are assigned to the
Toolbar category, meaning they will appear on the Shortcuts toolbar.

¢ From the Help browser, select Favorites -> Add to Favorites, complete the
Favorites Editor dialog box, and the shortcut appears in the shortcuts Help
Browser Favorites category. You can also access shortcuts that have the
Help Browser Favorites category from the Help browser Favorites menu.

¢ Drag statements from a desktop tool, such as the Command History, onto the
Start button.

Running Shortcuts

To run a shortcut, select the shortcut name, for example,
sea_temp_environment, from the Start -> Shortcuts menu or from one of its
category submenus. All of the statements in the shortcut Callback field
execute. It is as if you ran those statements from the Command Window,
although they are not reflected in the Command History.

If you added a shortcut to the Shortcuts toolbar, you can run it by clicking its
icon on the shortcuts toolbar.

Shortcuts Toolbar

You can create and run shortcuts via the desktop Shortcuts toolbar. To show
or hide the shortcuts toolbar, use Desktop -> Shortcuts Toolbar. The
shortcuts toolbar is an alternative to creating and running shortcuts via the
Start button:

1 Select statements from the Command History, the Command Window, or an
M-file.

2 Drag the selection to the desktop Shortcuts toolbar. The following

illustration shows two statements being dragged from the Command
Window.

2-25

2 o ktop

Shortcuts toolbar—Drag statements to it to create a shortcut.

<} MATLAB i =] B3
File Edit Debug Desktop Window Help

D@|%En“|ﬁﬁf|@||&w¥mﬁles 'I;

Shaortcuts 2] Howe to Add [2] Whiat's Rlewy rol

> format long e
& INOre on

s

 start 7

3 The Shortcut Editor dialog box appears. The Callback field contains the
selected statements, which you can edit as needed. If prompts (>>) from the
Command Window appear, note that MATLAB automatically removes them
when you save the shortcut. The Category field is Toolbar Shortcuts,
which you must keep so the shortcut appears on the toolbar.

Provide the Label, select an Icon, and click Save.

The shortcut icon and label appear on the toolbar. If you have more shortcuts
on the toolbar than can be displayed at once, use the drop-down list to access
all of them.

2-26

Common Deskiop Features

Click an
itemtorun
that
shortcut.

4 C(Click the icon on the Shortcuts toolbar to run the shortcut. You can also run
the shortcut from the Start button by selecting it in the Toolbar Shortcuts

category.
Right-click a shortcut Right-click in the Shortcuts toolbar and then use ~ Drag selected statements to the
and then delete or edit the Show Labels item to hide shortcut labels and ~ Shortcuts toolbar to create a new
it. show only the icons. shortcut on the toolbar.
<) MATLABE I [|5

File Edit Pebug Desktop Window Help

D@|%En“|ﬁﬁf|@||&w¥mﬁles EJ

Shortcuts 2] Howe to Add (2] What's Newe [2] sea_temp_emvironment

You can also add a shortcut to the desktop Shorteuts toolbar by right-clicking
the toolbar and selecting New Shortcut. Complete the resulting Shortcut
Editor dialog box. Assuming you maintain the Toolbar Shortcuts category,
the shortcut appears on the toolbar. To change the order of the shortcuts on the
toolbar, select Start -> Shortcuts -> Organize Shortcuts and move the
shortcuts within the Toolbar Shortcuts category.

How to Add and What's New Shortcuts. The Shortcuts toolbar includes two
shortcuts. The How to Add shortcut provides help about shortcuts and adding
them to the Shortcuts toolbar. What’s New displays the Release Notes
documentation.

To remove the How to Add or What’s New shortcut from the Shortcuts
toolbar, move them to a different category. For instructions, see “Organizing
and Editing Shortcuts” on page 2-28.

If you do not want to keep these shortcuts, remove each one by right-clicking
its toolbar shortcut button and selecting Delete from the context menu. Click
OK in the confirmation dialog box to remove the shortcut.

2-27

2 o ktop

Shortcut Labels on Toolbar. You can hide the shortcut labels on the toolbar.
Right-click in the Shortcuts toolbar. From the context menu, select Show
Labels, which clears the check mark next to the item. The shortcut icons
appear on the toolbar without labels. When you move the mouse over a shortcut
icon, its label appears as a tooltip. To make labels display in the toolbar,
right-click the toolbar and select Show Labels again, which selects the item
and displays the labels.

Organizing and Editing Shortcuts

To create categories for shortcuts, and to move, edit, and delete shortcuts,
perform these steps:

1 Select Shortcuts -> Organize Shortcuts from the Start button. Access it via
the shortcuts toolbar context menu.

The Shortcuts Organizer dialog box appears.

Move shortcuts and more. For example, drag a shortcut to
another category.

<} Shortcuts Qrganizer Mi=]E3
Mew Categary... | =1 Shortcuts
New Shortcut. =% Help Browser Favaorites
Edit Shortcut ...

Move to Category ..

Delete Shortout

[#] sea_temp_finish Ll

Cloze | Help |

2-28

Common Deskiop Features

2 Use the buttons in the dialog box to edit and organize shortcuts and
categories. You can also right-click an item and select an action from the
context menu.

Changes take effect immediately.

3 Click Close.

MATLAB maintains the shortcuts in the shortcuts.xml file. To see the
directory where the file is stored, run prefdir.

For more information on what you can do in the Shortcuts Organizer dialog
box, click the Help button.

Web Browser

Some tools in MATLAB and related products display HTML or XML
documents in the MATLAB Web browser. For example, after using the Editor’s
cell features to publish an M-file to HTML, you view the HTML file in the
MATLAB Web browser. Because the MATLAB Web browser is a desktop tool,
you can dock it and perform other desktop operations on it.

2-29

2 o ktop

2-30

Example of Web browser displaying results of M-file
published to HTML format.

%vWeb Browser - Calculate Sine Wave O] x|
File Edit %iew Go Debug Desktop Window Help A x

ﬁ * 8 | @ | M |Lcn::ati0n: ID:J‘mymfiles.l'h‘tml.l’sine_wavel.hlml LI Ea |I| E ¥ IE

Calculate Sine YWave
Calculate and plot a sine wave.
Contents

+ Calculate and Plot Sine Wyave
+ Modify Plat Properies

Calculate and Plot Sine Wave
Define the range for x.
0<x <67
Al | 3
%

To display documents in the Web browser, use the web function. The web
function supports arguments that allow you to display documents in your
system browser, for example, Netscape, or in the Help browser.

The toolbar buttons and menu items in the Web browser are similar to those
found in the Help browser display pane. For more information, see “View
Documentation in the Help Browser” on page 4-20.

One feature of the Web browser not found in the Help browser is the Location
field. In the Web browser, type a URL in the field to display that Web page.

Like any browser, the MATLAB Web browser might not support all of the
HTML or related features used in a particular Web site or HTML page. For
example, the MATLAB Web browser does not support the display of . bmp
(bitmap) image files. Instead use .gif or . jpeg formats for image files.

Common Deskiop Features

Internet Connection and Fonts for Web Browser —Web Preferences

To specify a proxy server to connect from the MATLAB Web browser to the
Internet, use Web preferences. You might need to specify this preference if you
have a firewall, for example. If you have a firewall and do not specify the proxy
settings, links from the Web browser to URLs will not work.

Select File -> Preferences -> Web. By default, the check box Use a proxy
server to connect to the Internet is not selected. This means you have a direct
connection to the Internet.

To specify a proxy server, select the check box and specify the Proxy host and
Proxy port. See your system administrator for the information you need to
specify the proxy settings. As an example, 172.16.10.8 illustrates the format
for host, and 3128 is the type of value you enter for port.

Fonts for Web Browser. To modify the font used in the Web browser, select File ->
Preferences -> Fonts. The Web browser uses the font settings you specify for
HTML Proportional Text tool. For more information about setting fonts, click
the Help button in the preference pane for Fonts.

Menus and Context Menus

Merged Menus

When you use a tool in the desktop, its menu appears at the top of the desktop.
When you work in a different tool in the desktop, you still use the menu at the
top of the desktop, but the menu content changes to support that tool. When
you undock a tool from the desktop, access its menu at the top of the undocked
tool.

Context Menus

Many of the features in MATLAB desktop tools are available from context
menus, also known as pop-up or right-click menus. To access a context menu,
right-click a selection or an area, or press Ctrl+Shift+F10. The context menu
for the selection or tool appears, presenting the available actions. For example,
following is the context menu for a selection in the Command History.

If a context menu does not appear, try right-clicking in a different part of the
tool. When a context menu item is gray, the item does not apply to the current
selection or area.

2-31

2 o ktop

Access context (pop-up) menus by right-clicking a

selection or any area in a tool.
<} Command History =] B3
File Edit Debut Deskto Window Help ~
figure; ;I
hz = plot3(l:10,rand{1,1
hold on
1
y—— Citrl+
[len,dim] =le: Copy CHl+C

1~ 4 -_ 1= ¢4 a
‘| | Ewvaluate Selection

Create M-File k
Create Shorcut

Frofile Code
Delete Selection
Delete to Selection
Clear Entire History

Toolbars

The toolbar in the desktop provides easy access to frequently used operations.
Position the cursor over a button for a second or two and a tooltip appears that
describes the item.

Undo last o
edit. Open Simulink View or
Open Copy. Redo library browser. change Browse to
file. last 6o to Hel current change
Cut. |Paste. | undo. o to Help directory. current

browser. ‘ directory.

‘ ‘E K (“L | Eﬁ“ @“ ID:im\,n'mfiIes l :J |J

D | %

‘ GUIDE MOVL up
Create new file in Tooltip describes Select previously used one
Editor. button. current directory. directory.

2-32

Common Deskiop Features

Some tools also have their own toolbars, which are located within the tool’s own
window. For example, the Current Directory browser has its own toolbar.
When you undock one of these tools, the undocked tool includes the toolbar.

To hide a toolbar, or to show it again after hiding it, use the appropriate toolbar
item in the Desktop menu. For figure windows, use the toolbar item in its View
menu.

Current Directory Field

The current directory field in the desktop toolbar shows the MATLAB current
working directory. You can change the current directory using this field, using
any of these methods:

¢ Type the current directory you want to change to directly in the field.

¢ Use the drop-down list to select a previously used current directory. To
specify the number of entries maintained each session, use the History
preference you access via File -> Preferences -> Current Directory.

® Use the browse button ... to select a new current directory.

¢ Use the up button & to move the current directory up one level.

The same current directory field also appears in the Current Directory browser
when the Current Directory browser is undocked from the desktop. Use the
Current Directory browser to perform many additional file operations. For
more information, see “File Management Operations” on page 5-31.

Use drop-down list to view and select
from previously used current directories.

|
dmynfiles "I J
oy files ;L
Comatlakibininind2
drymfiles\mydemos
o fioe
drymfilesresults
dimymfiles\databazetib:_html_files
Jomatlabibinweing2
e natlakibining2 hd

2-33

2 o ktop

Status Bar

Along the bottom of the desktop is the status bar. It displays messages, such as
when MATLAB is busy executing statements or when the Profiler is on. Some
tools, such as the Editor/Debugger, display additional status information, such
as the current line number. Not all status information appears on the status
bar—many MATLAB functions and tools provide status information that is not
reported to the status bar.

You can construct your own functions to provide status information. See the
timer function, and search for other specific terms describing the status of
interest.

Sizing, Arranging, and Sorting Columns in Tools

Some desktop tools present information in columns, such as the Current
Directory browser.

To change the column width, drag the separator bar between two column
headings in a tool. When a column is too narrow to show all the information in
it, position the cursor over an item and the full value for that item displays like
a tooltip.

To rearrange the columns in a tool, drag the column header to a different
position. To sort the information by a particular column, click the column
header. For example, in the Current Directory browser, click the Last
Modified date to sort the items in date order. Some columns also allow you to
reverse the sort order by clicking the column header again. A small gray arrow
in the header indicates the current sort order—for example, an up arrow in the
Last Modified Date column header indicates an ascending sort order, meaning
the oldest files are at the top of the list.

2-34

Common Deskiop Features

Click a column heading to sort by that column. Click again to reverse To reorder columns, drag a

the sort order. column header, like
Description, to another
position.
Directo [:)] B3
File Edit “iew Debug Desktop |WWindow Help N
ID:‘.mymfiIes LI J ¥) E;| B -
&1l Files File Type Last Modified | Description |
dresults Folder Febh 22, 2002 10:... il
Hold th [mydemos Falder Feh 3, 2004 1:47... Mydemos To...
oldthe cursor |, Folder Feh 23, 2004 5:5..

over a field to

Ecaution.mdl Model Moy 13, 1997 1:4...

\S/zﬁj(tahf?)f?r:gf hil-file Moy 27, 1997 5:26:55 AMIKY Con...
column @T . MWAT-file Jan g, 200032,
' [Z@ variance.m hl-file Jan 24,2000 5:3. . j
S

Keyboard Shortcuts (Accelerators) and Mnemonics

You can access many of the menu items using shortcut keys (sometimes called
accelerators) for your platform. For example, use Ctrl+X to perform a cut on
Windows platforms. Many of the menu items show the shortcuts. Additional
standard shortcuts for your platform usually work but only one is listed with
each menu item.

The keyboard shortcuts for the Command Window and Editor/Debugger also
depend on settings for key bindings that you specify using preferences. For
details, see “Command Line Key Bindings” on page 3-31, and “Keyboard
Shortcuts in the Editor” on page 6-22. Instructions in the documentation
specify shortcuts using the Windows Ctrl convention, but with Macintosh key
bindings selected, you can use the Command key instead.

2-35

2 o ktop

You can also use mnemonics to access menu items and buttons, such as Alt+F
to open the File menu. Mnemonics are listed with the menu item or button. For
example, on the File menu the F in File is underlined, which indicates that
Alt+F opens the menu. In the Profiler, the R in the Run this code toolbar field
is underlined, indicating that Alt+R moves the cursor to this field. Note that
some versions of Windows do not automatically show the mnemonics on the
menu. For example, you might need to hold down the Alt key while the tool is
selected in order to see the mnemonics on the menus and buttons. In Windows
2000, go to the Display Control Panel, select Effects, and clear the item Hide
keyboard navigation indicators until I use the Alt key. See your Windows
documentation for details.

Following are some general shortcuts that are not listed on menu items.

Key Result

Enter The equivalent of double-clicking, it performs the
default action for a selection. For example, press
Enter while a statement in the Command History is
selected to run that statement in the Command
Window.

For buttons in tools and dialog boxes, executes the
default button (the button with a border around it). If
there is no default button, press the space bar to
execute the active button (the button with a dotted
outline inside it). See “Default Button and Active
Button (Button with Focus)” on page 2-38 for an
illustration.

Escape Cancels the current action. For example, if you select
the Edit menu, the menu items display. Pressing
Escape retracts the menu items. Pressing Escape in
a dialog box is the same as selecting the Cancel
button.

Ctrl+Tab Moves to the next open tool in the desktop, or to the
next open group of tools tabbed together.

2-36

Common Deskiop Features

Key Result (Continued)

Tab Advances to the next button or field in a tool or dialog
box. In the Command Window, completes a statement
if the tab completion preference is selected.

Alt+S Displays Start button menu (except on Macintosh
platforms).

Alt+Y Provides access to current directory field in toolbar.

Space bar For buttons in tools and dialog boxes, activates the
active button. See “Default Button and Active Button
(Button with Focus)” on page 2-38 for an illustration
of selecting default and active buttons using keys.

+or-or#* Use these keys on the numeric keypad to expand and

on numeric collapse items in tree views. The Help browser

keypad Navigator pane and the Command History use tree
views. Use + to expand the selected item, use - to
collapse the selected item, and use * to recursively
expand it, meaning open all items contained in the
selected item.

Ctrl+Shift+Tab Moves to the previous open tool or group of tabbed
tools in the desktop.

Ctrl+Page Down Moves to the next tool within a group of tools. In a
group of documents, moves to next document.

Ctrl+Page Up Moves to the previous tool within a group of tools
tabbed together. In a group of documents, moves to
previous document.

Ctrl+Fé6 Moves to the next tool or document (only for Windows
and Solaris platforms).

Ctrl+Shift+F6 Moves to the previous tool or document (only for
Windows and Solaris platforms).

Alt+F4 Closes the desktop, thereby quitting MATLAB, or

outside the desktop, closes the active window.

2-37

2 o ktop

For additional shortcuts available in the various desktop tools, see the
documentation for each tool. For example, in the Command Window, see
“Keyboard Shortcuts in the Command Window” on page 3-18.

Go To First Letter Feature in Desktop Tool Lists

In the Current Directory browser and Command History, you can type a letter
to move directly to the next item in the list that starts with the letter you typed.

Default Button and Active Button (Button with Focus)

These illustrations demonstrate the default versus active button in a dialog
box.

The default button has a border around it. Here,
— Save is the default button. Press the Enter key to

Cancel | execute the default button.
Ok

The active button (the button with focus) has a dotted outline
inside it. Here, Cancel is the active button. Press the space bar to
execute the active button.

Here, the Help button is both the default button and the active
button. In some cases, the default always changes to match the
active button. You can press either Enter or the space bar to
execute the Help button

Ok, Cancel ||| Help |

Selecting Multiple ltems

In many desktop tools, you can select multiple items and then select an action
to perform on all the selected items. Select multiple items using the standard
practices for your platform.

For example, if your platform is Windows, do the following to select multiple
items:

1 Click the first item you want to select.

2-38

Common Deskiop Features

2 Hold the Ctrl key and then click the next item you want to select. Repeat
this step until you have selected all the items you want. To select contiguous
items, select the first item, hold the Shift key, and then select the last item.

Now you can perform an action on the selected items, such as delete.

Cut, Copy, and Paste

You can cut and copy a selection from a desktop tool to the clipboard and then
paste it from the clipboard into another tool or application. Use the Edit menu,
toolbar, context menus, or standard keyboard shortcuts. For example, you can
copy a selection of statements from the Command History and paste them into
the desktop.

Use Paste to move items copied to the clipboard from other applications. The
Paste Special item in the Edit menu opens the selection on the clipboard in
the Import Wizard. You can use this to copy data from another application,
such as Excel, into MATLAB. For details, see the Import Wizard
documentation.

When editing text in the Command Window and Editor, select text and drag it
to move the text to a new location. Press Ctrl and drag the selected text to copy
it to a new location.

To undo the most recent cut, copy, or paste command, select Undo from the
Edit menu. Use Redo to reverse the Undo. For some tools, you can undo
multiple times in succession.

See also the clipboard function.

Drag and Drop

You can also move or copy a selection from one tool to another by dragging the
selection. For example, make a selection in the Command History and drag it
to the Command Window, which pastes it there. Edit the lines in the Command
Window, if needed, and then press the Enter key to run the lines from the
Command Window. Another example is to drag a filename from the Current
Directory browser to the Editor to open that file in the Editor. If you drag
editable text, for example, text in the Editor, the text is cut rather than copied.
Use Ctrl and drag to copy rather than cut editable text.

On Windows platforms, you can drag items from external applications into
MATLAB. For example, dragging text from a Microsoft Word document into

2-39

2 o ktop

the Editor cuts and pastes it into the open file. Dragging an M-file from
Windows Explorer to the Command Window runs the file.

Page Setup Options for Printing

You can specify page setup options to be used when you print from the
Command History, Workspace browser, and Array Editor. Select File -> Page
Setup. A standard system page setup dialog box opens.

MATLAB provides special page setup options for printing from the Command
Window and Editor. The setup options are essentially the same for both tools,
with minor variations. This section covers

® “Specifying Page Setup Options” on page 2-40

¢ “Layout Options for Page Setup” on page 2-41

¢ “Header Options for Page Setup” on page 2-42

* “Fonts Options for Page Setup” on page 2-42

Specifying Page Setup Options

To specify page setup options, perform these steps:

1 In the tool you want to print from, for example, the Command Window,
select File -> Page Setup.

The Page Setup dialog box opens for that tool.

2-40

Common Deskiop Features

Page Setup: MATLAB Command ¥Window | X]

Layout | Header | Fants |
- Options

¥ Print header

I Print line nurmbers
[‘wirap lines

~Syntax highlighting
" Black and white text
" Colored text

' Styled text

cancel |

2 Click the Layout, Header, or Fonts tab in the dialog box and set those
options for that tool, as detailed in subsequent sections.

3 Click OK.

4 After specifying the options, select File -> Print in the tool you want to print
from, for example, the Command Window.

The contents from the tool are printed, using the options you specified in
Page Setup.

Layout Options for Page Setup

You can specify the following layout options. A preview area shows you the
effects of your selections:

¢ Print header—Print the header specified in the Header pane.

¢ Print line numbers—Print line numbers.

® Wrap lines—Wrap any lines that are longer than the printed page width.

¢ Syntax highlighting—For keywords and comments that are highlighted in
the Command Window, specify how they are to appear in print. Options are
black and white text (that is, no highlighting), colored text (for use with a

2-41

2 o ktop

color printer), or styled text. For styled text, keywords appear in bold,
comments appear in italics, and all other text appears in the normal style.
Only keywords and comments you input are highlighted in the Command
Window and in print; output is not highlighted.

Header Options for Page Setup

If you want to print a header, select the Layout tab and then select Print
header. Then select the Header tab and specify how the elements of the
header are to appear. A preview area shows you the effects of your selections:

® Page number—Format for the page number, for example # of n
¢ Border—Border style for the header, for example, Shaded box

¢ Layout—Layout style for the header, for example, Standard one line
includes the date, time, and page number all on one line

Fonts Options for Page Setup
Specify the font to be used for the printed contents:

1 From Choose font, select the element, either Body or Header, where Body
text is everything except the Header.

2 Select the font to use for that element. For example, select Use Command
Window font for Body text if you want the printed text to be the same as the
font that appears in the Command Window. This is the font specified in File
-> Preferences -> Fonts -> Custom for the Command Window.

3 Repeat for the other element. If you did not select Print header on the
Layout pane, you do not need to specify the Header font. As an example, for
Header text, select Use custom font and then specify the font
characteristics—type, style, and size. After you specify a custom font, the
Sample area shows how the font will look.

2-42

Common Deskiop Features

Accessing The MathWorks on the Web

You can access popular MathWorks Web pages from the MATLAB desktop.
Select one of the following items from the Help -> Web Resources menu. For
most items, the selected Web page then opens in your default system Web
browser, for example, Netscape:

¢ The MathWorks Web Site—Home page of the MathWorks Web site
(http://www.mathworks.com).

¢ Products—MathWorks Products page
(http://www.mathworks.com/products/), with information about the full
family of products.

¢ Membership—Access Login page
(http://www.mathworks.com/accesslogin/) for Access Login members. If
you are not a member, you can join online. Membership helps you stay up to
date on the latest MATLAB developments.

¢ Technical Support Knowledge Base—MathWorks Support page
(http://www.mathworks.com/support), where you can look for solutions to
problems you are having, or report new problems.

* MATLAB Central —-MATLAB Central Web site
(http://www.mathworks.com/matlabcentral/) for the MATLAB user
community. It includes MATLAB contest entries and results, a MATLAB
screen saver, and these technical resources:

= MATLAB File Exchange—Code library of files contributed by
MathWorks customers and employees, available for free download and use
with MathWorks products.

= MATLAB Newsgroup Access—Provides access to the Usenet newsgroup
for MATLAB and related products, comp.soft-sys.matlab, where you can
post and answer questions, as well as view the archives.

* MATLAB Newsletters—Access to online versions of News and Notes and
MATLAB Digest. News and Notes is published twice a year and contains
feature articles, technical notes, and product information for MATLAB
users. MATLAB Digest, an electronic bulletin consisting of technical notes,
solutions, and timely announcements to the user community, is issued more
frequently. See http://www.mathworks.com/company/newsletters.

2-43

2 o ktop

Check for Updates

This features allows you to easily determine if more recent versions of your
MathWorks products are available. Select Help -> Check for Updates. A
dialog box appears, listing the version numbers of all MathWorks products
installed on your system. Click Check for Updates in the dialog box, which
accesses the MathWorks Web site and reports back for each product if a newer
version is available or if your version is the latest.

2-44

Fonts, Colors, and Other Preferences

Fonts, Colors, and Other Preferences

Use preferences to change the font characteristics and the text and background
colors for tools in the desktop.

¢ “Fonts Preferences for Desktop Tools” on page 2-45

® “Colors Preferences for Desktop Tools” on page 2-51

® “General Preferences for MATLAB” on page 2-55

Each tool also has its own set of preferences. For details, see “About
Preferences” on page 2-57.

Fonts Preferences for Desktop Tools

Use desktop font preferences to specify the font characteristics for MATLAB
desktop tools. The font characteristics are

® Type, for example, SansSerif

¢ Style, for example, bold

® Size in points, for example, 12 point

Select File -> Preferences -> Fonts to set fonts for desktop tools. You can set

some font options differently for printing—see “Page Setup Options for
Printing” on page 2-40.

2-45

2 o ktop

2-46

With the code and text font styles, you can easily apply the same font to all tools that
display code or text, respectively.

+) Preferences

cheral Fonts Preferences
ustarn ~Desktop code font
—Colarz

F-Command Yindow Currently used by: Command Window, Command History, Editor
Eommand History Monospaced pein =0 =]
+H-FEditoriDebugger

—Help Sample
ek The cuick brown fox jumps over the lazy

[{urrent Directory dog. 1234567830
—Workspace

—Array Editar
—GUIDE
[F-Figure Copy Templste

~Desktop text font

Currently used by: Help Mavigator, HTML Proportional Text, Currert
Directory \Warkspace, Array Editar

SansSerit fpain =0 =]

Sample

The guick brown fox jumps over the lazy dog. 1234567890

Ok | Cancel | Apply | Help |

Desktop Code Font and Desktop Text Font

You specify separate font characteristics for tools that primarily display code
(Desktop code font), such as the Command Window, and tools that primarily
display text (Desktop text font), such as the Current Directory browser. Many
users prefer that code display in a monospace font to provide better alignment,
and prefer a more narrow font style for text information. With the desktop code
font preference, you set just one preference to apply a monospace style to all
tools that display code. Similarly, you can set just one preference to apply a text
font to all desktop tools that display text.

Fonts, Colors, and Other Preferences

The following illustrations show how the Editor would look using a monospace
font and a proportional font. Note that a monospace font is useful when you

care about alignment, but a proportional font uses less space.

With a monospace font, all characters are the same width. Here, the font is 10 pt.
Monospaced. Note the 10th character in each line aligns with the Editor’s right-hand
text limit, which is set to column 10.

& Editor - Untitled* = O] =]
File Edit Text Ce|ll Tools Debug Deskiop Window Help ~ |2 x

DS | ¢t 2Bo«~|S|déf|BRA|E 7O

il 1234567890
2 abedefoghi]
3 ABCDEFGHIJ
| seript ln 3 col 11 |owR 5

With a proportional font, characters are different widths. Here, the font is 10 pt.
SansSerif. Each line contains 10 characters but none ends at the same column. The
Editor’s right-hand text limit is not relevant.

B Editor - Untitled?2*
File Edit Text Cell Tools Debug Desktop Window Help ~ |2 x

DEE ¢t 2@Bo & #M 7
1 1234567390 |

2 abcdefighi]

3 ABCDEFGHL

8 |[s -] >3]

| seript [tn 3 co 11 |ovR g

Default Font Settings. Default settings are listed in the following table. Note that
Lucida Console approximates the fixedsys font available in earlier versions of

MATLAB.

2-47

2 o ktop

2-48

Font Type Default Characteristics and Tools Using Font Type by
Sample Default
Desktop code font Monospaced, Plain, 10 point ¢ Command Window

Desktop text font

¢ Command History
SJamwple code font

¢ Editor/Debugger

SansSerif, Plain, 10 point ¢ Help Navigator
e HTML Proportional Text.
Sample text font This is the font used for

noncode text in the Web
browser (including, for
example, Cell publishing
HTML reports), Profiler,
and Help browser display
pane.

e Current Directory browser
® Workspace browser

¢ Array Editor

When you change a font characteristic for Desktop code font, the
characteristic takes effect for all tools that use the desktop code font. The same
is true when you change a font characteristic for Desktop text font.

After changing a characteristic, a sample in the dialog box shows how it will
look. Click Apply or OK to make the change take effect in the desktop tools.

See Also
“About Preferences” on page 2-57.

Custom Fonts Preferences

You can specify that a tool use the code font, the text font, or a different font.
Select File -> Preferences -> Fonts. Click + and select Custom. The Fonts
Custom Preferences pane appears.

Fonts, Colors, and Other Preferences

Use custom fonts preferences to specify the tools that use the code style font and the tools that
use the text style font. You can also apply a custom font to any tool.

=) Preferences

eneral Fonts Custom Preferences
—“Fonts
| For each desktop tool, you can specify that it use the desktop code fort, des
—Calars text fort, or & custom font. To et deskiop font properties, use the main Forl
H-Comtmancd Winco preference panel.
otrmahnd History
+-EditorDebugger rDesktop tools rFart ta Lse
_'—1-:\?":: * Desktop code
e "
[t o Hist
—Current Directary u:n.mman =tary Deskion text
—Warkspace Fitor . P
—array Editor Help Marvigator e custom
—GUIDE HThL Proportional Text ielii
[F-Figure Copy Template Current Directary PR
Wyorkspace
srray Editor Plzin L" 10
—Sample
The guick brown fox Jjumps owver the lazy dog.
1234567590
Rl | B

Ok Cancel | Apply | Help |

Select a tool from the Desktop tools list. The type of font it uses, code or text,
appears under Font to Use. In the illustration shown, the Command Window
uses the Desktop code font, which is defined in the Fonts pane as described
in the previous section.

To change the font type the selected tool uses, select a different radio button.
For Custom, you then specify the font characteristics for that tool.

2-49

2 o ktop

Changing the Font—Example

This example changes the default settings (p. 2-20) for the desktop code font,
changes the Command History preference so that it uses the desktop text font
instead of code, and specifies a custom font for the Current Directory browser:

1 Change the characteristics for the desktop code font. On the Fonts pane, set
the Desktop code font to Times New Roman, Plain, 14 point. Use the default
for the Desktop text font, SansSerif, Plain, 10 point. Click Apply.

2 Make the Command History use the desktop text font. Select Fonts, click +,
select Custom, and then select Command History from Desktop tools. Select
the Desktop text radio button.

3 Apply a custom font to the Current Directory browser. Select Current
Directory from Desktop tools. Select the Custom radio button. Select
Arial Narrow and Plain, and type 11 in the size field. Click OK.

The following table details the results of the changes.

Tool Font Type Font Characteristics

Command Window Desktop code Times New Roman, Plain, 14 point

Command History Desktop text SansSerif, Plain, 10 point

Editor Desktop code Times New Roman, Plain, 14 point
Help Navigator Desktop text SansSerif, Plain, 10 point

HTML Desktop text SansSerif, Plain, 10 point
Proportional Text

Current Directory Custom Arial Narrow, Plain, 11 point
Workspace Desktop text SansSerif, Plain, 10 point

Array Editor Desktop text SansSerif, Plain, 10 point

See Also. For help about how MATLAB stores preferences and help for other
preferences, see “About Preferences” on page 2-57.

2-50

Fonts, Colors, and Other Preferences

Colors Preferences for Desktop Tools

Desktop color preferences specify the colors used in MATLAB desktop tools and
the colors that convey syntax highlighting. Select File -> Preferences ->
Colors to set color preferences for desktop tools. You can set some color options
differently for printing—see “Page Setup Options for Printing” on page 2-40.

To set colors for text and the background, clear the Use system
colors check box and then select colors from the palettes.

+) Preferences

eneral Colors Preferences
“HFontz

—custam

—Desktop tool colors

Eommand Wyihiclon \17 Usze =ystem colors
e

ommmand History Text - - ek - -
Grour
ditoriDebugger —I —I
—Help —M-file syntax highlighting colors
Wik
—Currert Directory Heyweards | 'l Comtnents || 'l
—Workspa.ce Strings - 'l Urtermirated strings - 'l
—Array Editar
—GUIDE Systern comnands - 'l Etrors - 'l
[F-Figure Copy Templste
—Sample
The Sample % oreate a file for output
area shows how 'touch testFile.txt
the changes will fid = fopen('testFile.txt', 'w'];:
look. for i=1:10

fprintf (fid, '$6.2£ ‘n, 1);
end

Restore Default Colors |

Ok Cancel | Apply | Help |

2-51

2 o ktop

Desktop Tool Colors

Use desktop tool colors to change the color of the text and background in the
desktop tools. The colors also apply to the Import Wizard. Select the check box
Use system colors if you want the desktop to use the same text and
background colors that your platform (for example, Windows) uses for other
applications.

To specify different text and background colors, follow these steps:
1 Clear the Use system colors check box.

2 Click the arrow next to the Text color and choose a new color from the
palette shown.

When you choose a color, the Sample area in the dialog box updates to show
you how it will look.

3 Click the arrow next to the Background color and choose a new color.

If you use a gray background color, a selection in an inactive window will not
be visible.

4 Click Apply or OK to see the changes in the desktop tools.
Click Restore Default Colors to return to the default settings for desktop tool
colors, as well as for syntax highlighting colors.

The following illustration shows how the Current Directory browser looks with
blue-green text and a beige background. These colors are only discernible in the
online version of this documentation.

2-52

Fonts, Colors, and Other Preferences

Background color Text color

[} 0 [} g - |O] x
File Edit “iew Debug PDesktop Window Help N
ID:‘.mymfiIes LI J ¥ il 5| @ -
All Files £ | File Type | Last Modifi... | Description |
it ; Folde Feb 23, .. [
[E3 mydemos Folder Feb 3, 2. Mydemo...
[EAresults Folder Feb 22, ...
[E bucky.m h-file Mow 27, 1.0 BUCKY .
Ecaution.mdl flodel Mow 13, 1...
callatzall. asy AN File Aug 12, .. hd|
%

Syntax Highlighting Colors

In the Command Window, Command History, Editor/Debugger, and Shortcuts
callback area, MATLAB conveys syntax information via different colors to help
you easily identify elements, such as if/else statements. This is known as
syntax highlighting.

In the Command Window, only input you type is highlighted; output from
running MATLAB functions is not highlighted. In the Editor/Debugger, you
can specify syntax highlighting for use with files in C/C++, Java, and HTML.
For details, see the topic “Language Preferences” in the online documentation.

Use preferences to specify the syntax highlighting colors. When you choose a
color, the Sample area in the dialog box updates to show you how it will look.

2-53

2 o ktop

Strings
—Sample
Comments 1% create a f£ile [for output
System commands____| i touch testFile.foxt
Text —————£id = fopen('testFile.txt', 'w']}:
for i=1:10
Keywords— fprintf (fid,'$6.2£ n, i):
nd ’

Unterminated strings

The default colors are listed here:

¢ Keywords—Flow control functions, such as for and if, as well as the
continuation ellipsis (. ..), are colored blue.

¢ Comments—All lines beginning with a %, designating the lines as comments
in MATLAB, are colored green. Similarly, the block comment symbols, %{
and %}, as well as the code in between, appear in green. Text following the
continuation ellipsis on a line is also green because it is a comment.

¢ Strings—Type a string and it is colored maroon. When you complete the
string with the closing quotation mark ('), it becomes purple. Note that for
functions you enter using command syntax instead of function syntax, the
arguments are highlighted as strings. This is to alert you that in command
notation, variables are passed as literal strings rather than as their values.
For more information, see “MATLAB Command Syntax” in the MATLAB
Programming documentation.

¢ Unterminated strings—A single quote without a matching single quote,
and whatever follows the quote, are colored maroon. This might alert you to
a possible error.

¢ System commands—Commands such as the ! (shell escape) are colored
gold.

¢ Errors—Error text is colored red.

Click Restore Default Colors to return to the default settings for syntax
highlighting colors as well as desktop tool colors.

2-54

Fonts, Colors, and Other Preferences

See Also

For help about how MATLAB stores preferences and help for other preferences,
see “About Preferences” on page 2-57.

General Preferences for MATLAB
These preferences apply to all relevant tools in MATLAB.

<) Preferences | 07]

General Preferences
AT-Files
aurce Control

~Toolbox path caching
arts

olors ¥ Enable toolko: path cache
arntrand Window

™ Enshble toolbox path cache disgnostics

dltor Debugger Update Toolhox Path Cache

urrent Directory ~Figure window grinting
Workspacs Specifty howe colored lines and text are sent to the printer.
IIDE % Use prirter defautts

igure Copy Template o Always send as black and white

9 Always send as color

Default hehaviar of the delete function

€ Move files to the Recycle Bin

& Delete files permanertly

Ok Cancel | Apply | Help |

Toolbox Path Caching Preference
See “Toolbox Path Caching in MATLAB” on page 1-10.

2-55

2 o ktop

Figure Window Printing

Select an option regarding color printing for figures. For more information on
printing figures, see the topic “Printing Graphics” in the online documentation.

Default Behavior of the Delete Function

Files you delete using the delete function are permanently deleted by default.
There is no opportunity to retrieve them.

You can use this preference to instead move deleted files to the Recycle Bin on
Windows, to the Trash Can on Macintosh, or to a tmp directory on UNIX
platforms. Then, you can recover any accidentally deleted files from these
locations. Deleted files in these locations are not automatically removed; you
must remove them using operating system features, such as Empty Recycle
Bin on Windows. When you select this preference, delete might run slower.

Function alternative. This MATLAB preference actually sets the state of the
recycle function upon startup and when you change the preference. You can
override the behavior of the preference by setting the recycle function state.
For example, regardless of the preference setting, when you run

recycle('off')
delete('thisfile.m')

MATLAB permanently removes thisfile.m from the current directory. Files
you subsequently remove using delete are also permanently removed, unless
you reapply the preference to recycle or run recycle('on'). Regardless of the
state of the recycle function during the current session, when you next start
MATLAB, the setting for the preference is honored. For more information, see
the recycle and delete reference pages.

Note that this preference and the recycle function do not apply to files you
delete using the Current Directory browser. For more information, see
“Cutting or Deleting Files and Directories” on page 5-37.

See Also

For help about how MATLAB stores preferences and help for other preferences,
see “About Preferences” on page 2-57.

2-56

Fonts, Colors, and Other Preferences

MAT-Files

The MAT-file save options apply when you use the save function and the Save
menu items (for MAT-files) in desktop tools. This preference also applies to
Fig-Files.

By default, MATLAB compresses the data when saving a MAT-file, thereby
reducing the storage space required. When you load the MAT-file, MATLAB
automatically uncompresses the data. In addition, MATLAB uses Unicode
encoding for strings when you save a MAT-file, making the data accessible to
other MATLAB users, regardless of the default character encoding scheme
used by their systems.

Prior releases of MATLAB did not save compressed MAT-files. They also did
not use Unicode character encoding, which sometimes prevented the exchange
of MAT-files among users, particularly when they used localized systems.

The default preference for saving prevents you from using the MAT-files with
MATLAB Version 6 or 6.x. To save MAT-files for use with a previous version,
select the preference Ensure backward compatibility (-v6). Alternatively,
you can override the preference by using the save function with the-v6 option,
which, for occasional use, might be more convenient than the changing the
preference. For more information, see the save reference page.

Source Control

Specify the source control system you want to interface MATLAB to. For more
information, see Chapter 9, “Source Control.”

About Preferences

Use preferences to specify options for each desktop tool. To access preferences:

1 Select File -> Preferences.

2 In the left pane of the Preferences dialog box, preferences appear for
MATLARB tools as well as for any other MathWorks products installed on
your system.

Choose a tool and click the + to display more preferences for that tool. From
the expanded list, select the entry you want. The right pane shows the
preferences for that item.

2-57

2 o ktop

3 Change settings. Click Apply or OK to set the preferences. Preferences take
effect immediately. They remain persistent across MATLAB sessions.

Note that some tools allow you to control these settings from within the tool
without setting a preference—use that method if you only want the change to
apply to the current session.

Function Alternative
Open the preferences dialog box using the preferences function.

Preferences File, matlab.prf

Preferences are stored in a preferences file, matlab.prf. Type prefdir in the
Command Window to see the location of the file.

On Macintosh platforms, the directory might be in a hidden folder, for example,
myname/.matlab/R14. To access the directory, select Go -> Go to Folder in the
Mac OS Finder. In the resulting dialog box, type the path returned by prefdir
and press Enter. The matlab.prf file is loaded when MATLAB starts and is
overwritten when you close MATLAB.

When you install a new version of MATLAB, it tries to use your existing
preferences from the previous version, where possible. To return to default
preferences, delete matlab.prf in the directory for the current version, R14, as
well as in the directories for previous versions, for example, R13.

2-58

Fonts, Colors, and Other Preferences

Summary of Preferences

Preference

What You Can Specify

General Preferences

Fonts

Colors

Command Window

Command History

Editor/Debugger

Help
Web

Current Directory

Workspace
Array Editor
GUIDE

Figure Copy Template

Other Products

Toolbox path caching, figure window printing,
delete function behavior, MAT-file save
formats, and source control.

Font type, style, and size for desktop tools.
Customize for any tool.

Colors for text, background, and syntax
highlighting in desktop tools.

Numeric format and display, key bindings, tab
size, and tab completion.

Display, filtering, and saving.

Editor type, startup options, display, keyboard,
indenting, language, publishing, and autosave.

Product filter and synchronization.
Internet proxy server settings.

Number of entries in history and display
options.

Confirm deletion of variables.
Numeric format and use of Enter key.
Display options.

Application, text, line, uicontrols, axis, format,
background color, and size.

Preferences for other installed MathWorks
products.

2-59

2 o ktop

2-60

Running Functions—
Command Window and
History

If you are using the Help browser, watch the Desktop and Command Window video demo and the
Command History video demo for an overview of the major functionality. The Command Window is
where you run MATLAB statements, while the Command History is a log of the statements you have
run.

Opening the Command Window (p. 3-2) Access the Command Window.

Running Functions and Programs, and Enter statements at the prompt. Run M-files, interrupt
Entering Variables (p. 3-3) programs, run external programs, and examine errors.
Evaluate and open selections.

Controlling Input (p. 3-9) Includes case sensitivity, long statements, syntax
highlighting, editing, and keyboard shortcuts.

Controlling Output (p. 3-20) Covers suppressing and paging output, printing, and
saving a session.

Searching in the Command Window Use the Find dialog or incremental search features to

(p. 3-24) find content in the Command Window.

Preferences for the Command Window Specify options for text, display, the keyboard, and

(p. 3-29) indenting.

Command History (p. 3-33) View session histories. Run statements, copy entries,

search, and print the history. Set preferences.

Preferences for Command History Specify how often to automatically save the history file
(p. 3-40) and the types of statements to exclude.

3 Running Functions—Command Window and History

3-2

Opening the Command Window

The Command Window is one of the main tools you use to enter data, run
MATLAB functions and scripts, and display results. If you are using the Help
browser, watch the Desktop and Command Window video demo for an overview
of the major functionality.

When the Command Window is not open, select Command Window from the
Desktop menu. Alternatively, open the Command Window with the
commandwindow function.

If you prefer a simple command line interface without the other MATLAB
desktop tools, select Desktop -> Desktop Layout -> Command Window Only.
For more information about arranging tools, see “Arranging the Desktop—
Overview” on page 2-5.

The prompt, >>, is where you enter functions. The prompt indicates that
MATLAB is ready to accept input from you. When you see the prompt, you can
enter a variable or run a function. This prompt is also known as the command
line.

<} Command Window 1 M =] S

File Edit Debug Desktop Window Help

s

4

When MATLAB displays the K>> prompt in the Command Window, it indicates
MATLAB is in debug mode. Type dbquit to return to normal mode. For more
information, see “Editing and Debugging M-Files” on page 6-1.

MATLAB displays the EDU>> prompt for the MATLAB Student Version.

Running Functions and Programs, and Entering Variables

Running Functions and Programs, and Entering Variables

¢ “Running Statements at the Command Line Prompt” on page 3-3
¢ “Running External Programs” on page 3-6
¢ “Evaluating or Opening a Selection” on page 3-7

¢ “Hyperlinks for Running Functions” on page 3-8

Running Statements at the Command Line Prompt

¢ “Entering Variables and Running Functions” on page 3-3
¢ “Examining Errors” on page 3-4

¢ “Running M-Files” on page 3-5

® “Processing Order” on page 3-5

¢ “Interrupting a Running Program” on page 3-5

Entering Variables and Running Functions
At the prompt, enter data and run functions. For example, to create A, a 3-by-3
matrix, type

A=1[123;4586; 78 10]

When you press the Enter or Return key after typing the line, MATLAB
responds with

A =
1 2 3
4 5 6
7 8 10

3-3

3 Running Functions—Command Window and History

3-4

To run a function, type the function including all arguments and press Enter
or Return. All of the information you type before pressing Enter or Return is
known as a statement. MATLAB displays the result. For example, type

magic(2)
and MATLAB returns

ans =
1 3
4 2
When you enter program control statements, such as if ... end, the prompt

does not appear until you complete the set of statements. In the following
example, you press Enter at the end of each line, but the prompt does not
appear until you complete the set of statements with end.

<) Command Window 3 =] B3

File Edit Debug Desktop Window Help

=>» 1f A = B
'greater’
elseif L < B
'less!

end

i

2

To display each function in a function or M-file as it executes, run echo on. For
details, see the echo reference page.

Examining Errors

If an error message appears when you run an M-file, click the underlined
portion of the error message, or position the cursor within the filename and
press Ctrl+Enter. The offending M-file opens in the Editor, scrolled to the line
containing the error.

Running Functions and Programs, and Entering Variables

Running M-Files

Run M-files, files that contain code in the MATLAB language, the same way
that you would run any other MATLAB function. Type the name of the M-file
in the Command Window and press Enter or Return. The M-file must be in the
MATLAB current directory or on the MATLAB search path—for details, see
“Search Path” on page 5-20. You can also use the run function and specify the
full pathname to an M-file script.

To determine the name of the M-file currently running, use mfilename.

Processing Order

In MATLAB, you can only run one process at a time. If MATLAB is busy
running one function, any further statements you issue are buffered in a queue.
The next statement will run when the previous one finishes.

Interrupting a Running Program

You can stop a running program by pressing Ctrl+C or Ctrl+Break at any
time. On Macintosh platforms, you can also use Command+. (Command key
and the period key) to stop the program. For certain operations, this might
generate errors in the Command Window.

For M-files that run for a long time, or that call built-ins or MEX-files that take
a long time, Ctrl+C does not always effectively stop execution. In that event,
include a drawnow command in your M-file, for example, within a large loop.
Note that Ctrl+C might be less responsive if you started MATLAB with the
-nodesktop option.

3-5

3 Running Functions—Command Window and History

3-6

Running External Programs

The exclamation point character, !, is a shell escape and indicates that the rest
of the input line is a command to the operating system. Use it to invoke utilities
or call other executable programs without quitting MATLAB. On UNIX, for
example,

lvi yearlystats.m

invokes the vi editor for a file named yearlystats.m. After the external
program completes or you quit the program, the operating system returns
control to MATLAB. Add & to the end of the line, such as

Idir &

on Windows platforms to display the output in a separate window or to run the
application in background mode. For example
lexcel.exe &

opens Excel and returns control to the Command Window so you can continue
running MATLAB statements.

See the functions unix, dos, and system to run external programs that return
results and status.

UNIX System Path and Running UNIX Programs from MATLAB

To run a UNIX program from MATLAB if its directory is not on the UNIX
system path MATLAB uses, take one of the actions described here.

Change Current Directory in MATLAB. Change the current directory in MATLAB to
the directory that contains the program you want to run.

Modify the UNIX System Path MATLAB Uses. Add the directories to the system path
from the shell. The exact steps depend on your shell. This is an example using
sh:
1 At the system command prompt, type

export PATH="$PATH:<mydirectory>"

where <mydirectory> is the directory that contains the program you want
to run.

Running Functions and Programs, and Entering Variables

2 Start MATLAB.

3 In MATLAB, type
lecho $PATH

The directory containing the file is added to the system path that MATLAB
uses. This change applies only to the current session of the terminal window.

Automatically Modify System Path at MATLAB Startup. If you want to add a directory to
the PATH environment variable each time you start MATLAB, perform these
steps:

1 In a text editor, open the file MATLAB/bin/matlab. This file is used to start
MATLAB.

2 Add this line to the beginning of the matlab file:
export PATH="$PATH:<mydirectory>"

where <mydirectory> is the directory you want to add to the path.
If you run a tsch shell instead of a bash shell, use setenv instead of export.

3 Save the file.

The matlab file will modify the PATH environment variable, and then start
MATLAB.

Evaluating or Opening a Selection

Make a selection in the Command Window and press Enter or Return. The
selection is appended to whatever is at the prompt and MATLAB executes it.

You can select a statement from any MATLAB desktop tool, right-click, and
select Evaluate Selection from the context menu. Alternatively, after making
a selection, press Enter or Return, or use the shortcut key F9. For example,
you can scroll up in the Command Window, select a statement you entered
previously, and then press Enter to run it. If evaluate a selection while
MATLAB is busy, for example, running an M-file, execution waits until the
current operation is done.

3-7

3 Running Functions—Command Window and History

3-8

You can open a function, file, variable, or Simulink model from the Command
Window. Select the name in the Command Window, and then right-click and
select Open Selection from the context window. This runs the open function
for the item you selected so that it opens in the appropriate tool:

¢ M-files and other text files open in the Editor.
¢ Figure files (.fig) open in a figure window.

¢ Variables open in the Array Editor.

¢ Models open in Simulink.

See open for details about what action occurs if there are name conflicts. If no
action exists to work with the selected item, Open selection calls edit.

Function Alternative

Use open or edit to open a file in the Editor. Use type to display the M-file in
the Command Window.

Hyperlinks for Running Functions

Use matlab: to run a specified statement when you click a hyperlink in the
Command Window. For example

disp('Generate magic square")

displays
Generate magic sgquare

When you click the link Generate magic square, MATLAB runs magic(4).
Alternatively, you can press Ctrl+Enter if the cursor is positioned in the link
text. You can use the disp, error, fprintf, or warning function with this
feature. For more information, including examples, see the matlabcolon
(matlab:) reference page.

Controlling Input

Controlling Input

® “Case and Space Sensitivity” on page 3-9

¢ “Syntax Highlighting” on page 3-10

¢ “Cut, Copy, Paste, and Undo Features” on page 3-11

¢ “Enter Multiple Lines Without Running Them” on page 3-12
¢ “Entering Multiple Functions in a Line” on page 3-12

¢ “Entering Long Statements” on page 3-12

¢ “Recalling Previous Lines” on page 3-13

¢ “Tab Completion” on page 3-14

¢ “Keyboard Shortcuts in the Command Window” on page 3-18
® “Navigating Above the Command Line” on page 3-19

Case and Space Sensitivity

e “Uppercase and Lowercase for Variables” on page 3-9
¢ “Uppercase and Lowercase for Files and Functions” on page 3-9

® “Spaces in Expressions” on page 3-10

Uppercase and Lowercase for Variables

With respect to case, MATLAB requires an exact match for variable names. For
example, if you have a variable a, you cannot refer to that variable as A.

Uppercase and Lowercase for Files and Functions

With respect to functions, filenames, objects, and classes on the search path or
in the current directory, MATLAB prefers an exact match with regard to case.
MATLAB runs a function if you do not enter the function name using the exact
case, but displays a warning the first time you do this.

To avoid ambiguity and warning messages, always match the case exactly. It
is a best practice to use lowercase only when running and naming functions.
This is especially useful when you run on Windows and UNIX platforms
because their file systems behave differently with regard to case.

Note that if you use the help function, function names are shown in all
uppercase, for example, PLOT, solely to distinguish them. Some functions for

3-9

3 Running Functions—Command Window and History

3-10

interfacing to Java actually used mixed case and the M-file help and
documentation accurately reflect that.

Examples. The directory first is at the top of the search path and contains the
file A.m. You type a instead of A. MATLAB runs A.mbut issues a warning. When
you type a again during that session, MATLAB runs A.m but does not show the
warning.

Add the directory second after first on the search path, with the file a.m in
second. The directory first contains A.m, while second contains a.m Type a. On
UNIX platforms, MATLAB runs a.m but does not display a warning. On
Windows platforms, MATLAB runs a.m but displays a warning the first time
you do this.

Spaces in Expressions

Blank spaces around operators such as -, :, and (), are optional, but they
improve readability. For example, MATLAB interprets the following
statements the same way.

y = sin (3 * pi) / 2
y=sin(3*pi)/2

Syntax Highlighting

Some entries appear in different colors to help you better find elements, such
as matching if/else statements. This is known as syntax highlighting. You
can change the colors using preferences. Note that output does not appear with
syntax highlighting, except for errors. For more information, see “Colors
Preferences for Desktop Tools” on page 2-51.

Controlling Input

Default colors are shown here—to change them, use Preferences -> Colors.

Keywords, like these <) Command Window K19 [=]E3

for program control, File Edit Debug Desktop “Window Help
are blue

>> if L > B
Closed strings are——+' greater!

purple. elseif L < B
Unclosed strings—— 1 1=3=
are maroon.

2

You can set Command Window preferences that cause MATLAB to notify you
about matched and unmatched delimiters. For example, when you type a
parenthesis or another delimiter, MATLAB highlights the matched
parenthesis or delimiter in the pair. To set these preferences, select File ->
Preferences -> Command Window -> Keyboard and Indenting. This feature
operates the same as parentheses matching in the Editor/Debugger. For a
description, see “Parentheses Matching Preferences” for the Editor/Debugger.

Cut, Copy, Paste, and Undo Features

Use the Cut, Copy, Paste, Undo, and Redo features from the Edit menu when
working in the Command Window. You can also access some of these features
in the context menu for the Command Window.

Undo applies to some of the actions listed in Edit menu. You can undo multiple
times in succession until there are no remaining actions to undo. Select Edit ->
Redo to reverse an undo.

In a multiline set of statements containing keywords, such as if ... end, you
cannot edit a line after entering it, even though you have not completed the
flow. Use Ctrl+C to end the flow, and then enter the statements again. Use
Shift+Enter instead of Enter at the end of each line so that you can edit the
lines before completing the flow.

3-11

3 Running Functions—Command Window and History

3-12

Enter Multiple Lines Without Running Them

To enter multiple lines before running any of them, use Shift+Enter or
Shift+Return after typing a line. MATLAB does not run the line, the cursor
moves down to the next line, and no prompt displays but you can type the next
line. Continue for more lines. Then press Enter or Return to run all of the
lines.

This allows you to edit any of the lines you entered before you pressing Enter
or Return.

Entering Multiple Functions in a Line

To enter multiple functions on a single line, separate the functions with a
comma (,) or semicolon (;). Using the semicolon instead of the comma will
suppress the output for the command preceding it. For example, put three
functions on one line to build a table of logarithms by typing

format short; x = (1:10)'; logs = [x log10(x)]

and then press Enter or Return. The functions run in left-to-right order.

Entering Long Statements

If a statement does not fit on one line, enter three periods (.. .), also called
dots, stops, or an ellipsis, at the end of the line to indicate it continues on the
next line. Then press Enter or Return. Continue typing the statement on the
next line. You can repeat the ellipsis to add a line break after each line until
you complete the statement. When you finish the statement, press Enter or
Return.

For items in single quotation marks, such as strings, you must complete the
string in the line on which it was started. For example, typing

headers = ['Author Last Name, Author First Name, '
"Author Middle Initial']

results in

headers =
Author Last Name, Author First Name, Author Middle Initial

Controlling Input

MATLAB produces an error when you do not complete the string, so you could
not continue the statement as shown here.

headers = ['Author Last Name, Author First Name,
Author Last Name']

??? headers = ['Author Last Name, Author First Name,
Error: Missing variable or function.

Note that MATLAB ignores anything appearing after the ... on a line, and
continues processing on the next line. This effectively creates a comment out of
the text following the ... on a line. For more information, see “Commenting
Out Part of a Statement” on page 6-17.

Recalling Previous Lines

Use the arrow, tab, and control keys on your keyboard to recall, edit, and reuse
functions you typed earlier. For example, suppose you mistakenly enter

rho = (1+ sqt(5))/2

Because you misspelled sqrt, MATLAB responds with

Undefined function or variable 'sqt'.

Instead of retyping the entire line, press the up arrow 1 key. The previously
typed line is redisplayed. Use the left to move the cursor, then add the missing
r, and press Enter or Return to run the line. Repeated use of the up arrow key
recalls earlier lines, from the current and previous sessions. Using the up
arrow, you can recall any line maintained in the Command History window.

Similarly, specify the first few characters of a line you entered previously and
press up arrow to recall the previous line. For example, type the letters plo and
then press the up arrow key. This displays the last line that started with plo,
as in the most recent plot function. Press the up arrow key again to display the
next most recent line that began with plo, and so on. Then press Enter or
Return to run the line. This feature is case sensitive.

Another way to view and access commands from the current and previous
MATLAB sessions is with the Command History.

3-13

3 Running Functions—Command Window and History

3-14

Tab Completion

MATLAB helps you automatically complete the name of a function on the
search path, filename, variable, structure, or Handle Graphics property if you
type the first few characters and then press the Tab key. To use tab completion,
you must have the tab completion preference selected. For details, see
“Keyboard and Indenting Preferences for the Command Window” on page 3-31.

These examples explain how to use tab completion:

¢ “Basic Example—Unique Completion” on page 3-14

¢ “Multiple Possible Completions” on page 3-15

¢ “Tab Completion for Directories and Filenames” on page 3-15
¢ “Tab Completion for Structures” on page 3-16

¢ “Tab Completion for Properties” on page 3-16

Basic Example —Unique Completion

This example illustrates a basic use for tab completion. After creating a
variable, costs_march, type

costs

and press Tab. MATLAB automatically completes the name, displaying

costs_march

Then complete the statement, adding any arguments and options, and press
Return or Enter to run it. In this example, if you just press Enter, MATLAB
displays the contents of costs_march. If MATLAB does not complete the name
costs_march but instead moves the cursor to the right, you do not have the
preference set for tab completion.

You can also use tab completion anywhere in the line, not just at the beginning.
For example, if you type

a = cost

and press Tab, MATLAB completes costs_march.

Controlling Input

Multiple Possible Completions

Ifthere is more than one name that starts with the characters you typed, when
you press the Tab key, MATLAB displays a list of all names that start with
those characters. For example, type

cos

and press Tab. MATLAB displays

<) Command Window 1M [=1E3

File Edit Debug Desktop “Window Help

Frozog

cosets
cash

costs march

Z

The resulting list of possibilities includes the variable name you created,
costs_march, but also includes functions that begin with cos, including cosets
from the Communications Toolbox.

Continue typing to make your entry unique. For example, type the next
character, such as t in the example. MATLAB selects the first item in the list
that matches what you typed, in this case, costs_march. Press Enter or
Return to select that item to complete the name at the prompt. In the example,
MATLAB displays costs_march at the prompt. Add any arguments, and press
Enter again to run the statement.

You can select from the list of possible completions using navigation keys such
as up and down arrows, and Page Up. You can clear the list without selecting
anything by pressing Escape. Note that the list of possible completions might
include items that are not valid commands, such as private functions.

Tab Completion for Directories and Filenames

Tab completion works for directories and filenames in MATLAB functions. For
example, type

edit d:/<Tab>

3-15

3 Running Functions—Command Window and History

3-16

MATLAB displays the list of directories and files in d, from which you can
choose one. For example, type

mym<Tab>

MATLAB displays
edit d:/mymfiles/

where mymfiles is the only directory on your d drive whose name begins with
mym. Continue using tab completion to display and complete directory names or
filenames until you finish the edit statement.

Tab Completion for Structures
For structures, after the period separator, press Tab. For example, type

mystruct.<Tab>

to display all fields of mystruct. If you type a structure and include the start of
a unique field after the period, pressing Tab completes that structure and field
entry.

For example, type

mystruct.n<Tab>

which completes the entry mystruct.name, where mystruct contains no other
fields that begin with n.

Tab Completion for Properties

Complete property names using tab completion, as in this graphics example.
Here, f is a figure. Type

set(f, 'pap<Tab>
MATLAB displays

Controlling Input

set £, 'paper

PaperOrientation

PaperPosition
PaperPositionMode
PaperZize
PaperType

PaperlUnits

Select a property from the list. For example, type

u<Enter>

and MATLAB completes the property, including the closing quote.

set(f, 'paperunits’

Continue adding to the statement, as in this example

set(f, 'paperunits', 'c<Tab>

MATLAB automatically completes the property
set(f, 'paperUnits', 'centimeters'

because centimeters is the only possible completion.

3-17

3 Running Functions—Command Window and History

Keyboard Shortcuts in the Command Window

Following is the list of arrow and control keys that serve as shortcuts for using
the Command Window. In addition to these shortcut keys, you can use
shortcuts for menu items, which you can view on the menus, as well as general
desktop shortcuts described in “Keyboard Shortcuts (Accelerators) and
Mnemonics” on page 2-35. If you select the Emacs (MATLAB standard)
preference for keybindings (see “Command Line Key Bindings” for an
explanation), you can also use the Ctrl+key combinations shown in the table.

Key Control Key for Emacs Operation
(MATLAB standard)
Preference
Ctrl+P Recall previous line—for details, see “Recalling
/[\ Previous Lines” on page 3-13. See also “Command
History” on page 3-33, which is a log of previously used
functions, and “Keeping a Session Log” on page 3-23.
With the Accessibility preference selected, moves the
cursor up a line when it is above the command line. In
that event, use Ctrl+/ to recall previous lines for
Windows and Macintosh key bindings.
¢ Ctrl+N Recall next line—for details, see “Recalling Previous
Lines” on page 3-13. Works only after using the up
arrow or Ctrl+P.
With the Accessibility preference selected, moves the
cursor down a line when it is above the command line.
In that event, use Ctrl+V to recall previous lines for
Windows and Macintosh key bindings.
Ctrl+Home none Move to top of Command Window.
Ctrl+End none Move to end of Command Window.
<~ Ctrl+B Move back one character.
— Ctrl+F Move forward one character.
Ctrl+ < none Move left one word.

3-18

Controlling Input

Key Control Key for Emacs Operation (Continued)
(MATLAB standard)
Preference

Ctrl+ — none Move right one word.

Home Ctrl+A Move to beginning of current statement.

End Ctrl+E Move to end of current statement.

Esc Ctrl+U Clear the command line when cursor is at the
command line. Otherwise, move cursor to command
line.

Delete Ctrl+D Delete character at cursor in command line.

Backspace Ctrl+H Delete character before cursor in command line.

Ctrl+K Cut contents (kill) to end of command line.

Shift+Home none Select to beginning of line.

Shift+End none Select to end of last line. Can start at any line in the
Command Window.

Enter none Append selection to statement at command line and

in selection execute it.

Ctrl+Enter none Open hyperlink displayed in Command Window. For

in hyperlink example, in the hyperlink of an error message, opens

the file in the Editor at that line number.

Navigating Above the Command Line

To peruse or copy information in the Command Window that is above the
command line (>> prompt), use the mouse and scroll bar, key combinations
such as Ctrl+Home, and search features. By default, the up and down arrow
keys recall statements so you cannot use them to move the cursor when it is
above the command line.

To use the up and down arrow keys to move the cursor when it is above the
command line, select File -> Preferences -> Command Window, and select
the Accessibility preference.

3-19

3 Running Functions—Command Window and History

Controlling Output

3-20

® “Suppressing Output” on page 3-20

¢ “Paging of Output in the Command Window” on page 3-20
¢ “Formatting and Spacing Numeric Output” on page 3-21

¢ “Clearing the Command Window” on page 3-22

¢ “Printing Command Window Contents” on page 3-22

¢ “Keeping a Session Log” on page 3-23

Suppressing Output

If you end a line with a semicolon (;) and then press Enter or Return,
MATLAB runs the statement but does not display any output. This is
particularly useful when you generate large matrices. For example, running

A = magic(100);

creates A but does not show the resulting matrix in the Command Window.

Paging of Output in the Command Window

If output in the Command Window is lengthy, it might not fit within the screen
and might display too quickly for you to see it without scrolling back to it. To
avoid that problem, use the more function to control the paging of output in the
Command Window. By default, more is off.

After you type more on, MATLAB displays only a page (a screen full) of output,
pauses, and displays

--more- -

indicating there is more output to display. Press one of the following keys.

Key Action

Enter or Return To advance to the next line
Space Bar To advance to the next page
q To stop displaying the output

Confrolling Output

You can scroll up in the Command Window to see input and output that no
longer fit in the view. To use the up and down arrow keys to go to the input and
output that no longer fit in the view, select the Command Window Accessibility
preference.

Formatting and Spacing Numeric Output

By default, numeric output in the Command Window is displayed as 5-digit
scaled, fixed-point values, called the short format. Use the text display
preference to change the numeric format of output for the current and future
sessions. The text display format affects only how numbers are shown, not how
MATLAB computes or saves them.

Function Alternative

Use the format function to control the output format of the numeric values
displayed in the Command Window. The format you specify applies until you
change it or until the end of the session. More advanced alternatives are listed
in the “See Also” section of the format reference page.

Examples of Formats
Here are a few examples of the various formats and the output produced from
the following two-element vector x, with components of different magnitudes.

X = [4/3 1.2345e-6]

format short
1.3333 0.0000

format short e
1.3333e+000 1.2345e-006

format +
++

A complete list and description of available formats is at the reference page for
format. For more control over the output format, use the sprintf and fprintf
functions.

3-21

3 Running Functions—Command Window and History

3-22

Controlling Spacing

Use the text display preference or format function to control spacing in the
output. Use

format compact

to suppress blank lines, allowing you to view more information in the
Command Window. To include the blank lines, which can help make output
more readable, use

format loose

Clearing the Command Window

Select Clear Command Window from the Edit menu or context menu to clear
it. This does not clear the workspace, but only clears the view. Afterwards, you
still can use the up arrow key to recall previous functions.

Function Alternative. Use clc to clear the Command Window. Similar to clc is the
home function, which moves the prompt to the top of the Command Window but
does not clear the text in the window.

Printing Command Window Contents

To print the complete contents of the Command Window, select File -> Print.
To print only a selection, first make the selection in the Command Window and
then select File -> Print Selection.

Specify printing options for the Command Window by selecting File -> Page
Setup. For example, you can print with a header. For more information, see
“Page Setup Options for Printing” on page 2-40.

Confrolling Output

Keeping a Session Log

The diary Function

The diary function creates a copy of your MATLAB session in a disk file,
including keyboard input and system responses, but excluding graphics. You
can view and edit the resulting text file using any text editor. To create a file
on your disk called sept23.out that contains all the functions you enter, as
well as MATLAB output, enter

diary('sept23.out')
To stop recording the session, use
diary('off"')

Other Session Logs
There are two other means of viewing session information:

® The Command History, which contains a log of all functions executed in the
current and previous sessions.

¢ The logfile startup option—see “Startup Options” on page 1-4.

3-23

3 Running Functions—Command Window and History

3-24

Searching in the Command Window

You can search for specified text that appears in the Command Window, where
the text was either part of input you supplied, or output displayed by MATLAB.
There are two search features for the Command Window:

¢ “Find Dialog Box” on page 3-24

¢ “Incremental Search” on page 3-25

After finding the text, you can copy and paste it to the prompt in the Command
Window to run it, or into an M-file or other file.

See also “Recalling Previous Lines” on page 3-13, “Tab Completion” on
page 3-14, and “Keyboard Shortcuts in the Command Window” on page 3-18 for

techniques to reuse previous statements and navigate in the Command
Window.

Find Dialog Box

Select Find from the Edit menu to search for specified text using the Find
dialog box. Complete the dialog box. The search begins at the current cursor
position. MATLAB finds the text you specified and highlights it. Click Next or
Previous to find another occurrence, or press F3 or Shift+F3.

Find

Find what: | LI Ereyinls I
EEplacerith: | LI [}l |
w

Loakin: ICummand Window _I

[matchcase [Wholeword B wirap around Close |

MATLAB beeps when a search for Next reaches the end of the Command
Window, or when a search for Previous reaches the top of the Command
Window. If you have Wrap around selected, it continues searching after

beeping.

Searching in the Command Window

Note that you can only search for text currently displayed in the Command
Window. To increase the amount of information maintained in the Command
Window, increase the setting for command session scroll buffer size in
Command Window preferences, and do not clear the Command Window.

Incremental Search

With the incremental search feature, the cursor moves to the next or previous
occurrence of the specified text in the Command Window. It is similar to the
Emacs search feature. Incremental search is also available in the
Editor/Debugger—see “Incremental Search” on page 6-26. To use the
incremental search feature in the Command Window:

1 Position the cursor where you want the search to begin.

2 How you begin the incremental search depends on your setting for the
Command Window key bindings preference:

= Press Ctrl+S for Emacs, or
= Press Ctrl+Shift+S for Windows

To look for the previous occurrence, type Ctrl+R or Ctrl+Shift+R instead.

An incremental search field, Ine Search, appears at the bottom of the
Command Window and is preceded by F for a forward search, or R when you
are looking for the previous occurrence (reverse search).

3-25

3 Running Functions—Command Window and History

3-26

Search begins at current cursor position.

«) Command Window
File Edif Debug Desktop Window Help

Fr gLy
qty =|

[15] 'Berlin'

[15] 'Boston'

[15] 'London'

[15] 'Melbourne'

[21] 'Berlin'

[21] 'Boston'

[21] 'London'

[21] 'Melbourne'

[22] 'Berlin'

[22] 'Berlin'

[22] 'Boston'

[22] 'Boston'

[22] 'London'

[22] 'London'

[22] 'Melbourne'

[22] 'Melbourne'
i

|F Inc: Search: | Ké

Incremental search fie\d.

3 In the Inc Search field, type the text you want to find. For example, look for

Boston.

As you type the first letter, b, the first occurrence of that letter in the

Command Window after the current cursor position is highlighted. For the
example shown, the first occurrence of b is highlighted, the b in Ber1in. Note
that incremental search allows for case sensitivity—see “Case Sensitivity in

Incremental Search” on page 3-28.

Searching in the Command Window

MATLAB finds the next b.

<) Command Window 1 9 [=] E3
File Edit Debug Deskiop ‘Window Help
> gLy (=
oty =

[15] ‘Beriin

[15] 'Boston'

[15] 'London'

[15] 'Melbourne!

[21] 'Berlin'

[21] 'Boston'

[21] 'London'

[21] 'Melbourne! —

[22] 'Berlin'

[22] 'Berlin'

[22] 'Boston'

[22] 'Boston' LI

|F Inc Search: b i

When you type the next letter, the first occurrence of the text becomes
highlighted. In the example, when you add the letter o to the b so that the
Inc Search field now has bo, the bo in Boston becomes highlighted.

= If you mistype in the Inc Search field, use the Back Space key to remove
the last letters and make corrections.

= After finding the bo, you can press Ctrl+W to complete that word. In this
example, Boston appears in the Inc Search field.

To find the next occurrence of Boston in the Command Window, press
Ctrl+S. To find the previous occurrence of the text, press Ctrl+R.

If MATLAB beeps, the display shows Failing F Inc Search, followed by the
text you entered. This means either that the text was not found, or the
search wrapped past the end or beginning of the Command Window.

3-27

3 Running Functions—Command Window and History

3-28

5 To end the incremental search, press Esc or Enter, or any other key that is

not a character or number.

The Inc Search field no longer appears. The cursor is at the position where
the text was last found, with the search text highlighted.

6 Ifyou end incremental search and then enter Ctrl+S or Ctrl+R, the search
term from your previous incremental search appears in the Ine Search field.

Incremental search is also available in the Editor/Debugger.

Case Sensitivity in Incremental Search

When you enter lowercase letters in the Inc Search field, for example, b,
incremental search looks for both lowercase and uppercase instances of the
letters, for example b and B. However, if you enter uppercase letters, for
example, B, incremental search only looks for instances that match the case you

entered.

In the example, enter b0 in the Inc Search field and incremental search does

not find any matching text because the 0 is uppercase.

Incremental
search is
case-sensitive
when you enter
uppercase
letters. Here, no
matches are
found for boO:

<} Command Window 1 =] 3

File Edit Debug Desktop Window Help

Fr gLy

qry =
[15] 'Berlin'
[15] ‘Boston
[15] 'London'
[15] 'Melbourne'
[21] 'Berlin'
[21] 'Boston'
[21] 'London'
[21] 'Melbourne'
[22] 'Berlin'
[22] 'Berlin'
[22] 'Boston'

-

|FaMng F Inc Search: b

w &

Preferences for the Command Window

Preferences for the Command Window

To set preferences for the Command Window, select File -> Preferences and
then select Command Window in the left pane of the Preferences dialog box.

<} Preferences

enersl
arts

alors
Ea_ommand Windouw

evboard & Indetting
—Command Histary
[+-EditarDebugger

—Help

—Current Directary
—Warkspace

—&rray Editor

—UIDE

ﬂigure Copy Template
imulink

Command Window Preferences

= (0] x|

~Text display

Mumeric format: Ishort 'I
Murmeric display: Iloose "I

Dizplay
r Wiap lines

[Litnit mstrise display wicth to eighty colurmns

Murmber of lines it comrmand window scroll buffer: I 5.':'0'33:

Accessibilty

™ Arrow keys navigate instead of recalling history

Ok Cancel | Apply | Help |

Set these Command Window preferences:

¢ “Format, Display, and Accessibility Preferences” on page 3-29

¢ “Keyboard and Indenting Preferences for the Command Window” on

page 3-31

Format, Display, and Accessibility Preferences

Text Display

Specify the format, that is, how output appears, in the Command Window.

3-29

3 Running Functions—Command Window and History

3-30

Numeric format. Output format of numeric values displayed in the Command
Window. This affects only how numbers are displayed, not how MATLAB
computes or saves them. The format reference page includes the list of
available formats, with examples.

Numeric display. Spacing of output in the Command Window. To suppress blank
lines, use compact. To display blank lines, use 1oose. For more information, see
the reference page for format.

Display

Wrap lines. Select to make a single line of input or output in the Command
Window break into multiple lines in order to fit within the current width of the
Command Window. This is useful for console mode. With this option selected,
an entire line is visible without scrolling, and the horizontal scroll bar does not
appear because it is not needed.

Limit matrix display width to eighty columns. When selected, MATLAB displays only
80 columns of matrix output, regardless of the width of the Command Window.
Clear the check box if you make the Command Window wider than 80 columns
and want matrix output to fill the width of the Command Window. See also the
display reference page.

To determine the number of columns and rows that will display in the
Command Window, given its current size, use

get (0, 'CommandWindowSize')

With the matrix display width preference cleared, the number of columns is
based on the width of the Command Window. With the preference set to 80
columns, the number of columns is always 80.

Number of lines in command window scroll buffer. Set the number of lines
maintained in the Command Window, from 1,000 to 25,000. This is the
number of lines you can see when you scroll vertically. A larger buffer means
you can view more lines and it provides a larger base for search features, but
requires more memory.

This preference setting does not impact the number of lines you can recall when
you use the up arrow in the Command Window. Using the up arrow, you can
recall all lines shown in the Command History window, regardless of how
many lines you can see in the Command Window.

Preferences for the Command Window

Accessibility
Select this option to use the up and down arrow keys to move the cursor when
it is above the command line. With this preference selected, use Ctrl+ up arrow

or down arrow to recall statements for Windows and Macintosh key bindings,
or Ctrl+P and Ctrl+N for Emacs (MATLAB standard) keybindings.

Clear this preference to use the up and down arrow keys to recall statements.
Use the mouse and other features to move the cursor when above the command
line.

Keyboard and Indenting Preferences for the
Command Window

Command Line Key Bindings
Specify the keyboard shortcuts to be used at the command line.

Emacs (MATLAB standard). Use the control keys listed in “Keyboard Shortcuts in
the Command Window” on page 3-18, which should be familiar to existing
MATLAB users and Emacs users. For example, Ctrl+A moves the cursor to the
beginning of the line.

Windows. Use Windows standard control keys. For example, Ctrl+A is the
shortcut for Edit -> Select All, which selects the entire contents of the
Command Window.

Macintosh. Available only on Macintosh platforms, specify to use Macintosh
keys, such as the Command key. When selected, you can use the Macintosh
command key instead of the Ctrl key.

Tab Key

Tab size. Number of spaces assigned to a tab stop when displaying output. The
default is 4 spaces, except on UNIX platforms where the default is 8 spaces.

Enable tab completions. Select the check box if you want to use tab completion
when typing functions in the Command Window. Clear the check box if you do
not want to use the tab completion feature. In that event, when you press the
Tab key, MATLAB moves the cursor to the next tab stop rather than
completing a function.

3-31

3 Running Functions—Command Window and History

3-32

Parentheses Matching

These preferences cause MATLAB to notify you about matched and unmatched
delimiters. For example, when you type a parenthesis or another delimiter,
MATLAB highlights the matched parenthesis or delimiter in the pair. These
preferences are the same as the parentheses matching in the Editor/Debugger.
For a description, see “Parentheses Matching Preferences” for the
Editor/Debugger.

Command History

Command History

The Command History window displays a log of the statements most recently
run in the Command Window. If you are using the Help browser, watch the
Command History video demo for an overview of the major functionality.

To show or hide the Command History window, use the Desktop menu.
Alternatively, use commandhistory to open the MATLAB Command History
when it is closed, or to select it when it is open. For details, see “Arranging the
Desktop—Overview” on page 2-5.

Use the Command History window as described in these sections:

* “Viewing Statements in the Command History Window” on page 3-34
¢ “Using Statements from the Command History” on page 3-35

¢ “Searching in the Command History” on page 3-36

¢ “Printing the Command History” on page 3-38

¢ “Deleting Entries in the Command History Window” on page 3-38

Timestamp marks the start of each session. Select it to select all
statements in the history for that session.

Click - to hide history <) Command History
for that session. File Edit| Debug Deskiop ‘Window Help
Click + to expand: E%-— 09/24/03 10:30 AM ——% =
which collats
Select one or more collatz (2]
lines and right-click to collatzplot (3)
cdbouit

copy, evaluate, create
Py, ’ E-%-- 09/25/03 09:11 AN —-%
a shortcut, or create
load theta

an M-file from the
. 17 =
selection. (17 -
4

3-33

3 Running Functions—Command Window and History

3-34

MATLAB provides other options for viewing a history of statements. See also

¢ “Recalling Previous Lines” on page 3-13, which describes using the up arrow
in the Command Window

¢ The diary function reference page

¢ “Startup Options” on page 1-4, which includes the logfile startup option

Viewing Statements in the Command History
Window

The Command History window lists statements you ran in the current session
and in previous sessions. The time and date for each session appear at the top
of the history of statements for that session. Use the scroll bar or the up and
down arrow keys to move through the Command History window.

Click - to hide the history for a session, and click + to show it. Select a
timestamp to select all entries for that session. With a timestamp selected, you
can press the + or - keys to show and hide entries.

The Command History file is history.m. Type prefdir in the Command
Window to see the location of the file. The history.m file is loaded when
MATLAB starts. The Command History file stores a maximum of 20,000 bytes,
deleting the oldest entries as needed to maintain that size.

MATLAB automatically saves the Command History file throughout the
session according to the Saving preference you specified. You can choose to
automatically exclude certain statements from being written to the Command
History with the Settings preference. For details, see “Preferences for
Command History” on page 3-40.

Command History

Using Statements from the Command History

You can select statements in the Command History and then perform the
following actions on the selected statements.

Action

How to Perform the Action

Run the statements in
the Command Window

Edit and run the
statements in the
Command Window

Copy the statement(s)
to another window

Double-click an entry (entries) in the Command
History window to execute the statement(s). For
example, double-click edit myfile to open
myfile.min the Editor. You can also run a
statement by right-clicking it and selecting
Evaluate Selection from the context menu, and
by selecting a statement and pressing Enter or
Return.

Select an entry or entries and then select Copy
from the context menu. Paste the selection into
the Command Window. Alternatively, drag the
selection to the Command Window.

Then in the Command Window, edit the
statements, and press Enter or Return to
execute them.

Select an entry or entries and then select Copy
from the context menu. Paste the selection into
an open M-file in the Editor or any application.
Alternatively, drag the selection from the
Command History to an open M-file or another
application.

3-35

3 Running Functions—Command Window and History

3-36

Action How to Perform the Action (Continued)
Create an M-file from Select an entry or entries and then right-click
the statement(s) and select Create M-File from the context

menu. The Editor opens a new M-file that
contains the statements you selected from the
Command History window.

Create a shortcut from Select an entry or entries and then right-click

the statement(s) and select Create Shortcut from the context
menu. Alternatively, drag the selection to the
Shortcuts toolbar. The Shortcut Editor opens
and the selected statements appear in the
Callback field. For more information, see
“Shortcuts for MATLAB—Easily Run a Group
of Statements” on page 2-21.

Searching in the Command History
There are two types of search in the Command History:

¢ “Find Next Entry By Letter” on page 3-36
¢ “Find Text” on page 3-37

After finding an entry, you can copy and paste it into an M-file or other file, or
you can right-click and select Evaluate Selection to run the entry.

Find Next Entry By Letter

Type a letter in the Command History to move to the next entry that begins
with that letter, as illustrated in the following example.

1 Position the cursor at which collatz in the Command History.

Command History

<) Command History 3 =] B3

File Edit Debug Desktop “Window Help

EF%-- 09/24/03 10:30 AWM —-% -

collatz(2)
collatzplot (3)
dbcuit

E-%-- 09/25/03 09:11 AM --%

load theta
{17 il
4

2 Type 1. The Command History selects the next entry that begins with 1, in
this example, load.

Type a letter, in this example 1, and the Command History selects
the next entry that begins with that letter.

<) Command History K1 [=] B3

File Edit Debug Desktop Window Help

E-%-—- 09/24/03 10:30 AM —-% -
which collatz
collatzi(2)
collatzplot(3)
dixcruit
E-%-- 09/25/03 09:11 AM —-%

[17] jd
i

Find Text

Select Find from the Edit menu to search for specified text using the Find
dialog box. Complete the dialog box. The search begins at the current cursor
position. MATLAB finds the text you specified and highlights it. Click Next or
Previous to find another occurrence, or press F3 or Shift+F3. Find looks for
visible entries only, that is, it does not find entries in collapsed nodes.

3-37

3 Running Functions—Command Window and History

3-38

Search for specified text in the Command History.

Find what: | j Ereyvious I
EeplEce with: | j I e |
-

Look in: ICnmmand History J

[matchcase [Wholeword I Wrap around Close |

MATLAB beeps when a search for Next reaches the end of the Command
History, or when a search for Previous reaches the top of the Command
History. If you have Wrap around selected, it continues searching after
beeping.

Printing the Command History

To print the contents of the Command History window, select File -> Print.
Specify options for printing by selecting File -> Page Setup. For example, you
can print the history with a header. For more information, see “Page Setup
Options for Printing” on page 2-40.

Deleting Entries in the Command History Window

Delete entries in the Command History window when you feel there are too
many and it becomes inconvenient to find the ones you want. All entries remain
until you delete them.

To delete entries in the Command History window, first select the entries to
delete:

® Select a single entry.

¢ Shift+click or Ctrl+click to select multiple entries.

¢ Select the timestamp for a session to select all entries for that session. Then
use Shift+click or Ctrl+click to select multiple timestamps with all of their
entries.

Then right-click and select Delete selection from the context menu, or press
the Delete key.

Command History

To delete all entries, select Edit -> Clear Command History.

After deleting entries from the Command History, you will not be able to recall
those statements in the Command Window as described in “Recalling Previous
Lines” on page 3-13.

3-39

3 Running Functions—Command Window and History

3-40

Preferences for Command History

Using Command History preferences, you can choose to exclude statements
from the Command History and specify how often to save the Command
History.

To set preferences for the Command History, select File -> Preferences, and
then select Command History in the Preferences dialog box.

Settings

Specify the types of statements to exclude from the Command History. Note
that when you exclude statements from the Command History, you cannot
recall them in the Command Window as described in “Recalling Previous
Lines” on page 3-13.

Save Exit/Quit Commands

Select the check box to save exit and quit commands in the Command
History.

Save Consecutive Duplicate Commands

Select the check box if you want consecutive executions of the same statement
to be saved to the Command History.

For example, with this option selected, run magic(5), and then run magic(5)
again. The Command History saves two consecutive entries for magic(5). With
this option cleared, for the same example, the Command History saves one
entry for magic(5). If you then run magic(10), the Command History saves
two entries, magic(5) followed by magic(10).

Saving

Use Saving preferences to specify how often to automatically save the
Command History during a MATLAB session.

Save History File On Quit

Select this option to save the Command History when you end the MATLAB
session. If the session does not end via a normal termination, that is, via the
exit or quit functions, File -> Exit MATLAB, or the MATLAB desktop close
box, the history file is not saved for that session.

Preferences for Command History

Save After n Commands

Select this option to save the Command History after n statements are added
to the file. For example, when you select the option and set n to 10, after every
10 statements are added, the history file is automatically saved. Use this
option if you don’t want to risk losing entries to the saved history because of an
abnormal termination, such as a power failure.

Don’t Save History File

Select this option if you do not want to save the history file. This feature is
useful when multiple users share the same machine and do not want other
users to view the statements they have run.

3-41

3 Running Functions—Command Window and History

3-42

Help for Using MATLAB

If you are using the Help browser, watch the Help and Documentation video demo for an overview of

the major functionality.

Types of Documentation (p. 4-2)
Help Browser (p. 4-5)

Find Information with the Help
Browser (p. 4-8)

View Documentation in the Help
Browser (p. 4-20)

Demos in the Help Browser (p. 4-24)

Preferences for the Help Browser
(p. 4-28)

Printed Documentation (p. 4-31)

Help Functions (p. 4-33)
Other Forms of Help (p. 4-38)

Use the type of documentation that best meets your need.

Overview to finding information about your MathWorks
products using the Help browser.

Use the contents listing of the online documentation, a
global index, and full-text search.

After finding documentation, view the documentation
and perform other operations using the display pane.

Run demonstration programs, and view and copy the
M-file code behind them.

Specify fonts used in the Help browser and limit the
documentation included using the product filter.

Print from the Help browser or from the PDF version of
the documentation, or purchase printed documentation.

Use functions to get information, such as help and doc.

Use product-specific help features, download M-files,
contact Technical Support, see documentation for other
MathWorks products, view a list of other books, and
participate in a MATLAB newsgroup.

4 il tor Using MATLAB

Types of Documentation

The Help browser and help functions provide access to the following types of
information for all installed MathWorks products. The icons shown here
appear in the Help browser contents listing to help you quickly identify
documentation by type.

lcon Type of Documentation Description and When to Use

Q Getting Started Review Getting Started documentation before you begin
using a product or feature for the first time. Then, to learn
more, go to the user guides, reference pages or demos and
examples.

Release Notes An overview of new products and features in a release, it

P or Product

& Index of Examples

B User Guides (blue)

@ Reference Pages
(orange)

also includes upgrade information and any known problems
and limitations. Review the Release Notes for all your
products when you first start using a new release.

MATLAB and toolboxes use orange book icons @, while
Simulink, Blocksets, and related products use blue book
icons &,

Accessible via the Help browser Contents listing, this is an
index of the major examples included in the Help browser
documentation.

User guide material is comprehensive, containing overviews
as well as detailed instructions. Consult it after reviewing
Getting Started material.

Each function has a reference page that provides the syntax,
description, examples, and other information for that
function. It includes links to related functions and additional
information. Reference pages are also provided for blocks
and properties.

4-2

Types of Documentation

lcon Type of Documentation Description and When to Use (Continued)
T Printable Most products provide the online documentation in a
Documentation printable format, PDF. Access PDF files via the Help
browser and print them from your PDF reader, such as
Adobe Acrobat. Most PDF files reside only on The
MathWorks Web site, so you need an Internet connection to
view them.
& Product Pages Available on the MathWorks Web site, a product page
contains the latest product information.
] Support and Web Provides access to the MathWorks Technical Support
Services searchable database, maintained on the MathWorks Web
site. Use it to find solutions to questions posed by users.
L% Demos MathWorks products come with examples that demonstrate
features of the product. Many of the demos actually run
MATLAB code. Use the Help browser Demos pane to access
demos for the products you have installed.
none M-File Help Get M-file help in the Command Window to quickly access

basic information for a function. It provides a brief
description of a function and its syntax. It is called M-file
help because the text of the help is a series of comments at
the top of the M-file for a function.

Accessing Documentation on the Web

You can access all product documentation on The MathWorks Web site at
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml. Use
the Web site documentation for products you have not installed, or for prior
versions of a product, or if you prefer Web browser access. PDF documentation
is available only on the Web site.

You cannot read MATLAB documentation files from the MATLAB CD. You
also cannot use a Web browser to read the documentation files installed with
MATLAB because the files are compressed JAR files.

4-3

4 il tor Using MATLAB

Documentation in Other Languages

The MathWorks documentation is available in English. Japanese versions of
MATLAB include documentation that has been translated into Japanese. For
more information, go to http://www.cybernet.co.jp/matlab.

Help Browser

Help Browser

Use the Help browser to search and view documentation and demonstrations
for MATLAB and all other installed MathWorks products. The Help browser is
an HTML browser integrated with the MATLAB desktop.

To open the Help browser, click the help button # in the desktop toolbar, type
helpbrowser in the Command Window, or use the Help menu in any tool.
There are two panes:

¢ The Help Navigator, on the left, for finding information, includes Contents,
Index, Search, and Demos tabs. For more information, see “Find
Information with the Help Browser” on page 4-8.

¢ The display pane, on the right, for viewing documentation and demos.

Tabs in the Help Navigator pane provide different ways to find information.

Use the close box to Drag the separator bar to adjust View documentation in
hide the pane. the width of the panes. the display pane.

File Edit |view Go Faworites Degktop “Window Help &
Help Navigator "% - = O | =) | 7y

Cortents | Indexl Searchl Demosl Title: IM TLoE LI
Begin Here

: Felease MNotes MATI_ABM
—_

5 Signal Processing Toalh Functions: Handle

& Simulink By Category Graphics:

@ CDMA Reference Blocks In Alphabetical Order Object Properties
@ Communications Blocks

@ Signal Processing Block _
¥ Suppaort and Weh Servic Documentation Set

Getting Started
Introduces MATLAB and gets you started using it

Rl | 2|« | 3

4-5

4 il tor Using MATLAB

Resizing the Help Browser
To adjust the relative width of the two panes, drag the separator bar between

them. You can also change the font in either of the panes—see “Help Fonts
Preferences—Specifying Font Name, Style, and Size” on page 4-30.

Once you find the documentation you want, you can close the Help Navigator
pane so there is more screen space to view the information itself. This is shown
in the following figure. To close the Help Navigator pane, click the close box
Xl in the pane’s upper right corner. To open the Help Navigator pane from
the display pane, click the Help Navigator icon on the toolbar [Z3.
Alternatively, use the View menu.

To show only the display pane, as in this illustration, select View -> Help Navigator.
Then click the Help Navigator icon to display the Help Navigator again.

E:-.Help 1 =]
File Edit “iew Go Favortes Desktop Window Help N

o «=C 5 M

Tithe: I Tab Completion : Running Functions--Command Windowe and History (Desktop... ﬂ

Desktop Tools and Development Environment —
Tab Completion L

MATLAB helps you automatically completes the name of a function on
the search path, filename, variable, structure, or Handle Graphics
property if you type the first few characters and then press the Tab key.
To uge tab completion, you must have the tab completion preference
selected. Far details, see Keyboard and Indenting Preferences for the
Command YWindow.

The examples explain how to use tab completion:

+ Basic Example--Unigue Completion

* Multiple Possible Cormpletions

» Many Completions
+ Tab Completion for Directories and Filenames -

4-6

Help Browser

Adding Your Own Help Files to the Help Browser

You can add your own HTML help files so they appear in the Help browser. For
details, see “Adding Your Own Toolboxes to the Development Environment” in
the online documentation.

4 il tor Using MATLAB

Find Information with the Help Browser

Use the Help Navigator, the left pane in the Help browser, to find information.
These sections describe the main features:

¢ “Contents Listing in the Help Browser” on page 4-8—View an expandable
table of contents for documentation.

¢ “Index for the Help Browser” on page 4-11—Use keywords to find
information.

¢ “Search Documentation with the Help Browser” on page 4-13—Find
documentation using full-text and other forms of search.

® “Favorites” on page 4-19—Bookmark pages you want to refer to again.

Contents Listing in the Help Browser

To list the documentation titles and tables of contents for products you
installed, click the Contents tab in the Help Navigator pane. To show
documentation for only some of the installed products, use the product filter.

4-8

Find Information with the Help Browser

E Help =] E3
File Edit “iew Go Favorites Desktop “Window Help e
Help Navigator X lqm o O | & | Ty
GRS | Indexl Searchl Demosl Title: IS\mtax Highlighting :: Running Functions--Cornina. . LI
Begin Here - a
? Release Motes Syntax Highlighting
$ Installation
5 WATLAS Some entries appear in different colors to help
[Getting Started yau better find elements, such as matching
Examples if/else statements. This is known as syntax
=) Desktop Tools and Develop highlighting. ¥ ou can change the colars using
Startup and Shutdown preferences. Note that output does not appear
Desktop with syntax highlighting, except for errors. For e

=-Running Functions-—-Camm: mate infarmation, see Colors Preferences for
Opening the Command Desktop Tools,

Running Functions and Default colors are shown here—to changs them, u.
E-Caontralling Input

TR T Keywords, like these <) Command Window
o H”=‘“'”=‘““ for program control. “File Edit Debug De]
1K1 ; 4| | v

2

Product Roadmap

When you select a product in the Contents pane (any entry with a book

icon), such as MATLAB or the Communications Toolbox, a roadmap of the
documentation for that product appears in the display pane. The roadmap
includes links to commonly used sections, including:

¢ Function and block references pages

¢ An index of major examples in the documentation

¢ The PDF version of the documentation, which is suitable for printing (this is
the only direct access from MATLAB to the printable documentation)

Navigate the Contents Listing
In the Contents listing, you can

¢ Click the + to the left of an item to show the first page of that document or
section in the display pane and expand the listing for that item in the Help

4-9

4 il tor Using MATLAB

Navigator pane. Shortcuts are: double-click the item, press the right arrow
key, or press + on the numeric keypad.

¢ Click the - to the left of an item to collapse the listings for that item.
Shortcuts are: double-click the item, press the left arrow key, or press - on
the numeric keypad.

® Select an item to show the first page of that document or section in the
display pane.

® Press * on the numeric keypad to expand all nodes for the selection.

¢ Use the down and up arrow keys to move through the list of items.

Icons in the Contents Listing

Icons for entries in the top levels of the Contents listing represent the type of
documentation so you can quickly find the kind of information you need for a
product. See the legend for icons in “T'ypes of Documentation” on page 4-2.

Product Pages

After expanding the listing for a product in the Contents pane, the last entry
is Product Page (Web). This links to the MathWorks Web site for the latest
information about that product. Like other links to the Web, the page opens in
your system Web browser.

Synchronize the Contents Listing with the Display Pane

By default, the topic highlighted in the Contents pane matches the title of the
page appearing in the display pane. The Contents listing is said to be
synchronized with the displayed document. This feature is useful if you access
documentation with a method other than the Contents pane, for example,
using a link in a page in the display pane. With synchronization, you know
what book and section the displayed page is part of. Note that synchronization
only applies to the major headings in a document. For pages that begin with
lower level headings, the Contents listing does not synchronize.

You can turn off synchronization. To do so, use preferences. See “General—
Keep Contents Synchronized” on page 4-29.

Synchronization only applies to the Contents pane. The page shown in the
display pane does not necessarily correspond to the selection in the Index,
Search, or Demos panes. However, if you return to the Contents pane, the
Contents pane synchronizes with the displayed page.

4-10

Find Information with the Help Browser

Index for the Help Browser

To find specific index entries (selected keywords) in the MathWorks
documentation for installed products, use the Index in the Help Navigator
pane.

Help Navigator X

Conterts Ihdes: |Search| Demosl

Search index far: I

Mame Product I
/0 conversion Signal Processing Toolh... %
abs Signal Processing Toolh. .
abs MATLAE
A-law companders Comrmunications Toolhox
Abs block Simulink

ZEero crossings
Ahsoft Pro Fortran compiler Installation
absolute accuracy

BvPF MATLAS
DDE MATLAS
ODE MATLAS
absolute tolerance
definition Simulink
simset parameter Simulink
simulation accuracy Simulink hd|

1 Click the Index tab.

2 Type a word or words in the Search index for field. As you type, the Index
pane displays matching entries and their subentries (indented). It might
take a moment for the display to appear. The index is not case sensitive. If
there is not a matching entry, it displays the page for the letter that your
entry begins with.

The product whose documentation includes the matching index entry is
listed next to the index entry, which is useful when there are multiple
matching index entries. You might have to make the Help Navigator pane
wider to see the product.

4-11

4 il tor Using MATLAB

3 Select a blue index entry from the list (where blue represents a hyperlink)
to display the page to which the term refers. Multiple links per entry are
denoted by numbers in brackets following the term. (Black index entries are
headings and do not link to any page.)

The page whose entry you selected appears in the display pane, scrolled to
the location that the entry references.

4 To see more matching entries, scroll through the list.

Tips for Using the Index

¢ To see entries for all installed products, select File -> Preferences -> Help,
and clear the Enable product filter check box.

¢ To see entries for selected products only, select File -> Preferences -> Help
and set the product filter.

¢ For more or different results, type a different term or reverse the order of the
words you type. For example, if you are looking for creating M-files, type
M-files and look for the subentry creating.

¢ After selecting an entry, search for specified text in the displayed page using
the Find tool, accessible from the binoculars icon #4 on the display pane
toolbar.

¢ When there are multiple matching entries, refer to the product associated
with each entry, which appears in the second column of the Index results.
You might need to make the pane wider to see it.

¢ For different but related results, try the Search pane—for instructions, see
“Search Documentation with the Help Browser” on page 4-13.

4-12

Find Information with the Help Browser

Search Documentation with the Help Browser
® “Search Pane in the Help Browser” on page 4-13

¢ “Boolean Operators in Search” on page 4-16
® “More About Search” on page 4-16

® “Get Fewer Results” on page 4-17

¢ “Get More Results” on page 4-18

Search Pane in the Help Browser

To look for a specific word or phrase in the documentation, use the Search pane
in the Help Navigator.

Help Nawvigator X
Corrtentsl Index, Search I Demnsl

Search far: I LIEI
Title | section | Procuct

Rl | i

1 To limit (or extend) the products whose documentation is searched, set the
product filter.

2 Click the Search tab.

3 Type the word or words you want to find in the Search for field, and click
Go (or press Enter or Return). You can use Boolean operators between the
words—see “Boolean Operators in Search” on page 4-16.

The documents containing all of the exact search words are listed, with the
documentation Section and the Product name shown in the second third

4-13

4 il tor Using MATLAB

columns, providing context for the results. You might need to make the Help
Navigator pane wider to see all columns. The total number of results
appears at the bottom left side of the pane.

4 Select an entry from the list of results.

The selected page appears in the display pane with all occurrences of the
search words highlighted using a different color for each search word.
Search words remain highlighted until you view another page or until you
click the page refresh button & in the toolbar.

In the display pane, use the Find tool, accessible from the binoculars icon #
on the toolbar, to go directly to the next instance in that page of a word you
specify.

5 Search results are ordered by relevance. For example, titles that contain all
search words appear first, while pages containing a single instance of each
search word appear last.

= Change the order of the results by clicking a column heading. For example,
click Product to group results by product. Click Title to sort titles
alphabetically. A triangular icon indicates the column on which you most
recently sorted. After changing the order of results, you need to rerun the
search to see results ordered by relevance.

= Change the order of the columns by dragging a column to a new position.
For example, you can drag the Product column so it is second, which
makes the Title column third.

= Make columns wider or narrower by dragging the separator bar between
the column headings.

6 For more results, you can search for the words in the Technical Support
database on The MathWorks Web site by clicking the link at the bottom of
the Search results pane.

4-14

Find Information with the Help Browser

Results are sorted by title relevance.

Change the order of results by

clicking a column heading,

File Edit %iew Go Fg

orites Deskio

View and
run
previous
searches.

o Mindow Help

Instances of search words are highligh
Click the refresh button to clear highlig

Use Find to go directly to
specified words.

ted
hts.

Help Navigator

x

Conterts | Index Search | peros |

Search for: I print figure

ga[

-0 S #

Title: I Prirting & Centered Figure 1 Printing and

Exporting (Graphics)

[

Title

Printing

Printing

print, printopt
printdly

print, printopt
printpreview

i

Printing a Center...
Printing a Figure
Printing Figures

Figure Properties

Wiultiple Plots in ...
Printing Graphics
Displaying Multip... Basic Plotting ...

Section |

Printing and Ex...
MATLAE Plottin...
Installing and St...
MATLAB Functi...
Functions -- Cat._.
MATLAB Functi...
MATLAB Functi..
MATLAB Functi...
MATLAB Functi..

Graphics
Graphics

= ' =Th

Product

MATLAE ‘

MATLAB
Installation
MATLAB
MATLAR
MATLAB
MATLAR
MATLAB
MATLAR
MATLAB
MATLAR

MATLAB_Iﬂ
AT P

Search Support Database an VWeb far

print figure

Graphics

Printing a Centered Figure

This example sets the size of a figure to 5.5-by-3 inches and

centers it on the paper.

Using the Graphical User Interface

1. Select Page Setup from the figure window's File

G

rrenu, and select the Size and Position tah.

2. Make sure Use manual size and position is

selected.

. Click Center.
Click OK.
. Dpen the Print dialoa box and

00 Mo W

Rl

. Enter 5.5 in the Width field and 3 in the Height field.
. Mlake sure that Units field is set to inches.

arint thi fioure,

104 pages cqrdain the words: print AND figure

B

Summary of search

results.

For more results, search
Technical Support solutions and

notes.

4-15

4 il tor Using MATLAB

Function Alternative. From the Command Window, use docsearch to open the
Help browser to the Search pane and search for the specified term. For
example

docsearch('print figure')

finds all pages that contain the words print and figure. For details, see the
docsearch reference page.

Boolean Operators in Search

The search automatically performs a Boolean AND for multiple words. In the
example print figure, it finds all pages that have both the word print and
the word figure, although the page might not necessarily have the exact
phrase “print figure”.

You can refine the search by including the Boolean operators AND, OR, and NOT
between words. The operators must be in all capital letters and there must be
a space before and after each operator. The Boolean operators are evaluated in
left to right order.

Example Using Boolean Operators in Search. Type

print OR printing AND figure NOT exporting

to find all pages that contain the words print and figure, or printing and
figure, but only if the page does not contain the word exporting. At the top of
the results list are any pages that contain all the ANDed and ORed words in the
page title.

More About Search

These are the guidelines search uses:

¢ Insignificant words (a, an, the, of) are ignored.
® Search is not case sensitive.

® You cannot enter quotation marks around words to find exact phrases and
you cannot use wildcards.

¢ Search does not find operators and special characters, such as +, so instead
use the Index.

e Search does not find numbers, but does find text that contains numbers. For
example, search does not find 7, but does find V7.

4-16

Find Information with the Help Browser

¢ If you are searching for information about an option, try including the
hyphen (-) before the option, for example, save -append.

e Search does not find words in demos.

¢ If you search for a function that is used in multiple products (called an
overloaded function), the reference pages for all those products are listed.
Use the Product column to distinguish the reference page you want.

Get Fewer Results

If there are too many results for the search to be useful, try the following.

Problem

Try These Suggestions

Too many products

Page is not about search
word, but just mentions it

Too many irrelevant
results

Topic is not relevant

Select File -> Preferences -> Help and
enable the product filter for specified
products. For details, see “Product Filter” on
page 4-28.

Order results by product—click the Product
(third) column. If you cannot see it, make the
pane wider.

Try the Index pane to see more important
entries for that search word.

Type more than one word in the Search for
field.

Use Boolean operators (in all capitals), for
example, printing AND figures NOT
exporting.

Look at the Section (second) column in the
search results list, which provides context for
the result. If you cannot see the column,
make the pane wider.

4-17

4 il tor Using MATLAB

Get More Results
If you want more results, try the following.

Problem Try These Suggestions

No results for the product Be sure the product filter is set correctly.
Select File -> Preferences -> Help and
disable the product filter. For details, see
“Product Filter” on page 4-28.

No results but you know Try variations of the search words with an OR

the word should be there between the words. For example, search for
preference OR preferences to find all pages
that contain either the word preference or
the word preferences.

Not enough information Try searching the Technical Support
database by clicking the link at the bottom of
the Search results pane.

4-18

Find Information with the Help Browser

Favorites
Favorites are bookmarks to pages in the Help browser documentation.

Add Favorites
To designate the displayed page as a favorite (that is, to bookmark it):

1 Select Favorites -> Add to Favorites.

2 The Favorites Editor dialog box opens. You can accept the defaults and
click Save, or make changes to the entries:

a Use the Label provided, or change it to another term.
b Do not change the entry for Callback.

¢ Maintain the Category as Help Browser Favorites so you can access
them from the Favorites menu.

d For Icon, keep the default Help icon, or choose another.

A favorite is implemented as a MATLAB shortcut, so the dialog box is the
same as for the Shortcut Editor.

Favorites from previous releases are not migrated to a new release.

Go to Favorites

Select the Favorites menu to view the list of pages you previously designated
as favorites (bookmarks). Select an entry and that page appears in the display
pane.

Organize Favorites

You can rename, remove, and reorder the listing of favorites. Select Favorites
-> Organize Favorites. For more information, click Help in the Organize
Favorites dialog box.

4-19

4 il tor Using MATLAB

View Documentation in the Help Browser

After finding documentation with the Help Navigator, view the
documentation in the display pane. The features available to you while viewing

the documentation are

¢ “Browse to Other Pages” on page 4-21

¢ “Links” on page 4-22

¢ “Find Text in Displayed Pages” on page 4-22
¢ “Copy Information” on page 4-22

¢ “Evaluate a Selection” on page 4-23

® “View the Page Source (HTML)” on page 4-23

4-20

View Documentation in the Help Browser

Browse to Other Pages
Use the arrow buttons in the page and in the toolbar to go to other pages.

Back button shows previous page you Use left and right arrows in View list of and

viewed in the Help browser. the page to go to the previous go to previously
Return to pages and next pages in the viewed pages.
document.

previously viewed.

File [Edit “iew Go Favorites Desktop “Window Help e
> 2 #@

Title: I Tab Completion :: Running Functionz--Command Yindowe and History (Desklop...

Desktop Tools and Development Environment F_Fl I~

Tab Completion

MATLAB helps you autamatically completes the name of a function on
the search path, filename, varniable, structure, or Handle Graphics
property if you type the first few characters and then press the Tah key.
To use tab completion, you must have the tab completion preference
selected. For details, see Keyboard and Indenting Preferences for the
Cormrnand Wyind o,

The examples explain how to use tab completion:

+ Basic Example--Unigue Cormpletion

+ Multiple Possible Completions

+ Many Completions
+ Tab Completion for Directories and Filenames -

2

View the next page in a document by clicking the right arrow ® at the top or
bottom of the page. View the previous page in a document by clicking the left
arrow [at the top or bottom of the page. These arrows allow you to move
forward or backward within a single document. The arrows at the bottom of the
page are labeled with the title of the page they go to.

View the page previously shown by clicking the back button # in the display
pane toolbar. After using the back button, view the next page shown by clicking
the forward button # in the display pane toolbar. These buttons work like the

4-21

4 il tor Using MATLAB

forward and back buttons of popular Web browsers. You can also go back or
forward by right-clicking a page and selecting Back or Forward from the
context menu.

Links

Click links in the displayed page to get more information on the subject. Links
appear underlined and in blue. Visited links appear in purple. Links to the Web
display the linked page in your system Web browser. Click the middle mouse
button to open the linked page in a separate window.

Find Text in Displayed Pages
You can find a phrase in the currently displayed page:

1 Click the binocular icon #4. In the resulting Find dialog box, type the word
or phrase you are looking for. You can type a partial word, for example,
preference to find all occurrences of preference and preferences. Use the
check boxes to specify options. Click Next.

The page scrolls to the first occurrence of the phrase in the page and
highlights it.

2 Press Next or Previous in the Find dialog box to find more occurrences in
that page.

See “Search Documentation with the Help Browser” on page 4-13 for
instructions on looking through all the documentation instead of just one page.

Copy Information

To copy information from the display pane, such as code in an example, first
select the information. Then right-click and select Copy from the context
menu. You can then paste the information into another tool, such as the
Command Window or Editor, or into another application, such as a word
processing application.

4-22

View Documentation in the Help Browser

Evaluate a Selection

To run code examples that appear in the documentation, select the code in the
display pane. Then right-click and select Evaluate Selection from the context
menu. The statements execute in the Command Window.

View the Page Source (HTML)

To view the HTML source for the currently displayed page, select View -> Page
Source. A read-only HTML version of the page appears in a separate window.
You can copy selections from the HTML source and paste them into other tools
like the Editor or Command Window, or into other applications.

4-23

4 il tor Using MATLAB

4-24

Demos in the Help Browser

MATLAB and related products include demos that you can access from the
Help browser Demos pane. There three basic kinds of demos:

¢ Video tutorials play a movie file highlighting features, such as the demos for
the MATLAB Desktop Tools and Development Environment.

¢ Published M-files are HTML files that illustrate an example, step-by-step.
An example is the MATLAB Programming Nested Functions demo.

¢ M-file GUIs are interactive tools for exploring a feature. An example is the
MATLAB Graphics Visualizing Sound demo.

The M-file code for the demos (except video tutorials) is available for you to
view and copy for use in your own applications.

See also Examples for each product in the Contents pane. These examples are
similar to demos but are integrated in the documentation.

Using Demos
To access the available demos for the products you have installed:
1 Click the Demos tab in the Help Navigator.

You can also access demos from the Start button, using the demo function,
or from the Help menu for some tools.

2 Click the + for a product area to list the products or categories that have
demos. Then click + for a product or product category to list its demos.

3 Select a specific demo to use it. Information about the demo, including
instructions for running it, appears in the display pane.

Demos in the Help Browser

Expand
the listing
fora
product
and
category
to see its

E Help =] E3

File Edit “iew Go Fgvorites Desktop “Window Help

Access demos for

all installed

products using the

Demos pane.

in the Editor.

The code for the demo is in the specified
file. Click this link to view the M-file code

Click this link to run
the demo.

-]

Help Navigator 3

Cor‘rtentsl Indexl Search DEMDS'

Ei Getting Started with Dermos =

demos.

Select a
demo to

MATLAB

1 Mathematics

1 Graphics

13D Visualization

1 Programrming
i Manipulating Multidirn
i Structures

see
details
about it.

i} Function Functions

i ed Function Exan

i Anonymaous Function

i} Reading Text Files

1 Desktop Tools and Develo

1 Creating Graphical User Ir

1 External Interfaces

1 Gallery

1 Other Demas

1 Mew Features in Version ¢

4k MATLAB Report Generatc o
o ull

- o 8 #

Title: IMATLAB Detno: nesteddemo

=l

View code for nesteddemo

Mested Function Examples

This gives examples of how nested functions can be
used for easy data sharing, as well as providing a
new way to create customized functions.

Contents

+ Example 1: Sharing data

Run this demo

+ Example 2: Creating customized functions

FY

+ Example 3: Creating customized functions with stz

Example 1: Sharing data

Let's first take a look at caxDemo.m, which containg a ne

type taxDemo.im

1 1

4-25

4 il tor Using MATLAB

4 You can

= View the source code (M-file) for the demo—click the View code link on the
top left. For the example shown, it is nesteddemo.m. The M-file opens in
the MATLAB Editor.

= Run the demo—-click the link at the top right, Run this Demo. You can
instead double-click the demo in the Help Navigator pane to run it.

When you run nesteddemo, the following M-file GUI demo appears. Follow
the instructions shown to continue running the demo. In this example, click
Start >>.

} Nested Function Examples =] B3
Slide 1 of 15
Start ==

Reset

Nested Function Examples | vewcoe

Close

NEZTED FUNCTION EXAMPLES ;I

Thi=s giwes examples of how nested functions can be used for =asy d
sharing, as well as providing a new way to create customized funct

Kl | _>ILI

4-26

Demos in the Help Browser

Notes About Demos
Some Help browser features do not apply to demos:

® You cannot use the Search pane to look for words or code contained in the
demos. You can use the Find Files tool to search for code in M-file demo files.
® You cannot use Add to Favorites to bookmark some demos.

¢ The product filter does not apply to demos.

Function Alternative

To view the Demos in the Help browser, type demo in the Command Window.
You can go directly to the demos for a specific product. For example

demo toolbox signal

opens the Demos listing for the Signal Processing Toolbox.
To run a demo, type the demo name at the command line. For example, type

vibes

to run a visualization demonstration showing an animated L-shaped
membrane.

Running Published M-File Demos. To run published M-file demos from the
command line, type playshow followed by the demo name. To determine if a
demo is a published M-file type, view the H1 line for the demo M-file, that is,
the first comment line. If it begins with two comment symbols (%%), it is a
published M-file demo. For example, the first line in nesteddemo begins with
two comment symbols:

%% Nested Function Examples

Therefore, type playshow nesteddemo to run the demo.

Adding Your Own Demos

You can add your own demos so they appear in the Demos pane. For details,
see “Adding Your Own Toolboxes to the Development Environment” in the
online documentation.

4-27

4 il tor Using MATLAB

Preferences for the Help Browser

4-28

“Product Filter” on page 4-28
“PDF Reader—Specifying Its Location” on page 4-29
“General—Keep Contents Synchronized” on page 4-29

“Help Fonts Preferences—Specifying Font Name, Style, and Size” on
page 4-30

Product Filter

If you have MathWorks products in addition to MATLAB, such as Simulink,
toolboxes, and blocksets, set the product filter to limit the product
documentation used, making it easier to narrow searches, for example:

1

2

Select File -> Preferences -> Help.

Under Product filter, select the check box for Enable produect filter. Click
Select products.

The Help Product Filter dialog box opens.

Select the products whose documentation you want to appear in the Help
Navigator. Click OK.

The Help Navigator updates to include only those products you specified.
The product filter settings are remembered for your next MATLAB session.

When you want to use documentation for all installed products, in Help
preferences, clear the check box for Enable product filter.

With the product filter enabled:

¢ Contents shows only the subset of products you specify.

¢ Index shows only index terms for the subset of products you specify.

¢ Search only looks through the subset of products you specify.

* Demos is not affected; demos for all installed products are always shown.

Preferences for the Help Browser

The Release Notes entry in Help Product Filter dialog box applies only the
Release Notes overview document for a release, not to the Release Notes for an
individual product.

Example Using the Product Filter

If you do a search and know the information you are seeking is in MATLAB or
the Communications Toolbox, in the Help Product Filter, click Clear All and
then select MATLAB and Communications Toolbox.

The Contents only shows MATLAB and the Communications Toolbox
documentation, the Index only shows entries for MATLAB and the
Communications Toolbox, and the Search feature only looks in and shows
results for MATLAB and the Communications Toolbox.

PDF Reader—Specifying Its Location

If you want to view the PDF version of the documentation, use the link on the
roadmap page for that product. To open the PDF file, the Help system needs to
know the location of your PDF reader (for example, Adobe Acrobat).

For Windows systems, MATLAB reads the location from the registry, so you do
not specify its location.

For UNIX systems, the default PDF reader is acrobat and MATLAB
determines its location. If a different command starts your PDF reader, specify
it using preferences. Selecting File -> Preferences -> Help, and enter the full
pathname in the PDF reader field or use the browse (...) button to navigate
your file system to select it.

General—Keep Contents Synchronized

By default, the displayed page is synchronized with the Contents listing. For
more information about this feature, see “Synchronize the Contents Listing
with the Display Pane” on page 4-10. Use this preference to turn
synchronization off.

Select File -> Preferences -> Help. Under General, clear the check box for
Keep contents tree synchronized with displayed document. Select the
check box to turn synchronization back on.

4-29

4 il tor Using MATLAB

Hellp Fonts Preferences—Specifying Font Name,
Style, and Size

You can specify the font type, style, and size used in the Help Navigator and
the display pane.

Use the same method as you would to specify fonts for any desktop tool—for
more information, see “Fonts Preferences for Desktop Tools” on page 2-45. By
default, the Help Navigator uses the desktop text font. The display pane is
considered to be an HTML Proportional Text tool, and by default, uses the
desktop text font.

This example changes the display pane font:
1 Select File -> Preferences -> Fonts -> Custom.

2 From the Desktop tools list, select HTML Proportional Text. The Help
browser display pane is considered to be an HTML proportional text tool, as
is the MATLAB Web browser. Changing the font preference affects both
tools.

3 For Font to use, select Custom, then specify the font characteristics:

= Type, for example, SansSerif
= Style, for example, bold
= Size in points, for example, 12 points

After you make a selection, the Sample area shows how the font will look.

4 Click OK. The Help display pane fonts use the new settings. The MATLAB
Web browser fonts will also use the new settings.

4-30

Printed Documentation

Printed Documentation

Printed manuals are provided for the major releases of some products and
tools. The online documentation often has information not included with the
printed manuals and is often more current. If you want to purchase printed
documentation, see the online store at the MathWorks Web site at
http://www.mathworks.com.

You can print the current page displayed in the Help browser, or print a page
or an entire book from the PDF version of the documentation.

Printing a Page from the Help Browser

To print the page currently shown in the Help browser, select File -> Print, or
click the print button & in the display pane toolbar. The Print dialog box
appears.

The Pages field in the Print dialog box shows the total number of pages to be
printed and lets you specify the range of pages you want to print. When there
is more than one page, it means that multiple physical pages are needed to
print the single page displayed in the Help browser.

Complete the dialog box and press OK to print the page.

Printing the PDF Version of Documentation

If you need to print only a few pages and if the quality does not need to be
equivalent to pages in a printed book, you can print directly from the MATLAB
Help browser—see “Printing a Page from the Help Browser” on page 4-31.

If you need to print more than a few pages of documentation, or if you want the
pages to appear as if they came from a printed book, print the PDF version of
the documentation. PDF documentation is shown and printed using your PDF
reader, usually Adobe Acrobat Reader. The PDF documentation reproduces the
look and feel of the printed book, complete with fonts, graphics, formatting, and
images. In the PDF document, use links from the table of contents, index, or
within the document to go directly to the page of interest. Note that some
documentation available from the Help browser is not available in PDF format.

4-31

4 il tor Using MATLAB

Note The Help browser accesses PDF documentation from The MathWorks
Web site. Therefore, you need Internet access to view or print PDF
documentation.

1 In the Help browser, click the Contents tab and select a product, for
example, MATLAB.

The roadmap page opens for that product, providing links to key
documentation for that product.

2 Near the end of the roadmap page, listed under Printing the
Documentation Set, are links for printing the documentation. Select the
link for the item you want to print.

MATLAB accesses the selected document from The MathWorks Web site.
Your PDF reader opens, displaying the documentation.

For PDF printing problems on UNIX platforms, check the Help preferences.
See “PDF Reader—Specifying Its Location” on page 4-29 for more
information.

3 To print the documentation, select Print from the File menu in your PDF
reader.

4-32

Help Functions

Help Functions

There are several help functions that provide forms of help different from the
Help browser documentation, or provide alternative ways to access the Help
browser information.

Function

Description

dbtype

demo

doc

docopt

docsearch

help

helpbrowser

helpdesk

helpwin

Displays the M-file with line numbers. If you want to see
only the input and output arguments for a function, use
dbtype function 1, which displays the first line of the
M-file.

Displays the Demos pane in the Help browser, from which
you can access demonstrations for the products you have
installed. With an argument, runs the specified demo.

Displays in the Help browser, the reference page for the
specified function, block, or property. More extensive than
help results, the reference page provides syntax, a
description, examples, and links to related functions.

On UNIX systems, specifies Web browser information, used
when displaying Internet Web pages.

Run the Help browser search feature for the specified term.

Displays M-file help (a description and syntax) in the
Command Window for the specified function or block.

Opens the Help browser, the MATLAB interface for
accessing documentation.

Opens the Help browser. In previous releases, helpdesk
displayed the Help Desk, which was the precursor to the
Help browser.

Displays a list of all functions in the Help browser, and
provides access to M-file help for the functions.

4-33

4 il tor Using MATLAB

4-34

Function Description (Continued)

lookfor Displays in the Command Window a list and brief
description of all functions whose brief description includes
the specified keyword.

web Opens the specified URL in the specified browser. Use web
in your own M-files to display HTML documentation you
create for your work.

whatsnew Displays the Release Notes in the Help browser.

View Function Reference Pages—the doc Function

To view the reference page for a function, block, or property in the Help
browser, use doc. For example, type

doc format

to view the reference page for the format function.

Overloaded Functions with the doc Function

When a function name is used in multiple products, it is said to be an
overloaded function. The doc function displays the reference page for the first
function on the MATLAB search path having that name, and displays a
hyperlinked list of the overloaded functions in the Command Window.

For example, using the default search path

doc set

displays the reference page for the MATLAB set function in the Help browser,
and in the Command Window, displays a hyperlinked list of the set functions
residing in other directories, such as

database/set

which is the set function for the Database Toolbox. Click a link to go to that
set reference page.

Help Functions

To directly get the reference page for an overloaded function, specify the name
of the directory containing the function you want the reference page for,
followed by the function name. For example, to display the reference page for
the set function in the Database Toolbox, type

doc database/set

Getting Help in the Command Window—the help
Function

To quickly view a brief description and syntax for a function in the Command
Window, use the help function. For example, typing

help bar
displays a description and syntax for the bar function in the Command

Window. This is called the M-file help. For other arguments you can supply, see
the reference page for help.

Note M-file help displayed in the Command Window uses all uppercase
characters for the function and variable names to make them stand out from
the rest of the text. When typing function names, however, use lowercase
characters. Some functions for interfacing to Java do use mixed case; the
M-file help accurately reflects that, and you should use mixed case when
typing them.

If you need more information than the help function provides, use the doc
function, which displays the reference page in the Help browser. It can include
color, images, links, and more extensive examples than the M-file help. For
example, typing

doc bar

displays the reference page for the bar function in the Help browser.

4-35

4 il tor Using MATLAB

Overloaded Functions with the help Function

When a function name is used in multiple products, it is said to be an
overloaded function. The help function displays M-file help for the first
function on the MATLAB search path having that name, and displays a
hyperlinked list of the overloaded functions at the end.

For example, using the default search path

help set

displays M-file help for the MATLAB set function, and displays a hyperlinked
list of the set functions residing in other directories, such as
database/set

which is the set function for the Database Toolbox. Click a link to display the
M-file help for that set function.

To directly get help for an overloaded function, specify the name of the
directory containing the function you want help for, followed by the function
name. For example, to get help for the set function in the Database Toolbox,

type
help database/set

4-36

Help Functions

Help for Classes and Methods
To get help for a method, use

help classname.methodname

where classname is the fully qualified class. If you do not know the fully
qualified class for the method, use class(obj). Here, methodname is of the
same class as the object obj. This example shows how to get help for the 1sb
method of the fi class in the Fixed-Point Toolbox.

a = fi(pi);

class(a)

ans =

embedded.fi

The fully qualified class for 1sb is embedded. fi. Therefore, use
help embedded.fi.lsb

to display help for the 1sb method.

To get help for a class, specify the fully qualified class. For example, to get help
for the fi class, use

help embedded.fi

Help for the class is actually the help for the class’s object constructor, in this
case, fi.

Creating M-File Help for Your Own M-Files

You can create M-file help for your own M-files and access it using the help
command. See the help reference page for details.

Directory Reports for Help

The Help Report and the Contents Report provide other ways of looking at and
managing help for M-files—see “Directory Reports in Current Directory
Browser” on page 7-11.

4-37

4 il tor Using MATLAB

Other Forms of Help

In addition to using the Help browser and help functions, there are the other
forms of help for MATLAB and related products:

¢ “Documentation for Other Products” on page 4-38

¢ “Product-Specific Help Features” on page 4-38

¢ “User-Contributed M-Files” on page 4-39

¢ “Technical Support” on page 4-39

¢ “Newsgroup for MathWorks Products” on page 4-40

¢ “Other Resources for MATLAB Information” on page 4-40
¢ “Version and License Information” on page 4-41

® “Provide Feedback” on page 4-41

Documentation for Other Products

The Help browser provides access to documentation for all products installed
on your system. You can view any product’s online documentation at the
MathWorks Web site at
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml.

Product-Specific Help Features

In addition to the Help browser and help functions, some products and tools
allow other methods for getting help. You will encounter some methods in the
course of using a product, such as entries in the Help menu, Help buttons in
dialog boxes, and selecting Help from a context menu. These methods all
display context-sensitive help. Other methods for getting help, such as
pressing the F1 key, are described in the documentation for the product or tool
that uses the method.

4-38

Other Forms of Help

User-Contributed M-Files

You can download M-files contributed by users and developers of MATLAB,
Simulink, and related products from MATLAB Central. Before you write an
M-file yourself, especially if it seems to be a more generic utility, check the list
of contributed files to see if someone has already written it. These files are
freely contributed and can be used without charge by anyone who downloads
them. To view the files available to download, go to the MATLAB Central File
Exchange page on The MathWorks Web site,
http://www.mathworks.com/matlabcentral/fileexchange/index.jsp. You
can access this in any desktop component via Help -> Web Resources.

If you write M-files that you think would be of use to others, consider
submitting them to the MATLAB Central File Exchange via the Web page.

Technical Support
MathWorks Technical Support provides help for product problems:

® Find specific Technical Support information using the Help browser Search
feature. Run a search for a specified term. The end of the results list includes
a link that runs the same search on the support database. This database, on
The MathWorks Web site, provides the most up-to-date solutions for
questions posed by users.

¢ Select Technical Support Knowledge Base from the Help -> Web
Resources menu to go to the Technical Support Web page
(http://www.mathworks.com/support). The page displays in your system’s
default Web browser. You can find out about other types of information such
as third-party books, ask questions, make suggestions, and report possible
bugs.

¢ If you cannot access the Web site, you can e-mail Technical Support using the
address support@mathworks.com. You must provide your license number to
obtain support. It is helpful if you also provide your operating system and
MATLAB version number. You can obtain all of this information by running
the ver function or by selecting Help -> About.

4-39

4 il tor Using MATLAB

Newsgroup for MathWorks Products

The Usenet newsgroup for MATLAB and related products,
comp.soft-sys.matlab, (also known as cssm) is read by thousands of users
worldwide. Access the newsgroup to ask for or provide help or advice. You can
read and submit postings as well as view and search through a sizable archive
of postings using the MATLAB Central Newsgroup Access Web page on The
MathWorks Web site, http://www.mathworks.com/matlabcentral. You can
access this via Help -> Web Resources from any desktop component.

First-time users to the newsgroup should read the newsgroup FAQ, linked to
from that page. It is a good practice to try to solve your own problem using the
documentation and Technical Support database before posting a question to
the newsgroup. Be sure to post with a meaningful subject that briefly describes
the nature of the issue.

Other Resources for MATLAB Information

Following are some additional resources for help with MATLAB and related
products.

¢ Newsletters—The MathWorks publishes News and Notes twice a year,
containing feature articles, technical notes, and product information for
MATLAB users. More frequently, the MathWorks issues MATLAB Digest,
an electronic bulletin consisting of technical notes, solutions, and timely
announcements to the user community. See
http://www.mathworks.com/company/newsletters/.

® Books—There are hundreds of MATLAB based books. For a list with
descriptions, see http://www.mathworks.com/support/books/.

¢ Seminars and Training—The MathWorks regularly presents free seminars
on special topics conducted in various locations. Webinars on special topics
are presented via the Web, and the MathWorks offers training classes for
MATLAB and other products. For details, see
http://www.mathworks.com/company/events/.

® Mathtools.net—A technical computing Web portal with links to many
resources for MATLAB users. See http://www.mathtools.net/.

4-40

Other Forms of Help

Version and License Information

If you need the product version or license information, select About from the
Help menu for that product. The version is displayed in an About dialog box.
Click Show License in the dialog box to view license information. Note that the
information displayed does not cover your specific license agreement. If the
product does not have a Help menu, use the ver function. To see the license
number for MATLAB, type 1license in the Command Window. See also the ver,
version, and license functions.

Provide Feedback

To report problems or provide comments or suggestions to The MathWorks
about the documentation and help features, use the form on the Web. To access
the form, go to the Contents pane in the Help browser. Select Begin Here from
the top of the contents listing. Scroll to the bottom of the Begin Here page and
click the link Give Us Your Feedback. Or go directly to the form at
http://www.mathworks.com/access/helpdesk/feedback/index.shtml.
Alternatively, you can send e-mail to doc@mathworks.com.

To suggest enhancements or provide feedback about MathWorks products,
send e-mail to suggest@mathworks.com. To report problems, send e-mail to
bugs@mathworks.com or contact Technical Support at
http://www.mathworks.com/support/.

4-41

4 il tor Using MATLAB

4-42

Workspace, Search Path,
and File Operations

If you are using the Help browser, watch the Workspace Browser video demo, the Array Editor video
demo, and the Current Directory Browser video demo for an overview of the major functionality.

MATLAB Workspace (p. 5-2)

Viewing and Editing Workspace
Variables with the Array Editor
(p. 5-10)

Search Path (p. 5-20)

File Management Operations (p. 5-31)

The workspace is the set of variables maintained in
memory during a MATLAB session. Use the Workspace
browser or equivalent functions to view the workspace.

View and make changes to variables using the Array
Editor.

MATLAB uses a search path to find M-files and other
MATLARB related files. View and change the path using
the Set Path dialog box or equivalent functions.

Search for, view, open, and make changes to MATLAB
related directories and files, using the Current Directory
browser or equivalent functions.

5 Workspace, Search Path, and File Operations

5-2

MATLAB Workspace

The MATLAB workspace consists of the set of variables (named arrays) built
up during a MATLAB session and stored in memory. You add variables to the
workspace by using functions, running M-files, and loading saved workspaces.
For example, if you type

t = 0:pi/4:2*pi;

y = sin(t);

the workspace includes two variables, y and t, each having nine values.

You can perform workspace operations and related features using the
Workspace browser. Equivalent functions are available and are documented
with each feature of the Workspace browser. If you are using the Help browser,
watch the Workspace browser video demo for an overview of the major
functionality:

® “Opening the Workspace Browser” on page 5-3

* “Viewing and Editing Values in the Current Workspace” on page 5-3

¢ “Saving the Current Workspace” on page 5-4

¢ “Loading a Saved Workspace and Importing Data” on page 5-6

¢ “Changing and Copying Variable Names” on page 5-7

¢ “Clearing Workspace Variables” on page 5-7

* “Viewing Base and Function Workspaces Using the Stack” on page 5-8

¢ “Creating Graphics from the Workspace Browser” on page 5-8

® “Opening Variables and Objects for Viewing and Editing” on page 5-9

¢ “Preferences for the Workspace Browser” on page 5-9.

MATLAB Workspace

Opening the Workspace Browser

To open the Workspace browser, select Workspace from the Desktop menu in
the MATLAB desktop, or type workspace at the Command Window prompt.

The Workspace browser opens.

Workspace L4
i 0 E Eﬁ§| ’ﬁ| '|Stack:|Eiase "I
Mame £ | Walue | Clazz

H -~ 151617 18] double

[«3x1 cell» cell

[E]= <132 struct> struct

g The Langua... char

Kl | H

Viewing and Editing Values in the Current
Workspace

The Workspace browser shows the name of each variable, its value, its array
size, its size in bytes, and the class. The icon for each variable denotes its class.

To resize the columns of information, drag the column header borders. To show
or hide any of the columns, or to specify the sort order, select View -> Choose
Columns.

You can select the column on which to sort as well as reverse the sort order of
any column. Click a column heading to sort on that column. Click the column
heading again to reverse the sort order in that column. For example, to sort on
Name, click the column heading once. To change from ascending to descending,
click the heading again. You cannot sort by the Value column in the Workspace
browser.

You can edit values directly in the Workspace browser Value column. To edit
a value, select the row to change in the Value column and type in the new
value.

5-3

5 Workspace, Search Path, and File Operations

5-4

Function Alternative

Use who to list the current workspace variables. Use whos to list the variables
and information about their size and class. For example:

who
Your variables are:
AMSYV
whos
Name Size Bytes Class
A 1x4 32 double array
M 3x1 202 cell array
S 1x2 598 struct array
\' 1x35 70 char array

Grand total is 76 elements using 902 bytes

Use exist to see if the specified variable is in the workspace.

Saving the Current Workspace

The workspace is not maintained across MATLAB sessions. When you quit
MATLAB, the workspace is cleared. You can save any or all of the variables in
the current workspace to a MAT-file, which is a MATLAB specific binary file.
You can then load the MAT-file at a later time during the current or another
session to reuse the workspace variables. MAT-files use a .mat extension.

Note The .mat extension is also used by Microsoft Access.

MATLAB Workspace

Saving All Variables

To save all of the workspace variables using the Workspace browser:

1 From the File menu, select Save Workspace As, or click the save button &
in the Workspace browser toolbar.

The Save dialog box opens.

2 Specify the location and File name. MATLAB automatically supplies the
.mat extension.

3 Click Save.

The workspace variables are saved under the MAT-file name you specified.

You can also save the workspace variables from the desktop by selecting Save
Workspace As from the File menu.

Saving Selected Variables
To save some but not all of the current workspace variables:

1 Select the variable in the Workspace browser. To select multiple variables,
Shift+click or Ctrl+click.

2 Right-click and from the context menu, select Save As.
The Save to MAT-File dialog box opens.

3 Specify the location and File name. MATLAB automatically supplies the
.mat extension.

4 C(Click Save.

The workspace variables are saved under the MAT-file name you specified.

To specify preferences for saving MAT-files, see “MAT-Files” on page 2-57.

5-5

5 Workspace, Search Path, and File Operations

5-6

Function Alternative

To save workspace variables, use the save function followed by the filename
you want to save to. For example,

save('june10')

saves all current workspace variables to the file june10.mat.

If you don’t specify a filename, the workspace is saved to matlab.mat in the
current working directory. You can specify which variables to save, as well as
control the format in which the data is stored, such as ASCII. For these and
other forms of the function, see the reference page for save. For a related
function, see genvarname. MATLAB provides additional functions for saving
information—see the Import Wizard documentation.

Loading a Saved Workspace and Importing Data

To load saved variables into the workspace:

1 Click the load data file button 8 on the toolbar in the Workspace browser.
The Open dialog box opens.

2 Select the MAT-file you want to load and click Open.

The variables and their values, as stored in the MAT-file, are loaded into the
current workspace. If any variables being loaded have the same names as
variables in the current workspace, the values from the MAT-file replace the
values in the current workspace. Any variables in the MAT-file that are not
in the workspace are added to the workspace.

Function Alternative
Use load to open a saved workspace. For example,

load('june10')

loads all workspace variables from the file june10.mat.

MATLAB Workspace

Importing Data

MATLAB provides other methods and functions for loading information. You
can use one of these methods, the Import Wizard, from the Workspace
browser—select Edit -> Paste Special or use Ctrl+V to import data to
MATLAB using the Import Wizard. For more information on the Import
Wizard and other methods for loading information, see the Import Wizard
documentation.

Viewing Variables in MAT-Files

Use the Current Directory browser to view the contents of a MAT-file without
loading the file into MATLAB. For details, see “Viewing Information About
M-Files and MAT-Files” on page 5-41.

Function Alternative. Use whos with the -file option.

Changing and Copying Variable Names

To rename a variable in the workspace, right-click the variable in the
Workspace browser and select Rename from the context menu. Type the new
variable name over the existing name and press Enter or Return.

To copy variable names to the clipboard, select the workspace variables and
select Edit -> Copy. You can then paste the names, for example, into the
Command Window. Multiple variables are comma separated.

Clearing Workspace Variables
You can clear a variable, which removes it from the workspace.

To clear a variable using the Workspace browser:

1 Inthe Workspace browser, select the variable, or Shift+click or Ctrl+click to
select multiple variables. To select all variables, choose Select All from the
Edit or context menus.

2 Press the Delete key on your keyboard or click the delete button # on the
Workspace browser toolbar.

5-7

5 Workspace, Search Path, and File Operations

5-8

3 A confirmation dialog box may appear. If it does, click Yes to clear the
variables.

The confirmation dialog box appears if you specify it as a preference. See
“Preferences for the Workspace Browser” on page 5-9 to change the
preference.

Function Alternative
Use the clear function to clear variables from the workspace. For example,

clear A M

clears the variables A and M from the workspace.

Viewing Base and Function Workspaces Using the
Stack

When you run M-files, MATLAB assigns each function its own workspace,
called the function workspace, which is separate from the MATLAB base
workspace. To access the base and function workspaces when debugging
M-files, use the Stack field in the Workspace browser. The Stack field is only
available in debug mode and otherwise is grayed out. The Stack field is also
accessible from the Array Editor and the Editor/Debugger. See “Debugging
M-Files” on page 6-34 for more information.

Creating Graphics from the Workspace Browser

From the Workspace browser, you can generate a graph of a variable. To create
a graph, click the graph button 'Yl on the Workspace browser toolbar and select
the graph type. The graph appears in a figure window. The button itself
changes to reflect the currently selected style of graph, for example plot or
stem.

In addition, you can right-click the variable you want to graph. From the
context menu, choose the type of graph you want to create. You can also select
multiple variables to graph together.

For more information about creating graphs in MATLAB, see the Using
MATLAB Graphics documentation.

MATLAB Workspace

Ocrening Variables and Objects for Viewing and
Editing

In the Workspace browser, double-click a variable and it opens in the Array
Editor, where you can view and edit the contents of the variable. See “Viewing
and Editing Workspace Variables with the Array Editor” on page 5-10 for more
information about opening arrays.

Some toolboxes allow you to double-click an object in the Workspace browser to
open a viewer or other tool appropriate for that object. For details, see the
toolbox documentation for that object type.

Preferences for the Workspace Browser

You can specify whether or not you want a confirmation dialog box to appear
when you clear variables using the Workspace browser. Select File ->
Preferences -> Workspace. If you want a confirmation dialog box to appear
when you delete a variable, select the Show confirmation dialog when
deleting variables check box.

5-9

5 Workspace, Search Path, and File Operations

5-10

Viewing and Editing Workspace Variables with the Array

Use the Array Editor to view and edit a visual representation of one or
two-dimensional numeric arrays, strings, cell arrays of strings, and structures.
You can also view the contents of multidimensional arrays. If you are using the
Help browser, watch the Array Editor video demo for an overview of the major
functionality.

The features of the Array Editor are

¢ “Opening the Array Editor” on page 5-10

* “Viewing and Editing Cell Arrays, Structures, and Multidimensional
Arrays” on page 5-12

¢ “Navigating and Editing Shortcut Keys for the Array Editor” on page 5-14

¢ “Changing Array Size, Content, and Format of Elements in the Array Editor”
on page 5-14

¢ “Cut, Copy, Paste, and Delete in the Array Editor” on page 5-15

¢ “Exchanging Data with the Command Window” on page 5-18

¢ “Exchanging Data with Excel” on page 5-18

¢ “Creating Graphs and Variables from the Current Selection” on page 5-18
¢ “Preferences for the Array Editor” on page 5-18

Opening the Array Editor

You can open the Array Editor from the Workspace browser:

1 Inthe Workspace browser, select the variable you want to open. Shift+click
or Ctrl+click to select multiple variables, or use Ctrl+A to select all variables
to open.

2 Click the open selection button B on the toolbar. For one variable, you can
also open it by double-clicking it.

The Array Editor opens, displaying the values for the selected variable.

Viewing and Editing Workspace Variables with the Array Editor

Row and column headings.

Change values of array elements.

g4 Array Editor - M

B ¢ R2R/S| - m|[e o O x
[1! 2 3 4 :

1|[one’ il
't

| o

v sfa s = |

Use the tabs to view the different variables
you have open in the Array Editor.

Repeat the steps to open additional variables in the Array Editor. Access each
variable via its tab at the bottom of the window, or use the Window menu.

Function Alternatives

To open a variable in the Array Editor, use openvar with the name of the
variable you want to open as the argument. For example, type

openvar('M")
MATLAB opens M in the Array Editor.

To see the contents of a variable in the workspace, just type the variable name
at the Command Window prompt. For example, type

M

and MATLAB returns
M =
‘one'
"two'
"three'

5-11

5 Workspace, Search Path, and File Operations

5-12

Viewing and Editing Cell Arrays, Structures, and
Multidimensional Arrays

Cell Arrays and Structures in the Array Editor
You can view and edit the content of cell arrays and structures in the Array
Editor.

In the Array Editor, double-click an element of a structure to open it as its own
Array Editor document. You can then view and edit the contents of that
element.

Similarly, double-click a cell in a cell array to view and edit its contents. The
following illustration shows an 8-by1 cell array, M, and the contents of M{4,1}.
Double-click cell in cell array or element of structure to view its contents.

In cell array M, double-click cell Contents of M{4,1}.
{4,1} to view its contents.

g4 Array Editor
File Edit ‘iew draphics Debug Deskbop Window Help

|éﬂﬂ‘§|@'tﬁ|ﬂack:|8a_vl BE‘IEE'ED

1 2 1 2 3 4 5
1 j | 15 2 3 13 j
1342 5 11 10 g
B1B357, . 9
<434 doubles 4 14 15 1
<H%5 double:=
<Bx6 double>

<7 %7 double=
=0%8 double=

al b |l o

[lm <[y] |

:nm-qmmh|w|m|—=
.
== R ENT T P S PR

Multidimensional Arrays in the Array Editor

You can view the contents of multidimensional arrays in the Array Editor.
When you open a multidimensional array in the Array Editor, it does not have

Viewing and Editing Workspace Variables with the Array Editor

usual grid structure, because multidimensional arrays do not fit that format.

You cannot double-click an element in a multidimensional array to edit it. The
following illustration shows R = rand(1,2,3).

You can view but cannot edit the contents of a
multidimensional array in the Array Editor.

1o/

File Edit WYiew Debug Dgsktop ‘Window Help k] | A X

g E‘%‘E' ‘tﬁ“Base VI ||:|v|

08801 0.2311

06065 0.4560

08913 0.7621

w Lo

5-13

5 Workspace, Search Path, and File Operations

5-14

Navigating and Editing Shortcut Keys for the Array
Editor

Use the following keys to move among elements in the Array Editor.
Navigating in the Array Editor is much like navigating in Microsoft Excel.

Key Result

Enter Commit any changes to the element and move to next
element, where next element is specified using
“Preferences for the Array Editor” on page 5-18 (default is
down)

Tab Move right
Within a selection, also moves from the last column to the
first column in the next row

Shift+Enter Move in opposite direction of Enter or Tab

or Shift+Tab

Page Up Move up m rows, where m is the number of visible rows

Page Down Move down m rows, where m is the number of visible rows

Home Move to column 1

Ctrl+Home Move to row 1, column 1

Shift+Home Select to column 1

End Move to last column in current row

F2 (Ctrl+U Edit current element, positioning cursor at the end of the

on element

Macintosh)

Changing Array Size, Content, and Format of
Elements in the Array Editor

To increase the size of an array, scroll to the desired location in the array and
enter a value. The array will automatically expand to accommodate the new

value. Empty cells are filled with zeros, if numeric, or empty arrays, if a cell

Viewing and Editing Workspace Variables with the Array Editor

array. To decrease the size of an array, select the rows or columns that you
want to remove by clicking in the row or column header to select the entire row,
right-clicking, and selecting Delete.

To change the value of an element in the Array Editor, click in that element
and type a new value. Press Enter or Return, or click in another element to
make the change take effect. You can specify where the cursor moves to after
you press Enter—see “Preferences for the Array Editor” on page 5-18.

If you want to change the display format for the Array Editor, select the View
menu and choose a format. To change the default format for future use, use the
Preferences dialog. For more information, see “Preferences for the Array
Editor” on page 5-18.

If you opened an existing MAT-file and made changes to it using the Array
Editor, save that MAT-file if you want the changes to be saved. For
instructions, see “Saving the Current Workspace” on page 5-4.

Cut, Copy, Paste, and Delete in the Array Editor

You can cut or copy selected elements, rows, and columns in an array and paste
them to another position in that or another open array. To select a column or
row, click in the row or column heading (the element that shows the row or
column number). Shift+click to choose contiguous elements, rows, or columns
in the array, or Ctrl+A to select all elements. For the cut, copy, and paste
operations, use the Edit menu, the context menu, or the toolbar buttons.

When you cut elements, the value of each element you cut becomes 0 if numeric
or [] if a cell array. After cutting, select the elements whose value you want to
replace with the cut elements and then choose Paste. If the shape of the
elements you cut differs from the shape of the elements into which you are
pasting, the Array Editor pastes all the elements, either by expanding the
selection to be pasted into, or by expanding the array size to allow all the
elements to be pasted. Pasting copied elements is the same as pasting cut
elements, but the elements copied maintain their value rather than
becoming 0.

5-15

5 Workspace, Search Path, and File Operations

Example Copying and Pasting Array Elements

In this example, two elements are copied but the selected area for pasting is
only one element, so the Array Editor expands the selected area for pasting.

g4 Array Editor - M

G| & 2B (S| - |w|[e - Oz x
1 2 3 4 5
Two 4 |[one’ ﬂ
elements 2 ||t
are 3 | 'three’
selected 4
and copied. |5
E -
TN ;IJ
fm—=|v x|a x|s x| |
g4 Array Editor - M ?
| RR| S M- wm|[e = Oz x
1] 2 3 4 5
1 'one’ il
2 |'two’
One 3 |'three’
elementis 1 4]
selected as 5
the paste g -
area. A Oy
v s xls x| |
g4 Array Editor - M ?
W% BB (S| M- wm([c] O]
1| 2 E 4 5
The Array 12 .tuv:s. il
Editor 3 |threg'
pastes all of || 4 [fane’
the copied 5t
elements. B
7
Kl ol
W[v x|a x|'s x| |

5-16

Viewing and Editing Workspace Variables with the Array Editor

Example Cutting and Pasting Array Elements

In this example, the area selected for pasting requires the Array Editor to
expand the array size in order for all cut elements to be pasted.

g4 Array Editor - M

Two W4 RR (S| - m|e =] O x
elements 1 2 3 4 5
areselected ‘ane’ i’
and cut. T’

three'

'(I)'fhtehzalues Eﬁ|$’*‘: E|§|@'|tﬁ“8._ vl ||:| vla ps
elements are 1 | 2 3 4 5

g 3

cleared.

One element
is selected
as the paste

-
area. 4| L|J

=

The Array gﬁ|c¥l&|§|@' I@“B... 'I ||:|vl?lx
Editor adds 1 | 2 3 4 5
rows so that |- [] i’
both cut 2 1]
elements 3 1 three

4 fone
can be — :

5 [tw
pasted. :

7

R -

1 _>I_I

5-17

5 Workspace, Search Path, and File Operations

5-18

Deleting Elements, Rows and Columns

You can clear elements, rows, or columns in the array by selecting them and
then selecting Delete from the Edit menu or context menu. When you delete
cells, a dialog box appears asking how you want the remaining cells to shift.

Exchanging Data with the Command Window

You can copy data from the Array Editor and paste it into the Command
Window. You can also copy a value from the Command Window and paste it
into an element in the Array Editor. Be sure the data types are compatible. For
example, you cannot paste text from the Command Window into a numeric
array in the Array Editor.

Exchanging Data with Excel

You can cut or copy cells from Microsoft Excel and paste them into the Array
Editor. You can also cut or copy elements from the Array Editor and paste them
into Excel.

Be sure the data types are compatible. For example, you cannot paste text from
Excel into a numeric array in the Array Editor.

Creating Graphs and Variables from the Current
Selection

You can create graphs and new variables from the Array Editor. To create a
graph, select a cell, row, or column, and in the right-click context menu, choose
the graph type. To create a new variable, select a cell, row, or column in the
Array Editor, right-click, and from the context menu, select Create Variable
from Selection.

Preferences for the Array Editor

To set preferences for the Array Editor, select Preferences from the File
menu. The Preferences dialog box opens showing Array Editor Preferences.

Default Format

Specify the output format of numeric values displayed in the Array Editor. This
affects only how numbers are displayed, not how MATLAB computes or saves
them. For more information, see the reference page for format.

Viewing and Editing Workspace Variables with the Array Editor

Editing

You can specify where the cursor moves to after you type in an element and
press Enter:

¢ If you want the cursor to remain at the element where you just typed, clear
the Move selection after Enter check box.

¢ Ifyou want the cursor to move to another element, select the Move selection
after Enter check box, and then use Direction to specify how you want the
cursor to move. For example, if you want the cursor to move right one
element after you press Enter, select Right.

5-19

5 Workspace, Search Path, and File Operations

5-20

Search Path

This section covers the following topics:

¢ “About the Search Path” on page 5-20

¢ “How the Search Path Determines Which Function to Use” on page 5-21
¢ “How MATLAB Finds the Search Path, pathdef.m” on page 5-22

* “Viewing and Setting the Search Path” on page 5-22

¢ “Using the Path in Future Sessions” on page 5-28

¢ “Recovering from Problems with the Search Path” on page 5-29

About the Search Path

MATLAB uses a search path to find M-files and other MATLAB related files,
which are organized in directories on your file system. By default, the files
supplied with MATLAB and MathWorks products are included in the search
path. These are all of the directories and files under $matlabroot/toolbox.

Any file you want to run in MATLAB must reside in a directory that is on the
search path, or in the current directory. If you create any MATLAB related
files, add the directories containing the files to the MATLAB search path. For
instructions to view the search path and add directories to it, see “Viewing and
Setting the Search Path” on page 5-22, including “Caution Against Saving
Files in $matlabroot/toolbox” on page 5-27.

The search path is also referred to as the MATLAB path. Directories included
are considered to be on the path. When you include a directory in the search
path, you add it to the path. Subdirectories must be explicitly added to the path;
they are not on the path just because their parent directories are.

Adding directories to the path is similar to performing an include or import in
some other applications.

Search Path

How the Search Path Determines Which Function to
Use
The order of directories on the path is relevant. MATLAB looks for a named

element, for example, foo, as described here. If you enter foo at the MATLAB
prompt, MATLAB performs the following actions:

1 Looks for foo as a variable.
2 Looks in the current directory for a file named foo.m.

3 Searches the directories on the MATLAB search path, in order, for foo.bi
(built-in function) or foo.m.

If there is more than one function with the same name, the order of directories
on the path determines which of those functions MATLAB uses. When
MATLAB looks for that function, it uses the first one found in the search path:

¢ To use a function with the same name that is located in a directory further
down on the search path, called a shadowed function, make its location the
current directory. For M-file scripts, you can use run with the full pathname
for the M-file. For example, use run d:/mymfiles/foo.m to ensure that
version of foo runs.

¢ Ifyou are not sure of the function MATLAB is using, run which for a specified
function and MATLAB returns the full path to the function.

Although the actual search path rules are more complicated because of the
restricted scope of private functions, subfunctions, object-oriented functions,
P-files, and MAT-files, this simplified perspective is accurate for the ordinary
M-files you usually work with. For more information, see “Determining Which
Function Is Called” in MATLAB Programming documentation.

5-21

5 Workspace, Search Path, and File Operations

5-22

How MATLAB Finds the Search Path, pathdef.m

The search path is stored in the file pathdef.m, which by default, is located in
$matlabroot/toolbox/local. You can store it in the MATLAB startup
directory, and modify it for the current session or for all future sessions.

When MATLAB starts, it looks for a pathdef.m file in its startup directory. If
none is found, it uses pathdef.m in $matlabroot/toolbox/local. MATLAB
modifies the path based on any path statements in a startup.m file. During a
session, you can save changes to the path using the Set Path dialog box or the
savepath function, and MATLAB uses the path you saved to for the remainder
of the session. If MATLAB finds a pathdef.m in the current directory, it uses
that version instead. To avoid problems, do not maintain a pathdef.m file in a
directory other than the MATLAB startup directory or
$matlabroot/toolbox/local.

Viewing and Setting the Search Path

Use the Set Path dialog box to view and modify the MATLAB search path.
Equivalent functions are documented for each feature of the Set Path dialog
box. Select Set Path from the File menu, or type pathtool at the Command
Window prompt. The Set Path dialog box opens.

Search Path

Make changes
to the search
path.

Save changes
for use in future
MATLAB
sessions.

Directories on the current
MATLAB search path.

<k Set Path

All changes take effect immediately.

T Add Folder...

Add with Subfnlders...l

Wove to Top
Maowe Lp
Move Doven

Move to Bottom

13

Remave

MATLAB zearch path:

CaDAmatiabr 2itoolboxdirmatiablgeneral
A Darnatlabr! 2toolbodimatiabiops

A Dirnatlabr 2toolboxdimatiabilang

[Dornatlabr 2toolboximatiabloxlelmat
3 Dirnatlabr 2toolboximatiabielfun

A Dirnatlabr! 2toolbodimatiabispecfun
3 Dirnatlabr 2toolbodimatiabiodimatiun
CaDamatiabr 2toolboxdmatiabl o datafun
CaDAmatiabr 2itoolboxirmatiabloxaudio
[Dornatlabr 2toolboximatiabloxlpolyfun

T30 P et a b d Taa b aad eeadla bbb med fioedoos

4]

of
| Fevert | Cefadlt | Help |

Save | Clase
|
Use the changes for the current Replacé current path with all
session, but do not save the directories installed with
changes for use in future MATLAB MATLAB and related products.
sessions.

5-23

5 Workspace, Search Path, and File Operations

5-24

Use the Set Path dialog box for the following actions. Equivalent functions are
listed as well:

¢ “Viewing the Search Path” on page 5-24

¢ “Adding Directories to the Search Path” on page 5-24

¢ “Moving Directories Within the Search Path” on page 5-25
¢ “Removing Directories from the Search Path” on page 5-26
¢ “Restoring the Default Search Path” on page 5-26

¢ “Reverting to the Previous Path” on page 5-27

® “Saving Settings to the Path” on page 5-27

See also

¢ “About the Search Path” on page 5-20 for background information
¢ “Using the Path in Future Sessions” on page 5-28 for options

¢ “Recovering from Problems with the Search Path” on page 5-29

Viewing the Search Path

The MATLAB search path field in the Set Path dialog box lists all of the
directories on the search path. The top of the list is the start of the search path,
while the bottom of the list is the end.

Function Alternative. Use the path function to view the search path.

Adding Directories to the Search Path

Add directories to the search path when you want to run M-files in those
directories.

To add directories to the MATLAB search path using the Set Path dialog box:

1 Click the Add Folder or the Add with Subfolders button.

= Ifyou want to add only the selected directory but do not want to add all of
its subdirectories, click Add Folder.

= Ifyou want to add the selected directory and all of its subdirectories, click
Add with Subfolders.

The Browse for Folder dialog box opens.

Search Path

2 In the Browse for Folder dialog box, use the view of your file system to
select the directory to add, and then click OK.

The selected directory, and subdirectories if specified in step 1, are added to
the top of the search path.

3 To use the newly modified search path in future sessions, click Save. For
more information about saving the path, see “Saving Settings to the Path”
on page 5-27.

4 C(Click Close. If you did not save the changes in the previous step, the
directories you added remain on the search path until you end the current
MATLARB session.

You cannot add method directories (directories that start with @) and private
directories to the MATLAB search path.

Adding Directories to the Path from the Current Directory Browser. In the Current
Directory browser, select the directory, right-click, and select Add to Path from
the context menu. Then select one of the submenus, for example, Selected
Folder and Subfolders.

Function Alternative. To add directories to the top or the end of the search path,
use addpath. The addpath function offers an option to get the path as a string
and to concatenate multiple strings to form a new path.

You can include addpath statements in your startup M-file to automatically
modify the path when MATLAB starts. For details, see “Modifying the Path in
a startup.m File” on page 5-28.

Moving Directories Within the Search Path

The order of files on the search path is relevant—for more information, see
“How the Search Path Determines Which Function to Use” on page 5-21.

To modify the order of directories within the search path:
1 Select the directory or directories you want to move.

2 Click one of the Move buttons, such as Move to Top. The order of the
directories changes.

5-25

5 Workspace, Search Path, and File Operations

5-26

3 To use the newly modified search path in future sessions, click Save. For
more information about saving the path, see “Saving Settings to the Path”
on page 5-27.

4 Click Close. If you did not save the changes in the previous step, the new
order of files on the search path remains in effect until you end the current
MATLAB session.

Function Alternative. While there is not a specific function to move directories, you
can edit the pathdef.m file with any text editor to change the order of the
directories. Use caution when editing the file so that you do not make MATLAB
and toolbox functions unusable.

Removing Directories from the Search Path

To remove directories from the MATLAB search path using the Set Path dialog
box:

1 Select the directories to remove.
2 Click Remove. The directories are removed from the path.

3 To use the newly modified search path in future sessions, click Save. For
more information about saving the path, see “Saving Settings to the Path”
on page 5-27.

4 Click Close. If you did not save the changes in the previous step, the
directories are removed from the search path until you end the current
MATLAB session.

Function Alternative. To remove directories from the search path, use rmpath.

You can include rmpath statements in your startup M-file to automatically
modify the path when MATLAB starts. For details see “Modifying the Path in
a startup.m File” on page 5-28.

Restoring the Default Search Path

To restore the default search path, click Default in the Set Path dialog box.
This changes the search path so that it includes only the directories installed
with MATLAB and related products.

Search Path

Reverting to the Previous Path

To restore the previous path, click Revert in the Set Path dialog box. This
cancels any unsaved changes you have made in the Set Path dialog box.

Saving Settings to the Path

When you make changes to the search path, they remain in effect during the
current MATLAB session. To keep the changes in effect for subsequent
sessions, you need to save them. To save changes using the Set Path dialog box,
click Save.

If you want to automatically use this search path in future sessions, save the
path to your MATLAB startup directory, which saves pathdef.m to that
location. You can save the changes to the default pathdef.m file, in
$matlabroot/toolbox/local if you have write permission for that directory
but see the following caution. Alternatively, you can include addpath and
rmpath statements in a startup.mfile, which avoids some problems you might
have with saving the path, for example, using the same path with both
Windows and UNIX platforms. For more information, see “Using the Path in
Future Sessions” on page 5-28.

Caution Against Saving Files in $matlabroot/toolbox. Save any M-files you create and
any MathWorks supplied M-files that you edit in a directory that is not in the
$matlabroot/toolbox directory tree. If you keep your files in
$matlabroot/toolbox directories, they can be overwritten when you install a
new version of MATLAB. Also note that locations of files in the
$matlabroot/toolbox directory tree are loaded and cached in memory at the
beginning of each MATLAB session to improve performance. If you save files
to $matlabroot/toolbox directories using an external editor or add or remove
in from these directories using file system operations, run rehash toolbox
before you use the files in the current session. If you make changes to existing
files in $matlabroot/toolbox directories using an external editor, run clear
functionname before you use the files in the current session. For more
information, see rehash or “Toolbox Path Caching in MATLAB” on page 1-10.

Function Alternative. Use savepath to save the current path to pathdef.m. Locate
pathdef.min your MATLAB startup directory to automatically use it in future
sessions. Consider using savepath in your finish.m file. To modify the default
path upon startup, include addpath and rmpath functions in your startup.m
file. For more information, see “Modifying the Path in a startup.m File” on
page 5-28.

5-27

5 Workspace, Search Path, and File Operations

5-28

Using the Path in Future Sessions

There are three basic ways for MATLAB to automatically use a search path you
specify, each with advantages and disadvantages:

¢ “Modifying the Path in a startup.m File” on page 5-28
¢ “Saving the Path in the MATLAB Startup Directory” on page 5-28
e “Saving the Path in $matlabroot/toolbox/local” on page 5-29

For background information, see “How MATLAB Finds the Search Path,
pathdef.m” on page 5-22.

Modifying the Path in a startup.m File

Put addpath and rmpath statements in a startup.m file, and include the
startup file in MATLAB’s startup directory. When MATLAB starts, it uses the
search path defined in pathdef.min $matlabroot/toolbox/local and
modifies it based on the commands in the startup.m file.

By maintaining an unaltered pathdef.min $matlabroot/toolbox/local, you
avoid inadvertently removing directories supplied by The MathWorks from the
path. This method continues working even when you update to a new version
of MATLAB. If you run MATLAB on both Windows and UNIX platforms, this
method works well—for example, for each platform, include separate addpath
sections in the startup.m file, with each section preceded by an ispc or isunix
statement.

One disadvantage of this method is that changes you make to the path using
the Set Path dialog box are not incorporated in the startup.m file.

Saving the Path in the MATLAB Startup Directory

Copy pathdef.m from $matlabroot/toolbox/local to the MATLAB startup
directory. Make changes to the path using the Set Path dialog box, and with
addpath and rmpath functions—choose whichever suits your needs. You can
use this method if you do not have write access to
$matlabroot/toolbox/local.

Search Path

There are some disadvantages to this method. You might inadvertently remove
directories supplied by The MathWorks from the path. When you update to a
new version of MATLAB, you cannot use the pathdef.m file in the startup
directory, but must delete it and create a new version. If you run MATLAB on
both Windows and UNIX platforms, you need to maintain a separate
pathdef.m file for each.

Saving the Path in Smatlabroot/toolbox/local

If you have write access to $matlabroot/toolbox/local, make and save
changes to the path using the Set Path dialog box, and with addpath and
rmpath functions—choose whichever suits your needs.

There are some disadvantages to this method. You cannot maintain this file
when you update to a new version of MATLAB, but will need to use the new
default pathdef.m and make changes to it. If you run MATLAB on both
Windows and UNIX platforms, you need to maintain a separate pathdef .m file
for each.

Recovering from Problems with the Search Path

If you get unexpected results that are related to the search path, you can try to
correct the path file or restore the default path. You might experience path
problems if you save the path on a Windows platform and then try to use the
same pathdef.m file on a UNIX platform. Similarly, you might experience
problems if you edit the pathdef.mfile directly and make it invalid, or if the file
becomes corrupt, renamed, or lost.

For example, if an error message similar to the following appears when you
start MATLAB

Warning: MATLAB did not appear to successfully set the search
path...

it indicates a problem with the search path and you will not be able to use
MATLAB successfully.

5-29

5 Workspace, Search Path, and File Operations

5-30

To recover from problems with the search path, try the following, in order,
proceeding to the next step only if needed:

1

View the pathdef.m and startup.m files, looking for obvious problems.
Make changes and save them. If path problems appear to be resolved, start
MATLAB again to be sure the problem does not reappear. Depending on the
problem, you might not be able to even view the pathdef.m file.

Use the default path for MathWorks products. In the Set Path dialog box,
select Default, then Save, then Close. Depending on the problem, you might
not be able to even open the dialog box.

Run restoredefaultpath. This sets the search path to include only
installed products from the MathWorks. If that seems to have corrected the
problem, run savepath. Start MATLAB again to be sure the problem does
not reappear.

Depending on the problem, this might generate a message such as

The path may be bad. Please save your work (if desired), and quit.
If so, perform step 4.

Perform these steps after trying step 3.

a Run

restoredefaultpath; matlabrc

This might run for a few minutes. It sets the search path to include only
installed products from the MathWorks and corrects path problems
encountered during startup.

b Ifthereis a pathdef.min your startup directory for MATLAB, it caused
the problem. So either remove the bad pathdef.m file or replace the with
a good pathdef.m file, for example, one you can generate at this point
with

savepath('path_to_your_startup_directory/pathdef.m")

¢ Start MATLAB again to be sure the problem does not reappear.

File Management Operations

File Management Operations

MATLARB file operations use the current directory and the MATLAB search
path as reference points. Any file you want to run must either be in the current
directory or on the search path. The key tools for performing file operations are

® “Current Directory Field” on page 5-32

® “Current Directory Browser” on page 5-32

* “Viewing and Making Changes to Directories” on page 5-34

¢ “Creating, Renaming, Copying, and Removing Directories and Files” on
page 5-35

¢ “Opening, Running, and Viewing Information About Files” on page 5-39

¢ “Finding Files and Content Within Files” on page 5-42

® “Accessing Source Control Features” on page 5-44

¢ Setting “Preferences for the Current Directory Browser” on page 5-45

Note You generally cannot perform operations on files and directories for
which you do not have proper permission. For example, you cannot copy a file
to a read-only directory using the Current Directory browser. You can do so
using movefile.

5-31

5 Workspace, Search Path, and File Operations

5-32

Current Directory Field

A quick way to view or change the current directory is by using the current
directory field in the desktop toolbar.

I Dernytnifiles LI J

To change the current directory from this field, do one of the following:

¢ In the field, type the path for the new current directory.

¢ Click the down arrow to view a list of previous working directories, and select
an item from the list to make that directory become the MATLAB current
working directory. The directories are listed in order, with the most recently
used at the top of the list. You can clear the list and set the number of
directories saved in the list—see “Preferences for the Current Directory
Browser” on page 5-45.

¢ Click the browse button (...) to set a new current directory.

¢ Use the up button &l to move the current directory up one level.

The current directory field in the desktop also appears in the Current Directory
browser, when the Current Directory browser is undocked. Consider it to be
one tool with two different means of accessing it.

Current Directory Browser

To search for, view, open, find, and make changes to MATLAB related
directories and files, use the MATLAB Current Directory browser. Most
features of the Current Directory browser have equivalent functions that
perform similar actions. If you are using the Help browser, watch the Current
Directory Browser video demo for an overview of the major functionality.

In addition to the features described here, the Current Directory browser
includes tools to help you manage your M-files—see the “Visual Directory in
Current Directory Browser” on page 7-2 and “Directory Reports in Current
Directory Browser” on page 7-11.

To open the Current Directory browser, select Desktop -> Current Directory
from the MATLAB desktop, or type filebrowser at the Command Window
prompt. The Current Directory browser opens.

File Management Operations

Change the pathname in the edit box to view a Click the find files button to _ _
directory and its contents. This field only appears search for M-files and content ~ For Visual Directory
when the Current Directory browser is undocked ~ Wwithin M-files. and Directory Reports.

from the desktop.

Direcko [0 E s nB v‘ _I_- Dlﬂ
File |Edit Wiew Debug Deskiop ‘Window Help N
I
| H-DocumentsMATLABFiesmymfies = | J o] ESH @ -
All Files £ File Type | Laszt Modified |
[html Falder Jul 16, 2004 4:18:01 PM ﬂ
Double-click a [Amydemos Folder Jul 16, 2004 4:15:00 PM
file to open itin [sea_temp Falder Jul 16, 2004 4:17:59 PM

an appropriate hucky. m hl-file Moy 27, 1997 52855 ..
tool. &cautinn.mdl Mlodel Mov 13, 1997 1:43.28 ..
collatz.asy Editor Autosa... Aug 2, 2004 4:31:33 PM
With collatz.m hl-file Aug 2, 2004 3:06:30 F'P\ill|
preferences &1 | B
setting on, BUCKY Contectivity graph of the Buckminster Fuller geode &
view the he|p [E = BUCKY iz the 60-by-60 sparse adjacency matrix of the
portion of the connectivity graph of the geodesic dome, the soccer hall,

selected M-file and the carbon-60 wolecule.

or contents of
a MAT-file. Rl |

[B,¥] = BUCKY also returns xvz coordinates of the vertiielll
»

4

The main tasks you perform with the Current Directory browser are

* “Viewing and Making Changes to Directories” on page 5-34

¢ “Creating, Renaming, Copying, and Removing Directories and Files” on
page 5-35

¢ “Opening, Running, and Viewing Information About Files” on page 5-39

¢ “Finding Files and Content Within Files” on page 5-42

® “Accessing Source Control Features” on page 5-44

¢ Setting “Preferences for the Current Directory Browser” on page 5-45

5-33

5 Workspace, Search Path, and File Operations

5-34

Viewing and Making Changes to Directories

You can change the current directory, view its contents, add directories to the
MATLAB search path, and change the way the Current Directory browser
presents entries.

Changing the Current Working Directory and Viewing lts Contents

To change the current directory, use the current directory field. The Current
Directory browser lists the files and directories in the current directory.

To view the contents of a subdirectory, double-click it, or select the subdirectory
and press Enter or Return.

To move up one level in the directory structure, press the backspace key.

Function Alternative. Use dir to view the contents of the current working
directory or another specified directory.

Use what to see only the MATLAB related files in a directory. With no
arguments, what displays the MATLAB related files in the current working
directory. Use which to display the pathname for the specified function. Use
exist to see if a directory or file exists. Use fileattrib to see or set file
attributes, much like attrib in DOS or chmod in UNIX.

Adding Directories to the MATLAB Search Path

From the Current Directory browser, you can add directories to the MATLAB
search path. Right-click and from the context menu, select Add to Path. Then
select one of the options:

¢ Current Directory—Adds the current directory to the path.

¢ Selected Folders—Adds the directory selected in the Current Directory
browser to the path.
¢ Selected Folder and Subfolders—Adds the directory selected in the

Current Directory browser to the path, and adds all of its subdirectories to
the path.

File Management Operations

Changing the Display

To specify the types of files shown in the Current Directory browser, use the
View menu. For example, you can show only M-files. If All Files is selected and
you want to see specific file types, first clear the selection for All Files and then
select the specific file types.

You can sort the information shown in the Current Directory browser by
column. Click the title of column on which you want to sort. The display is
sorted, with the information in the that column shown in ascending order, and
an up arrow icon indicates the direction. Click a second time on the column title
to sort the information in descending order.

Creating, Renaming, Copying, and Removing
Directories and Files

General Notes

If you have write permission, you can create, copy, remove, and rename
MATLAB related files and directories for the directory shown in the Current
Directory browser. If you do not have write permission, you can still copy files
and directories to another directory, or you can use equivalent functions, such
as movefile.

To run functions whose arguments require the use of a pathname or filename,
use the function form rather than the unquoted or command form of the syntax
when the pathname or filename includes spaces. For example, the command
form

delete my file.m

generates a warning and does not delete myfile.m. Instead use the function
form of the syntax.

delete('my file.m')

5-35

5 Workspace, Search Path, and File Operations

5-36

Creating New Files
To create a new file in the current directory:

1

Select New from the context menu or File menu and then select the type of
file to create.

An icon for that file type, for example, an M-file icon , with the default
name Untitledn appears at the end of the list of files shown in the Current
Directory browser.

Type over Untitledn with the name you want to give to the new file.
Press Enter or Return.

The file is added.

To enter the contents of the new M-file, open the file—see “Opening,
Running, and Viewing Information About Files” on page 5-39. If you created
the file using the context menu, the new file opens in the Editor with a
template for writing an M-file function.

Function Alternative. Use the edit function to create a new M-file or other type of
text file in the Editor/Debugger.

Creating New Directories
To create a new directory in the current directory:

1

Click the new folder button £¥ in the Current Directory browser toolbar, or
select New -> Folder from context menu.

An icon, with the default name NewFoldern appears at the end of the list of
files shown in the Current Directory browser.

Type over NewFoldern with the name you want to give to the new directory.
Press the Enter or Return key.

The directory is added.

File Management Operations

Function Alternative. To create a directory, use the mkdir function. For example,

mkdir newdir

creates the directory newdir within the current directory.

Renaming Files and Directories

To rename a file or directory, select the item, right-click, and select Rename
from the context menu. Type over the existing name with the new name for the
file or directory, and press Enter or Return. The file or directory is renamed.

Function Alternative. You can use movefile to rename a file or directory. For
example,

movefile('myfile.m', 'projectresults.m')

renames myfile.mto projectresults.m.

Cutting or Deleting Files and Directories
To cut or delete files and directories:

1 Select the files and directories to remove. Use Shift+click or Ctrl+click to
select multiple items.

2 Right-click and select Cut or Delete from the context menu.

The files and directories are removed.

Files and directories you delete from the Current Directory browser go to the
Recycle Bin on Windows (or the Trash Can on Macintosh platforms). If you do
not want the selected items to go to the Recycle Bin, press Shift+Delete. A
confirmation dialog box displays before the items are deleted if you have set
that option in your operating system. For example, on Windows, right-click the
Recycle Bin, select Properties from the context menu, and then, under the
Global tab, select the check box to Display delete confirmation dialog.

Function Alternative. To delete a file, use the delete function. For example,

delete('d:/mymfiles/testfun.m')

deletes the file testfun.m. You can recover deleted files if you use the
preference described in “Default Behavior of the Delete Function” on page 2-56
or the recycle function.

5-37

5 Workspace, Search Path, and File Operations

5-38

To delete a directory and optionally its contents, use rmdir. For example,
rmdir('myfiles')

removes the directory myfiles from the current directory.

Copying and Pasting Files and Directories

Using the Current Directory browser, you can copy (or cut) and paste files and
directories:

1 Select the files or directories to copy. Use Shift+click or Ctrl+click to select
multiple items. For a directory, the entire contents are copied, including all
subdirectories and files.

2 Right-click and select Copy from the context menu.

3 Navigate to the file or directory where you want to paste the items you just
copied.

4 Right-click and select Paste from the context menu.

You can also copy and paste files and directories to and from tools outside of
MATLAB, such as Windows Explorer. You can use Current Directory browser
menu items and the keyboard shortcuts, or you can drag the items.

Function Alternative. Use movefile or copyfile to cut and paste or to copy and
paste files or directories. For example, to make a copy of the file myfun.min the
current directory, assigning it the name myfun2.m, type

copyfile('myfun.m', 'myfun2.m")

File Management Operations

Opening, Running, and Viewing Information About
Files

Opening Files
You can open a file using the open features of the Current Directory browser.
The file opens in the tool associated with that file type.

Select one or more files and perform one of the following actions:

¢ Press the Enter or Return key.
® Right-click and select Open from the context menu.
® Double-click the file(s).

The file opens in the appropriate tool. For example, the Editor/Debugger opens
for M-files, and Simulink opens for model (.md1) files.

To open a file in the Editor/Debugger, no matter what type it is, select Open as
Text from the context menu. One exception is P-files (.p), which you cannot
open.

To open a file using an external application, select Open Outside MATLAB
from the context menu. For example, if you select myfile.doc, Open Outside
MATLAB opens myfile.doc in Microsoft Word, assuming you have the .doc
file association configured to start Word.

You can also import data from a file. Select the file, right-click, and select
Import Data from the context menu. The Import Wizard opens. See the Import
Wizard documentation for instructions to import the data.

5-39

5 Workspace, Search Path, and File Operations

5-40

Function Alternative. Use the open function to open a file in the tool appropriate
for the file, given its file extension. Default behavior is provided for standard
MATILAB file types. You can extend the interface to include other file types and
to override the default behavior for the standard files. For name.ext, open
performs the following actions.

File Type Extension Action

Figure file fig Opens figure name.fig in a figure window.

HTML file html Opens HTML file name.html in the MATLAB
Web browser.

M-file m Opens M-file name .m in the Editor.

MAT-file mat Opens MAT-file name.mat in the Import Wizard.

Model md1l Opens model name.mdl in Simulink.

P-file p Cannot open P-files.

PDF file pdf Opens the PDF file name.pdf in the installed
PDF reader, for example, Adobe Acrobat.

Variable none Opens the numeric or string array name in the
Array Editor; open calls openvar.

Other custom Opens name.custom by calling the helper

function opencustom, where opencustomis a
user-defined function.

Use winopen to open a file using an external application on Windows platforms.

To view the content of an ASCII file, such as an M-file, use the type function.

For example

type('startup')

displays the contents of the file startup.min the Command Window.

File Management Operations

Running M-Files
To run an M-file from the Current Directory browser, select it, right-click, and

select Run from the context menu. The results appear in the Command
Window.

To get the name of the currently running M-file, use mfilename.

Viewing Information About M-Files and MAT-Files

In the Current Directory browser, you can view the help for an M-file or the
variables in a MAT-file.

1 Select File -> Preferences -> Current Directory. For Browser display
options, select Show M-file comments and MAT-file contents, then click
OK.

2 In the Current Directory browser, select an M-file or MAT-file.

The lower pane in the Current Directory browser displays the help for an
M-file, or for a MAT-file, displays the names its variables along with their
size, bites, and class.

«) Current Directory - H:"-.,Dnl:uments"-.,MATLAB"' =10l =l
File Edit Wew Debug Deskiop ‘Window Help u
[HiDocuments AT ABFiestnymties | J c¥ 5 | B -
All Files & File Type | Lazt Modified | Description
@ profile.mat MAT-file Qctf, 2003 .. ﬂ
povertystats.m M-file Mar 3, 2004 i
[T povertydata. mat MAT-file Mar3d, 2003 ...
View variables] nlan txt TU(T File Sep 26, 200... &
in selected B | _'l_l
MAT-file without
loading the file. |I_~Tame dize Eytes Class j
families 43x1 344 double ar
female 43x1 344 double ar
recfamn 43x1 344 double ar
recfemn 43x1 344 double ar
year 43x1 344 double ar -
Kl B
A

5-41

5 Workspace, Search P

ath, and File Operations

Type text or
filename (or both)
to find.

Select directories—
to search in.

Find specified
items.

You can view more extensive help for the M-file selected in the Current
Directory browser. From the context menu, select View Help. The reference
page for that function appears in the Help browser.

Finding Files and Content Within Files

Use the Find Files tool to search for files or for specified text within files.

Results of find. Click a column heading to change sort order.

<} Find Files

Find files named:

L4]

Find files containing texdt:

= =]
Look in:
‘I‘Current directary LI

—+F Include subdirectories

Find

| Clear |

Use advanced
options.

Advanced Options =< |

—&dvanced options

In file type:

[

[
[

Search type:

I Matches whole wiord
™ Match case

™ Show ful pathnames

Set options to

default values.

Restore Defaults |

Close current tab pane

I
Fileratne I Lirue I
codepad_example m 12 plotix, 7!
codepad_example2 m 10 plotix, 7!
codepad_example2 m 51 plot (hunps)
collatzall.m 2 ¥ Plot length of secquence
collatzall.m a ¥ Determine and plot sedue
collatzplot m 2 ¥ Plot length of secquence
collatzplot m a ¥ Determine and plot sedue
fern.m 3 r = plocixily x(E),'.");
K] o
3 mgtches of "plot” in 5 files . YWhole word
Directaries searched: l:l:im\,r'mfiles
caoll* plot |
Clolse | Help |
|

|
Close Find Files tool.

View results of previous searches in
their own tab panes.

5-42

File Management Operations

To search for files in one or more directories, or to search for specified text in
files, follow these instructions:

1 Open the Find Files tool by clicking the find files button & in the Current
Directory browser toolbar, or selecting Edit -> Find Files from the desktop
Edit menu.

The Find Files dialog box opens.

2 Type in the filename or text you are searching for:

= To search for files, type the filename in the Find files named field. You
can use the wildcard character (*) in the filename. For example, type
coll* to search for filenames that start with coll.

= To search for text, type the text in the Find files containing text field. For
example, search for plot. Do not use a wildcard character, but instead use
the Advanced Options Search type (see step 4). Alternatively, you can
select text in the Command Window or Editor and that text appears in the
Find files containing text field.

= To search for text in specified filenames only, type entries in both fields.

Use the dropdown list to view and select previous entries from the current
MATLAB session.

3 From the Look in list box, select the directories to search in. You can instead
type the full pathname for one or more directories into this field (with each
pathname separated by a semicolon ;), or select the Browse option at the end
of the list box. To include subdirectories in the search, select the Include
subdirectories check box.

For example, search the MATLAB current directory.
4 To specify additional search criteria, click Advanced Options.

For example, select *.m in the In file type field to limit the search to M-files
only. The default, *, searches all file types.

By default, a text search looks for partial matches (the Contains text option
for Search type). You can instead select Matches whole word.

5-43

5 Workspace, Search Path, and File Operations

5-44

5 To execute the search, click Find. While the search is in progress, the Find
button label changes to Stop Find. To abort a search, click Stop Find.

Search results appear in the pane on the right side of Find Files dialog box,
with a summary of the results at the bottom of the pane. For text searches,
the line number and line of code are shown. To see the full pathnames for
the files, select the Show full pathnames check box under Advanced
Options.

6 Click a column heading to sort the results based on that column. Click the
column heading again to reverse the sort order for that column. For
example, click Line to sort results by line number.

You can open any M-files that appear in the results list by doing one of the
following:

¢ Double-click the file
¢ Select the files and press Enter or Return

¢ Right-click and select Open from the context menu

The M-files open in the Editor/Debugger. For text searches, the file opens
scrolled to the line number shown in the results section of the Find Files dialog
box. Once in the Editor/Debugger, you can use the Find & Replace tool to
replace specified text.

To see the results of a previous search, select its tab at the bottom of the results
pane.

Function Alternative. Use lookfor to search for the specified text in the first line
of help for all M-files on the search path.

Accessing Source Control Features

Select a file or files in the Current Directory browser and right-click to view the
context menu. From there you can access features for Source Control. For
details on these features, see Chapter 9, “Source Control”.

File Management Operations

Preferences for the Current Directory Browser

Using preferences, you can specify the number of recently used current
directories to maintain in the history list as well as the type of information to
display in the Current Directory browser.

From the Current Directory browser File menu, select Preferences. The
Current Directory Preferences pane appears in the Preferences dialog box.

«): Preferences =10l %]
enersl Current Directory Preferences
arts
olars History
—Cormmancd Window

eyhoard & Inderting Save most recent [20 directories Clear Histary |

—Cotmmand History

[+EditorDebugger
—Help Broveser display options

¥ Show file types

ek
p_Utrent Dire |
—WWorkspace ¥ Show last moditied date

—&rray Editor

—GUIDE [Shaw M-file dezcriptions

[F-Figure Copy Template

—Feport Generator ™ Showe W-file comments and MAT-file corterts
—Instrurment Cortrol

—irtual Reality Avuto-refresh

[+Sirmulink

v auto-refresh directory view

Update every I 23: SECONGS

Ok Cancel | Apply | Help |

History
The dropdown list in the current directory field shows the history of current
directories, that is, the most recently used current directories.

5-45

5 Workspace, Search Path, and File Operations

5-46

Saving Directories. When the MATLAB session ends, the list of directories will be
maintained. Use the Save most recent directories field to specify how many
directories will appear on the list at the start of the next MATLAB session.

Removing Directories. To remove all entries in the list, click Clear History. The
list is cleared immediately.

Browser Display Options

In the Current Directory browser, you can view the file type, last modified date,
M-file descriptions (the first comment line in the M-file, also called the H1 line),
and M-file comments and MAT-file contents by selecting the appropriate
Browser display options.

Auto-refresh

By default, the Auto-refresh directory view check box is selected, with an
update time of 2 seconds. This means that every 2 seconds, the Current
Directory browser checks for and reflects any changes you made to files and
directories in the current directory using other applications.

In some cases when the current directory is on a network, MATLAB becomes
slow because of the auto-refresh feature in the Current Directory browser. If
you experience general slowness in MATLAB and have the Current Directory
browser open, try increasing the default update time to alleviate this problem.
For extremely slow performance situations, clear the check box to turn
auto-refresh off. You can right-click and select Refresh from the context menu
to update the Current Directory browser display.

Editing and Debugging

M-Files

MATLAB provides powerful tools for creating, editing, and debugging files, as detailed here. For
information about the MATLAB language and writing M-files, see the MATLAB Programming

documentation.

Begin with Existing Code (p. 6-2)

Ways to Edit and Debug M-Files
(p. 6-4)

Starting, Customizing, and Closing the
Editor/Debugger (p. 6-6)

Creating, Editing, and Running Files
(p. 6-13)

Debugging M-Files (p. 6-34)

Rapid Code Iteration Using Cells
(p. 6-65)

Before you begin writing MATLAB programs, consider
starting with existing code, and then modifying that code
using the Editor/Debugger. Code resources include your
own Command Window and History, and existing M-files,
demos, and examples.

You can use the MATLAB Editor and Debugger with
MATLAB, use the Editor without MATLAB, use another
editor you already have, and use debugging functions in
the Command Window. In the Editor/Debugger, you can
edit M-files as well as other file types.

Create new files, open existing files, open files without
starting MATLAB, arrange document windows, and set
preferences.

Control the appearance of files during editing, navigate in
files, run M-files, and save, print, and close files.

Find errors and debugging features.

Readily experiment with changes to your M-files by
modifying and running sections of the files, called cells,
and by incrementally modifying values.

6 Editing and Debugging M-Files

6-2

Begin with Existing Code

Before you begin writing MATLAB code in a blank file, consider starting by
using existing resources for the code, and then use the Editor/Debugger to
modify the code. This section presents some resources to draw upon.

Create M-Files from Command Window and History

In many cases, you create and run MATLAB statements in the Command
Window, modify those statements to your satisfaction, and then create an
M-file that includes the statements. To facilitate this process, in the Command
History, select the MATLAB statements you want to include in the M-file.
Right-click and select Create M-File. The Editor/Debugger opens a new file
that includes the statements you selected from the Command History. You can
also copy the statements from the Command History and paste them into an
existing M-file.

Use Existing M-Files and Examples

If you can find existing code that accomplishes what you want to do, copy it and
use it in your own M-file, assuming you have legal permission to do so. Here
are some resources.

MATLAB and Toolbox M-Files

You can access and reuse the code in MATLAB and toolbox functions that have
a .m file extension. You cannot use MATLAB and toolbox functions that have a
.bi file extension (for built-in), meaning they are efficient but their code is not
accessible. If there is a MATLAB function that is similar to what you need to
do and it is not built-in, open the file in the Editor/Debugger and use it as a
basis for your file. Be sure to save the file using a different name and in a
directory that is not in $matlabroot/toolbox. See “Saving M-Files” on

page 6-30 for details.

Demos and Examples

MATLAB and its toolboxes include demonstration programs. You can view the
code in the demos and copy it for use in your own M-files. To see the demos, type
demo, which opens the Help browser to the Demos pane. For more information
about demos, see “Demos in the Help Browser” on page 4-24.

Begin with Existing Code

There are also code examples in the online documentation. To see a list of
examples for a product, type helpbrowser to open the Help browser. In the
Contents pane, click + for the product to view the help topics, and then select
the % Examples entry.

File Exchange

The MathWorks Web site features a user contributed code library, from which
you can download free M-files contributed by users and developers of
MATLAB, Simulink, and related products. To view the files available to
download, go to the MATLAB Central File Exchange page on The MathWorks
Web site,
http://www.mathworks.com/matlabcentral/fileexchange/index.jsp. You
can access this via the Help -> Web menu in any desktop component.

6-3

6 Editing and Debugging M-Files

Ways to Edit and Debug M-Files

There are several methods for creating, editing, and debugging files with
MATLAB.

Creating and Editing Instructions
M-Files—Options

MATLAB Editor/Debugger “Starting, Customizing, and Closing the
Editor/Debugger” on page 6-6, and
“Creating, Editing, and Running Files” on
page 6-13.

You can also create, open, edit and save
other file types in the MATLAB Editor. See
“Creating and Editing Other Text File
Types” on page 6-12.

MATLAB Editor in “Opening the Editor Without Starting
stand-alone mode (without MATLAB” on page 6-10.

running MATLAB)

Any text editor, such as To specify another editor as the default for
Emacs or vi use with MATLAB, select File ->

Preferences -> Editor/Debugger, and for
Editor, specify the Text editor. Click Help
in the Preference dialog box for details.
You can still debug the M-files using the
MATLAB Editor/Debugger or debugging
functions.

Ways to Edit and Debug M-Files

Debugging M-Files-Options

Instructions

General debugging tips
MATLAB Debugger

MATLAB debugging
functions (for use in the
Command Window)

“Finding Errors in M-Files” on page 6-34.

“Debugging Process and Features” on
page 6-40.

“Debugging Process and Features” on
page 6-40.

Use preferences for the Editor/Debugger to set up the editing and debugging
environment to best meet your needs. For information about the MATLAB
language and writing M-files, see the MATLAB Programming documentation.

6-5

6 Editing and Debugging M-Files

6-6

Starting, Customizing, and Closing the Editor/Debugger

The MATLAB Editor/Debugger provides a graphical user interface for basic
text editing features for any file type, as well as for M-file debugging. The
Editor/Debugger is a single tool that you can use for editing, debugging, or
both.

There are various ways to start the Editor/Debugger. The Editor/Debugger
automatically starts when you open a document or create a new one, as
detailed in these sections:

¢ “Creating a New File in the Editor/Debugger” on page 6-7

¢ “Opening Existing Files in the Editor/Debugger” on page 6-8

¢ “Opening the Editor Without Starting MATLAB” on page 6-10 (no Debugger)

After starting the Editor/Debugger, follow the instructions for

¢ “Arranging Editor/Debugger Documents” on page 6-10

¢ “Preferences for the Editor/Debugger” on page 6-11

¢ “Creating and Editing Other Text File Types” on page 6-12
¢ “Closing the Editor/Debugger” on page 6-12

This figure shows an example of the Editor/Debugger outside of the desktop
opened to an existing M-file, and calls out some of the tool’s useful features.

Starting, Customizing, and Closing the Editor/Debugger

The * after the filename indicates the file has Set the right-hand text limit (red
not been saved since it was last modified. line) using Preferences -> Display.
& DAmymfiles\collatz.m* _
File Edit Text Cell Tools Debug Desktop ‘Window Help N
DS | i2Ro | S(#F| 88080 B8 | sk
Toolbar for
cell — 2B i8] - o+ | = fr x| o
features. 1 function sequence=collatz(n) |
2 % Collatz problem. Generate a sequence of integers resolwving to 1
& % For any positive integer, n:
Set 4 % Diwide n by 2 if n iz even
breakpoimsin__.ﬁ_ % Multiply n by 3 and add 1 if n is odd
the aIIey. i} % Fepeat for the result
7 % Continue until the result iz 1
8
a= Sequence = n;
Colors 10 = next_wvalue = n;
highlight 1l = while next value > 1 e
syntax —(fe T~ if rem(next_walue,z)==
e next wvalue = next walue/Z;
elements. — —
14 — elze LI
| collatz Itn 5 | Col 12 |ovR 4

Status bar information includes cursor line and column numbers.

Creating a New File in the Editor/Debugger

To create a new text file in the Editor/Debugger, either click the new file button
[on the MATLAB desktop toolbar, or select File -> New -> M-File from the
MATLAB desktop. The Editor/Debugger opens, if it is not already open, with
an untitled file in the MATLAB current directory, in which you can create an
M-file or another type of text file.

The location of the new file and the Editor/Debugger are determined by
document positioning guidelines. You can rearrange the documents to suit your
needs. For details, see “Opening and Arranging Documents” on page 2-7.

6-7

6 Editing and Debugging M-Files

6-8

If the Editor/Debugger is open, create more new files by using the new file
button [l on the toolbar, or select File -> New -> M-File.

Other tools also provide features for creating new M-files. For example, in the
Command History, select statements, right-click, and select Create M-File
from the context menu. Similarly, create a new file from the context menu in
the Current Directory browser—see “Creating New Files” on page 5-36.

Function Alternative for Creating a New M-File

Type edit in the Command Window to create a new file in the
Editor/Debugger.

Type edit filename.ext to create the file filename.ext. If filename.ext
already exists in the current directory or on the MATLAB search path, this
opens the existing file. If filename.ext does not exist in the current directory
or on the MATLAB search path, a prompt appears asking if you want to create
a new file titled filename.ext:

¢ If you click Yes, the Editor/Debugger creates a blank file titled
filename.ext. Ifyou do not want the dialog to appear in this situation, select
that check box in the dialog. Then, the next time you type edit
filename.ext, the file is created without first prompting you.

¢ If you click No, the Editor/Debugger does not create a new file. If you do not
want the dialog to appear in this situation, select that check box in the
dialog. In that case, the next time you type edit filename.ext,a“file not
found” message appears.

If you want the dialog to appear, specify that using the preference Show dialog
prompt.... For details, see the online documentation for preferences, “Opening
Files in Editor”.

Opening Existing Files in the Editor/Debugger

To open an existing file in the Editor/Debugger, click the open button i on the
desktop or Editor/Debugger toolbar, or select File -> Open.

The Open dialog box appears, listing all M-files. You can see different files by
changing the selection for Files of type in the dialog box. Type or select a
filename, and click Open. If you access the Open dialog box from the desktop,
the current directory files are shown, but if you access it from the
Editor/Debugger, the files in the directory for the current file are shown.

Starting, Customizing, and Closing the Editor/Debugger

The Editor/Debugger opens, if it is not already open, with the file displayed.
The location of the file and the Editor/Debugger are determined by document
positioning guidelines. You can rearrange the documents to suit your needs.
For details, see “Opening and Arranging Documents” on page 2-7.

To make a document in the Editor/Debugger become the current document,
click it, or select it from the Window menu or document bar.

Other Methods for Opening Files in the Editor/Debugger
These are other ways to open files in the Editor/Debugger:

® Drag a file from another MATLAB desktop tool or a Windows tool into the
Editor/Debugger. For example, drag files from the Current Directory
browser, or from Windows Explorer.

¢ Open files from the Current Directory browser—see “Opening Files” on
page 5-39.

¢ Select a file to open from the most recently used files, which are listed at the
bottom of the File menu in the Editor/Debugger and all other desktop tools.
You can change the number of files appearing on the list—select File ->
Preferences -> Editor/Debugger and in the Most recently used file list,
specify the Number of entries.

¢ In the Editor/Debugger or another desktop tool such as the Command
Window, select a filename, right-click, and select Open Selection from the
context menu to open that file. See “Opening a Selection in an M-File” on
page 6-29 for details.

¢ Set a preference that instructs MATLAB, upon startup, to automatically
open the files that were open when the previous MATLAB session ended.
Select File -> Preferences -> Editor/Debugger and in the Opening files in
editor area, select the check box for On restart reopen files from previous
MATLAB session.

6-9

6 Editing and Debugging M-Files

6-10

Function Alternative for Opening an M-File. Use the edit or open function to open an
existing file in the Editor/Debugger. For example, type

edit collatz.m

to open the file collatz.m in the Editor/Debugger, where collatz.mis on the
search path or in the current directory. Use the relative or absolute pathname
for the file you want to open if it is not on the search path or in the current
directory.

Opening the Editor Without Starting MATLAB

On Windows platforms, you can use the MATLAB Editor without starting
MATLAB. For example, double-click an M-file in Windows Explorer and the
M-file opens in the MATLAB Editor without starting MATLAB. To open the
Editor to a new file, run $matlabroot/bin/win32/meditor.exe. Regardless of
the type of MATLAB license you have, you can open multiple instances of
meditor because it is not considered an instance of MATLAB.

When you open the MATLAB Editor without starting MATLAB, the Editor is
a stand-alone (or standalone) application. You cannot debug M-files from it,
evaluate a selection, access source control features, dock the Editor in the
MATLAB desktop, nor access help from it. It remains a stand-alone
application, even if you subsequently open MATLAB. Other than these
limitations, you can use the editing features as described in “Creating, Editing,
and Running Files” on page 6-13.

For Windows platforms, when MATLAB is installed, the stand-alone Editor is
automatically associated with files having a .m extension. If you double-click
an M-file, the stand-alone Editor opens. You can change the association using
Windows Explorer so that files with a .m extension open in the
Editor/Debugger in MATLAB.

Arranging Editor/Debugger Documents

You can arrange the size and location of M-files and other text documents you
open in the Editor/Debugger. Editor/Debugger documents follow the same
arrangement practices as other desktop documents. For details, see “Opening
and Arranging Documents” on page 2-7.

Starting, Customizing, and Closing the Editor/Debugger

Preferences for the Editor/Debugger

Using preferences, you can specify the default behavior for various aspects of
the Editor/Debugger.

To set preferences for the Editor/Debugger, select Preferences from the File
menu in the Editor/Debugger. The Preferences dialog box opens showing
Editor/Debugger Preferences.

<) Preferences

Appears only if EmacsLink is registered with MATLAB.

—Current Directary
—Workspace

—A&rray Editor

—UIDE

[+Figure Copy Template

Editor Debugger Preferences

=10 x|

—Editar
& MATLAE editor

 Teuxt editor: I

L Integrated text editor: |EmacsLink

]
Optinns...l

Mozt recently used file list

Mumber of entries: IE

—iOpening files in editar
v on restart reapen files fram previous MATLAE session

[Stinwdialog protmt syiet editioo files thet o not exist

—Autamatic file changes

¥ Reload unedited files that have been externally modified

¥ add line termination at end of file

Ok Cancel | Apply

| Help |

Click the + next to Editor/Debugger in the left pane to view all categories of
Editor/Debugger preferences. Select a category and that preference pane
displays. Make changes and click Apply or OK.

6-11

6 Editing and Debugging M-Files

6-12

For details about specific Editor/Debugger preferences, see “Preferences for the
Editor/Debugger” in the online documentation, or click Help in the
Preferences dialog box.

Creating and Editing Other Text File Types

You can edit any type of text file using the MATLAB Editor. For example, you
can open and edit an HTML file. Note that you can run or debug only M-Files
from the Editor/Debugger.

When working with files created for C/C++, Java, and HTML, you can specify
syntax highlighting and indenting preferences appropriate to those languages.
Select File -> Preferences -> Editor/Debugger -> Language. See details in
the online documentation for language preferences or click the Help button in
the dialog box.

Closing the Editor/Debugger

To close the Editor/Debugger, click the close box in the title bar of the
Editor/Debugger. This is different from the close box in the menu bar of the
Editor/Debugger, which closes the current file when multiple files are open in
a single window.

Close box for Editor/Debugger.

Close box for current file.

& Editor - D:Amymfilesicollatz.m
File Edit Text Cell Tools Debug Desktop “Window Help | alx

D H| R |&|85 | 00| O *F

If multiple files are open, with each in a separate window, close each window
separately. To close all files at once, select Close All Documents from the
Window menu. Note that this will close other desktop documents as well, such
as arrays in the Array Editor, and it will close the tools as well, that is, the
Editor/Debugger and Array Editor, for example.

When you close the Editor/Debugger and any of the open files have unsaved
changes, you are prompted to save the files.

Creating, Editing, and Running Files

Creating, Editing, and Running Files

In the Editor/Debugger, use these editing features to create, modify, and run
your files:

¢ “Entering Statements” on page 6-13, including adding comments

® “Appearance of an M-File” on page 6-19, including syntax highlighting

* “Navigating in an M-File” on page 6-22, including go to, and find and replace
® “Opening a Selection in an M-File” on page 6-29

® “Saving M-Files” on page 6-30

¢ “Running M-Files from the Editor/Debugger” on page 6-32

¢ “Printing M-Files” on page 6-33

¢ “Closing M-Files” on page 6-33

Entering Statements

After opening an existing file or creating a new file, enter statements in the
Editor/Debugger. Follow the same rules you would use for entering statements
in the Command Window as described in these sections:

¢ “Case and Space Sensitivity” on page 3-9

¢ “Entering Multiple Functions in a Line” on page 3-12

* “Entering Long Statements” on page 3-12

® “Suppressing Output” on page 3-20

¢ “Formatting and Spacing Numeric Output” on page 3-21

In addition, utilize these Editor/Debugger features.

¢ “Adding Comments in M-Files” on page 6-14

¢ “Changing the Case of Selected Text” on page 6-18

¢ “Undo and Redo” on page 6-19

* “Finding and Replacing Text in the Current File” on page 6-25

6-13

6 Editing and Debugging M-Files

6-14

Adding Comments in M-Files

Comments are strings or statements in an M-file that do not execute. Add
comments in an M-file to describe the code or how to use it. Comments
determine what text displays when you run help for a filename. Use comments
when testing your files or looking for errors—temporarily turn lines of code into
comments to see how the M-file runs without those lines.

¢ “Commenting Using the MATLAB Editor” on page 6-14
¢ “Commenting Using Any Text Editor” on page 6-15
¢ “Commenting Out Part of a Statement” on page 6-17

¢ “Formatting Comments” on page 6-18

Commenting Using the MATLAB Editor. You can comment the current line or a
selection of lines:

1 For a single line, position the cursor in that line. For multiple lines, click in
the line and then drag or Shift+click to select multiple lines.

2 Select Comment from the Text menu, or right-click and select it from the
context menu.

A comment symbol, %, is added at the start of each selected line, and the color
of the text becomes green or the color specified for comments—see “Syntax
Highlighting” on page 6-19.

To uncomment the current line or a selected group of lines, select Uncomment
from the Text menu, or right-click and select it from the context menu.

Creating, Editing, and Running Files

Click in the area to the left of a line to select that line.
To select multiple lines, drag or Shift+click, as shown here.

Select Text -> Comment to make all the selected lines comments.

B Editor - D:Amymfiles\collatz. m*
File Hdit Text Cell Tools Debug Desktop Window Help E | A X
D@H|é 2R S BF| a0 BRE I 0
ﬂ|*%u§ig|—|yu + | = [x | ot off
1 function sequence=collatz(n) =
2 —
3 -
4 —_
5 -
5 —
':|| -
i
= SEqUence = I;
10 = next_walue = n;
S il Lt 1 > 1 X
wil'il e next walue |_D|_I
| colistz [Lh &8 ool 1 [ovr gz

Commenting Using Any Text Editor. You can make any line a comment by typing %

at the beginning of the line. To put a comment within a line, type % followed by
the comment text; MATLAB treats all the information after the % on that line
as a comment.

z

% This is a comment:

MATLAB ignores this comment line when you run the M-file.
This i=s not a comment.——This line produces an error when you run the M-file.

To uncomment any line, delete the comment symbol, %.

To comment a contiguous group of lines, type %{ before the first line and %}
after the last line you want to comment. This is referred to as a block comment.
The lines that contain %{ and %} cannot contain any other text. After typing the
opening block comment symbol, %{, all subsequent lines assume the syntax
highlighting color for comments until you type the closing block comment
symbol, %}. At that point, only the lines between the block comment symbols

6-15

6 Editing and Debugging M-Files

6-16

have the syntax highlighting color for comments. Remove the block comment
symbols, %{ and %}, to uncomment the lines.

This examples shows some lines of code commented out. When you run the
M-file, the commented lines will not execute. This is useful when you want to
identify the section of a file that is not working as expected.

Comment a block of code by adding %{ before
the first line and %} after the last line.

a = magic (3]
E31

Sum (&)

digg (&)
sum(diag(a))
Th

sum(diag(fliplria)1)

You can easily extend a block comment without losing the original block
comment, that is, create a nested block comment, as shown in the following
example.

Create a nested comment, that is, a block comment
within a block comment.

4
a = magic (3]

51

Original Sura [&]
comment dizg (L)
Extended Sum (diag ()]

L
sum(diag(fliplri(a) 1)

£

comment —]

Creating, Editing, and Running Files

Commenting Out Part of a Statement. To comment out the end of a statement, put
the comment character, %, before the comment. When you run the file,
MATLAB ignores any text on the line after the %.

Any text following a % within a line is
considered to be a comment.

a = zeroz(10) % Initiali=e matrix

To comment out text within a multiline statement, use the ellipsis (. . .).
MATLAB ignores any text appearing after the ... on a line and continues
processing on the next line. This effectively makes a comment out of anything
on the current line that follows the The following example comments out
the Middle Initial line.

header = ['Last Name, '...
'First Name, '...

'Middle Initial, '...
'Title']

MATLAB ignores the text following the ... on the line
. 'Middle Initial, '...
Note that Middle Initial is green, which is the syntax highlighting color for
a comment.
MATLAB continues processing the statement with the next line

'Title']

MATLAB effectively runs

6-17

6 Editing and Debugging M-Files

6-18

headers = ['Last Wame, ' ...
'First Name, '
'Title']

Formatting Comments. To make comment lines in M-files wrap when they reach a
certain column:

1 Specify the maximum column number using preferences for the
Editor/Debugger. Select Language -> M. For Comment formatting, set the
Max width.

2 Select contiguous comment lines that you want to limit to the specified
maximum width.

3 Select Text -> Wrap Selected Comments.

The selected comment lines are reformatted so that no comment line in the
selected area is longer than the maximum. Lines that were shorter than the
specified maximum are merged to make longer lines if they are at the same
level of indentation.

To automatically limit comment lines to the maximum width while you type,
select the Comment formatting preference to Autowrap comments.

For example, assume you select Autowrap comments and set the maximum
width to be 75 characters, which is the width that will fit on a printed page
using the default font for the Editor/Debugger. When typing a comment line,
as you reach the 75th column, the comment automatically continues on the
next line.

Changing the Case of Selected Text

To change the case of text in the Editor, select the text and then use one of these
key sequences:

® Press Alt+U, U to change all text to upper case

¢ Press Alt+U, L to change all text to lower case

® Press Alt+U, R to change the case of each letter

Creating, Editing, and Running Files

This is useful, for example, when copying syntax from help in an M-file, where
uppercase is used but will not run in MATLAB. In this example, the text was
copied and pasted from help get.

V = GET(H, 'Default')

Select the line of text. Press Alt+U and then press L. The line becomes
v = get(h, 'default')

Pressing Alt+U and then R changes the original help line to
v = get(h, 'dEFAULT')

Undo and Redo

You can undo many of the Editor/Debugger actions listed in Edit and Text
menus. Select Edit -> Undo. You can undo multiple times in succession until
there are no remaining actions to undo. Select Edit -> Redo to reverse an undo.

Appearance of an M-File

The following features make M-files more readable:

® “Syntax Highlighting” on page 6-19

® “Indenting” on page 6-20

¢ “Nested Functions Indenting” on page 6-20

¢ “Line and Column Numbers” on page 6-20

® “Right-Hand Text Limit” on page 6-21

¢ “View Function or Subfunction” on page 6-21

You can specify the default behaviors for some of these—see “Fonts, Colors, and
Other Preferences” on page 2-45.

Syntax Highlighting

Some entries appear in different colors to help you better find matching
elements, such as if/else statements. This is called syntax highlighting and
is used in the Command Window and History, as well as in the
Editor/Debugger. For more information, see the Command Window
documentation for “Syntax Highlighting” on page 3-10

6-19

6 Editing and Debugging M-Files

6-20

When you paste a selection from the Editor into another application, such as
Word, the Editor maintains the syntax highlighting colors in the file in the
other application. MATLAB pastes the selection to the clipboard in RTF
format, which many Windows and Macintosh applications support.

You can set preferences that cause MATLAB to notify you about matched and
unmatched delimiters. For example, when you type a parenthesis or another
delimiter, MATLAB highlights the matched parenthesis or delimiter in the
pair. For details, see “Parentheses Matching Preferences” for the
Editor/Debugger.

Indenting

Program control entries are automatically indented to aid in reading loops,
such as while/end statements.

To move the current or selected lines further to the left, select Decrease
Indent from the Text menu. To move the current or selected lines further to
the right, select Increase Indent from the Text menu. If after using these
features you want to apply automatic indenting to selected lines, select Smart
Indent from the Text menu, or right-click and select it from the context menu.

Select a line or group or lines and press the Tab key to indent the lines. Press
Shift+Tab to decrease the indent for the selected lines. This works differently
if you select the preference for Emacs style Tab key smart indenting—when
you position the cursor in any line or select a group of lines and press Tab, the
lines indent according to smart indenting practices.

For more information about smart indenting and indenting preferences, see
the Editor Keyboard and Indenting Preferences for the Editor/Debugger and
Language Preferences for the Editor/Debugger in the online documentation.

Nested Functions Indenting

If you select the language preference for smart indenting, you can select from
three indenting options when you enter a nested function (a function within a
function) in the Editor. For details, see ““Function Indenting Format” in the
online documentation for Editor preferences.

Line and Column Numbers

Line numbers are displayed along the left side of the Editor/Debugger window.
You can elect not to show the line numbers using preferences—see Display
Preferences for the Editor/Debugger.

Creating, Editing, and Running Files

The line and column numbers for the current cursor position are shown in the
far right side of the status bar in the Editor/Debugger.

Right-Hand Text Limit

By default, a faint vertical line appears at column 75 in the Editor/Debugger,

providing a cue as to when a line becomes wider than desired, which is useful
to know for printing, for example. You can hide the line or change the column
number at which it appears—see Display Preferences for the Editor/Debugger.

View Function or Subfunction

View the function or subfunction the cursor is currently at in the right side of
the status bar in the Editor/Debugger. See also dbstack.

6-21

6 Editing and Debugging M-Files

6-22

Navigating in an M-File

There are several options for navigating in M-files:
¢ “Keyboard Shortcuts in the Editor” on page 6-22
® “Going to a Line Number” on page 6-23

® “Going to a Bookmark” on page 6-23

® “Going to a Function (Subfunctions and Nested Functions)” on page 6-24

See also “Finding Text in Files” on page 6-24.

Keyboard Shortcuts in the Editor

Following is the list of keys that serve as shortcuts for using the Editor. This
list does not include shortcut keys for menu items—you can view those on the
menus. If you select the Editor’s Emacs Key Bindings for the Editor/Debugger
preference, you can also use the Ctrl+key combinations shown. See also
general “Keyboard Shortcuts (Accelerators) and Mnemonics” on page 2-35.

Key

Additional Control Key for Operation
Emacs Preference

)
J

Ctrl+ |
Ctrl+ \L
Ctrl+Home
Ctrl+End
<~

—

Ctrl+ —
Ctrl+ <

Home

Ctrl+P Move to previous line.
Ctrl+N Move to next line.

none Scroll screen down one line
none Scroll screen up one line
none Move to top of file.

none Move to end of file.

Ctrl+B Move back one character.
Ctrl+F Move forward one character.
none Move right one word.

none Move left one word.
Ctrl+A Move to beginning of line.

Creating, Editing, and Running Files

Key Additional Control Key for Operation (Continued)
Emacs Preference
End Ctrl+E Move to end of line.
Delete Ctrl+D Delete character after cursor.
Backspace none Delete character before cursor.
none Ctrl+K Cut contents (kill) to end of line.
Shift+Home none Select to beginning of line.
Shift+End none Select to end of line.
Insert none Change to overwrite mode from insert mode, or

change to insert mode from overwrite mode.
Overwrite mode replaces existing text as you
type. In overwrite mode, the cursor changes to a
wide block.

Going to a Line Number

Select Edit -> Go to Line. In the resulting dialog box, enter the Line number
and click OK. The cursor moves to that line number in the current M-file.

Going to a Bookmark

You can set a bookmark at a line in a file in the Editor/Debugger so you can
quickly go to the bookmarked line. This is particularly useful in long files. For
example, while working on a line, if you need to look at another part of the file
and then return, set a bookmark at the current line, go to the other part of the
file, and then go back to the bookmark.

To set a bookmark, position the cursor anywhere in the line and select Edit
->Set Bookmark. A bookmark icon appears to the left of the line.

11| = [Dwhile next_walue » 1

To go to a bookmark, select Next Bookmark or Previous Bookmark from the
Edit menu.

6-23

6 Editing and Debugging M-Files

6-24

To clear a bookmark, position the cursor anywhere in the line and select
Edit -> Clear Bookmark.

Bookmarks are not maintained after you close a file.

Going to a Function (Subfunctions and Nested Functions)

To go to a function within an M-file (either a subfunction or a nested function),
click the show functions button f. on the toolbar. Select the subfunction or
nested function you want to go to from the alphabetical listing of all
subfunctions and nested functions in that M-file. The list does not include
functions that are called from the M-file, but only lists lines in the current
M-file that begin with a function statement.

The subfunction or nested function that the current line is part of is shown at
the right side of the status bar.

Finding Text in Files
There are different ways to find text in files:

¢ “Finding Text in the Current File” on page 6-24
¢ “Finding and Replacing Text in the Current File” on page 6-25
¢ “Finding Files or Text in Multiple Files” on page 6-26

¢ “Incremental Search” on page 6-26

Finding Text in the Current File

Within the current file, select the text you want to find. From the Edit menu,
select Find Selection. The next occurrence of that text is selected. Select Find
Selection again (or Find Next) to continue finding the next occurrences of the
text.

To find the previous occurrence of selected text (find backwards) in the current
file, press Ctrl+Shift+F3, or select Find Previous from the Edit menu. The
previous occurrence of the text is selected. Repeat to continue finding the
previous occurrences of the text.

Creating, Editing, and Running Files

Finding and Replacing Text in the Current File

You can search for specified text within multiple files, and replace the text
within a file.

Finding Text. To search for text in files:

1 Click the find button # in the Editor/Debugger toolbar, or select Edit ->
Find and Replace.

The Find & Replace dialog box appears.

Find what: | =] i |
Replace with: I LI FEplacEe |
Look in: I Editor - Current File (collstzall.m) LI iz = |

I hiatch caze I Wyhole weord [e around Cloze |

2 Complete the Find & Replace dialog box to find all occurrences of the text
you specify.

a Type the text in the Find what field.
b In the Look in list box, select Editor - Current File.

¢ Limit the search using Match case, Whole word, or Wrap around.
These settings are remembered for your next MATLAB session.

3 Click Find. The next occurrence of the text is selected in the file.

You can find the next or previous occurrence of the text in the same file, replace
the text in the same file, or find and replace the text in another file.

Finding the Next or Previous Occurrence of the Text. To find the next occurrence of the
text you entered in the Find & Replace dialog box, click the Find button (or
press the Enter key) if the dialog box is open (and has focus). If the Find &
Replace dialog box is closed or does not have focus, select Edit -> Find Next.

To find the previous occurrence of that text (find backwards), select Edit ->
Find Previous.

6-25

6 Editing and Debugging M-Files

6-26

If there are no more occurrences in the file, MATLAB beeps. With Wrap around
selected, press Find Next or Find Previous to continue at the beginning or end
of the file.

You can go to a different file and use the same Find & Replace dialog box to
find the text in the other file. You can also replace the text.

Function Alternative for Finding Text. Use lookfor to search for the specified text in
the help in all M-files on the search path.

Replacing Text. After finding text using the Find and Replace dialog box, you can
replace the text in the current file.

1 In the Replace with field, type the text that is to replace the found text.

2 Click Replace to replace the text currently selected, or click Replace All to
replace all instances in the currently open file.

The text is replaced. For Replace All, the number of instances that were
replaced appears in the Editor status bar.

3 To save the changes to the file, select Save from the File menu.
You can repeat this for multiple files.

Finding Files or Text in Multiple Files

To find directories and filenames that include specified text, or whose contents
contain specified text, use Edit -> Find Files. For details, see “Finding Files
and Content Within Files” on page 5-42.

Incremental Search

With the incremental search feature, the cursor moves to the next or previous
occurrence of the specified text in the current file. It is similar to the Emacs
search feature. Incremental search is also available in the Command
Window—see “Incremental Search” on page 3-25. To use the incremental
search feature in the Editor/Debugger.

1 Position the cursor where you want the search to begin.

Creating, Editing, and Running Files

Incremental search
field. F means
search Forward

2 How you begin the incremental search depends on your setting for the

Editor/Debugger key bindings preference and in which direction you want to

search:

= Press Ctrl+S to search forward or Ctrl+R to search backward for Emacs
and Macintosh key binding (for Macintosh key bindings, use the Command

key instead of Ctrl).

= Press Ctrl+Shift+S to search forward or Ctrl+Shift+R to search backward
for Windows key bindings (for Macintosh key bindings, use the Command

key instead of Ctrl).

An incremental search field appears in the left side of the status bar of the
current file window. F Ine Search means search Forward from the cursor.

B Editor - DAmymfiles\collatzplot.m _ O] x|

File Edit Text Cell Tools Debug Desktop “Window Help

A x

D E| % B2R v~ |E A F

R AR RA 0

from the cursor.

1 function collatzplotim)

2 % Plot length bf serquence for Collatz problem

3 % Prepare figqure

o= clf

&= set(gct, 'Doublefutfer', 'on')

(T = set(gca, 'Xicale', 'linear') I

7 %

5] % Determine and plot sequence and sequesnce length

EH= for N = lim
1o — plot_szeq = collatz(N);
R seq lengthi(ll) = lengthiplot seq):
ALz = line (N,plot_seq, 'Marker','.', 'Harkeriize',9,'Colaor','blue')
dLE = draimow fr
14 — end LI
F Inc Search: collstzplot Ln 2 Col 15 |OVR 4

6-27

6 Editing and Debugging M-Files

6-28

3 In the incremental search field, type the text you want to find. For example,

type plot.

As you type the first letter, p, the first occurrence of that letter after the
cursor is highlighted. In the example shown, the cursor is in the middle of
line 2, so the first occurrence of p, the p in problem on line 2, is highlighted.

1 function collatzploti(m)
% Plot length l:f sequence for Collatz wroblem
& % Prepare figqure

La

Incremental search is case sensitive for uppercase letters. In the above
example, searching for uppercase P, would instead find the P in Prepare on
line 3.

When you type the next letter in the term you are searching for, the first
occurrence of the term becomes highlighted. In the example, when you add
the letter 1 to the p so that the incremental search field now has p1, the pl
in plot on line 8 is highlighted. When you add ot to the term in the
incremental search field, the whole word plot in line 8 is highlighted.

= If you mistype in the incremental search field, use the Back Space key to
remove the last letters and make corrections.
= After finding the p, press Ctrl+W to highlight the rest of the word found,

in this case plot, which also puts the complete word in incremental search
field.

To find the next occurrence of plot in the file, press Ctrl+S. To find the
previous occurrence of the text, press Ctrl+R.

If MATLAB beeps, it either means the search is at the end or beginning of
the file, or it means that the text was not found.

= When the text is not found, Failing appears in the incremental search
field. Modify the search term in the incremental search field and try again.

= When at the end or beginning of the file, press Ctrl+S or Ctrl+R again to
wrap to the beginning (or end) of the file and continue the search.

Creating, Editing, and Running Files

6 To end the incremental search, press Esc or Enter, or any other
noncharacter or number key except Tab or backspace.

The incremental search field no longer appears in the status bar. The cursor
is now located at the position where the string was last found.

If you press Ctrl+S or Ctrl+R after displaying the blank incremental search
field, the search term from your previous incremental search appears in the
field. Then the Back Space key deletes the entire previous search term, rather
than just the last letter.

Opening a Selection in an M-File

You can open a subfunction, function, file, variable, or Simulink model from
within a file in the Editor/Debugger. Position the cursor in the name and then
right-click and select Open Selection from the context menu. Based on what
the selection is, the Editor/Debugger performs a different action.

Selection Action

Subfunction Cursor moves to the subfunction within the
current M-file. If no subfunction by that name
is found in the current M-file, the
Editor/Debugger runs the open function on the
selection, which opens the selection in the
appropriate tool, as shown for the other
selection types in this table.

M-file or other text Opens in the Editor.

file

Figure file (. fig) Opens in a figure window.

Variable Opens in the Array Editor.

Model Opens in Simulink.

Other If the selection is some other type, Open

selection looks for a matching file in a private
directory in the current directory and performs
the appropriate action.

6-29

6 Editing and Debugging M-Files

6-30

After selecting a name, you can also choose Help on Selection from the context
menu to see documentation for the item. For example, select a function,
right-click and select Help on Selection. The reference page for that function
opens in the Help browser, or if the reference page does not exist, the M-file
help appears.

Saving M-Files
After making changes to an M-file, you see an asterisk (*) next to the filename

in the title bar of the Editor/Debugger. This indicates there are unsaved
changes to the file.

To save the changes, use one of the Save commands in the File menu:

e Save—Saves the file using its existing name. If the file is newly created, the
Save file as dialog box opens, where you assign a name to the file before
saving it. Another way to save is by using the save button & on the toolbar.
If the file has not been changed, Save is grayed out, but you can instead use
Save As from the File menu to save to a different filename.

¢ Save As—The Save file as dialog box opens, where you assign a name to the
file and save it. By default, if you do not type an extension, MATLAB
automatically assigns the .m extension to the filename. If you do not want an
extension, type a . (period) after the filename.

¢ Save All—Saves all named files to their existing filenames. For all newly
created files, the Save file as dialog box opens, where you assign a name to
each file and save it.

You cannot save a file while in debug mode. If you try to, MATLAB displays a
dialog box asking if you want to exit debug mode and then save the file. While
debugging, you can execute sections of an M-file even though there are unsaved
changes—see “Running Sections in M-Files That Have Unsaved Changes” on
page 6-58.

Creating, Editing, and Running Files

Note Save any M-files you create and any M-files from the MathWorks that
you edit in a directory that is not in the $matlabroot/toolbox directory tree.
If you keep your files in $matlabroot/toolbox directories, they can be
overwritten when you install a new version of MATLAB. Also note that
locations of files in the $matlabroot/toolbox directory tree are loaded and
cached in memory at the beginning of each MATLAB session to improve
performance. If you save files to $matlabroot/toolbox directories using an
external editor or add or remove files from these directories using file system
operations, run rehash toolbox before you use the files in the current session.
If you make changes to existing files in $matlabroot/toolbox directories
using an external editor, run clear functionname before you use the files in
the current session. For more information, see rehash or “Toolbox Path
Caching in MATLAB” on page 1-10.

Autosave

As you make changes to a file in the Editor/Debugger, every five minutes the
Editor/Debugger automatically saves a copy of the file to a file of the same
name but with an .asv extension. The autosave copy is useful if you have
system problems and lose changes made to your file. In that event, you can
open the autosave version, filename.asv, and then save it as filename.m to
use the last good version of filename. For example, if you edit filename.m and
do not save it for five minutes, MATLAB saves the file including the unsaved
changes, to filename.asv.

Use autosave preferences to turn the autosave feature off or on, to specify the
number of minutes between automatic saves, and to specify the file extension
and location for autosave files. For details, see ““Autosave Preferences for the
Editor/Debugger” in the online documentation.”

Ifthe file you are editing is in a read-only directory and the autosave preference

for location is the source file directory, an autosave copy of the file is not made.

Deleting Autosave Files. By default, autosave files are not automatically deleted
when you delete the source file. As a good practice to keep autosave to M-file
relationships clear and current, when you rename or remove an M-file, delete
or rename its corresponding autosave file.

6-31

6 Editing and Debugging M-Files

6-32

There is a preference to Automatically delete autosave files. With this
preference selected, when you close an M-file in the Editor, MATLAB
automatically deletes the corresponding autosave file.

Accessing Your Source Control System

If you use a source control system for M-files, you can access it from within the
Editor/Debugger using File -> Source Control. For more information, see
Chapter 9, “Source Control”.

Running M-Files from the Editor/Debugger

You can run a script or a function that does not require an input argument
directly from the Editor/Debugger. Click the run button 13 on the toolbar, or
select Run from the Debug menu.

If the file is not in a directory on the search path or in the current directory, a
dialog box appears, presenting you with options that allow you to run the file.
You can either change the current directory to the directory containing the file,
or you can add the directory containing the file to the search path.

If the file has unsaved changes, running it from the Editor/Debugger
automatically saves the changes before running. In that event, the menu item
is Save and Run.

See “Running an M-File with Breakpoints” on page 6-44 for additional
information about running M-files while debugging. While debugging, you can
execute sections of an M-file even though there are unsaved changes—see
“Running Sections in M-Files That Have Unsaved Changes” on page 6-58.

Viewing Datatips

For a script M-file, position the cursor to the left of a variable on that line. Its
current value appears—this is called a datatip, which is like a tooltip for data.
The datatip stays in view until you move the cursor. If you have trouble getting
the datatip to appear, click in the line and then move the cursor next to the
variable.

In edit mode, the datatips display the values of variables in the base
workspace, so this is useful for script M-files rather than function M-files. In a
function M-file, if you hover over a variable that variable that also exists in the
base workspace, the datatip displays the value of the base workspace variable,
not the value of the variable in the function M-file. To avoid confusion, you

Creating, Editing, and Running Files

might want to turn datatips off while editing. Select File -> Preferences ->
Display, and for General Display Options, clear the check mark for Enable
datatips in edit mode.

While you are debugging, you cannot turn off the display of datatips, and they
show the value of the variables in the workspace selected in the Stack.

Printing M-Files

To print an entire M-file, select File -> Print, or click the print button & on the
toolbar. To print the current selection, select File -> Print Selection. Complete
the standard print dialog box that appears.

Specify printing options for the Editor/Debugger by selecting File -> Page
Setup. For example, you can specify printing with a header. For more
information, see “Page Setup Options for Printing” on page 2-40.

Closing M-Files

To close the current M-file, select Close filename from the File menu, or click
the close box in the Editor’s menu bar. This is different from the close box in
the titlebar of the Editor/Debugger, which closes all open files in that
Editor/Debugger window.

Close box for Editor/Debugger. Closes all open files in this Editor/Debugger window.

& Editor - DAmymfiles\collatz.m
File Edit Text Cell Tools Debug Desktop ‘Window Help A ox current file.

Close box for

De B 2R |a|ds B8R *0

If each file is open in a separate window, close all the files at once using the
Close All Documents item in the Window menu. Note that this also closes
desktop documents of all types, including Array Editor documents.

When you close a file that has unsaved changes, you are prompted to save the
file. If you do not want to be prompted, hold Ctrl and click the close box. The
prompt will not appear and the document will close without saving any
unsaved changes.

6-33

6 Editing and Debugging M-Files

6-34

Debugging M-Files

This section introduces general techniques for finding errors in M-files. It then
illustrates MATLAB debugger features found in the Editor/Debugger as well

equivalent Command Window debugging functions, using a simple example. It
includes these topics:

¢ “Finding Errors in M-Files” on page 6-34

¢ “Debugging Example—The Collatz Problem” on page 6-37
® “Debugging Process and Features” on page 6-40

Finding Errors in M-Files

Debugging is the process by which you isolate and fix problems with your code.
Debugging helps to correct two kinds of errors:

¢ Syntax errors—For example, misspelling a function name or omitting a
parenthesis.

¢ Run-time errors—These errors are usually algorithmic in nature. For
example, you might modify the wrong variable or code a calculation
incorrectly. Run-time errors are usually apparent when an M-file produces
unexpected results. Run-time errors are difficult to track down because the

function’s local workspace is lost when the error forces a return to the
MATLAB base workspace.

In addition to finding and fixing problems with your M-files, you might want to
improve the performance and make other enhancements using MATLAB tools.

Debugging M-Files

Use the following techniques to isolate the causes of errors and improve your

M-files:.

Techniqueor Description For More Information
Tool
Syntax Syntax highlighting helps you identify syntax errors “Syntax Highlighting” on
highlighting in an M-file before you run the file. page 6-19
Error When you run an M-file with a syntax error, none
messages MATLAB will most likely detect it and display an

error message in the Command Window describing

the error and showing its line number in the M-file.

Click the underlined portion of the error message, or

position the cursor within the message and press

Ctrl+Enter. The offending M-file opens in the

Editor/Debugger, scrolled to the line containing the

error.

To check for syntax errors in an M-file without

running the M-file, use the pcode function.
Editor/ The MATLAB Editor/Debugger and debugging “Debugging Example—
Debugger functions are useful for correcting run-time errors The Collatz Problem” on
and because you can access function workspaces and page 6-37 and
Debugging examine or change the values they contain. You can = “Debugging Process and
Functions set and clear breakpoints, indicators that Features” on page 6-40

temporarily halt execution halt in an M-file. While

stopped at a breakpoint, you can change workspace

contexts, view the function call stack, and execute

the lines in an M-file one by one.
Cells In the Editor/Debugger, isolate sections of an M-file, = “Rapid Code Iteration

called cells, so you can easily make changes to and Using Cells” on

run a single section. page 6-65
M-Lint Use M-Lint to help you verify the integrity of your “M-Lint Code Check

code and learn about potential improvements.
Access M-Lint from the Editor/Debugger by
selecting Tools -> Check Code with M-Lint.

Report” on page 7-25

6-35

6 Editing and Debugging M-Files

6-36

Techniqueor Description For More Information
Tool (Continued)
Profiler Use the Profiler to help you improve performance “Profiling for Improving
and detect problems in your M-files. Access the Performance” on
Profiler from the Editor/Debugger by selecting Tools page 7-35
-> Open Profiler.
Visual The Visual Directory tool and M-File Reports can “Visual Directory in
Directory help you polish and package M-files before providing Current Directory
and M-File them to others to use. Access all of these tools from Browser” on page 7-2
Reports the Current Directory browser. You can run the and “Directory Reports

Dependency Report for the current file directly from
the Editor/Debugger—select Tools -> Show
Dependency Report.

in Current Directory
Browser” on page 7-11

Other Useful Techniques for Finding and Correcting Errors

¢ Add keyboard statements to the M-file—Keyboard statements stop M-file
execution at the point where they appear and allow you to examine and
change the function’s local workspace. This mode is indicated by a special

prompt:

K>>

Resume function execution by typing return and pressing the Enter key. For
more information, see the keyboard reference page.

* Remove selected semicolons from the statements in your M-file—Semicolons
suppress the display of intermediate calculations in the M-file. By removing
the semicolons, you instruct MATLAB to display these results on your screen
as the M-file executes.

¢ List dependent functions—Use the depfun function to see the dependent
functions. Similarly, use the dependency report in the Visual Directory tools.

Debugging M-Files

Debugging Example—The Collatz Problem

The example debugging session requires you to create two M-files, collatz.m
and collatzplot.m, that produce data for the Collatz problem.

For any given positive integer, n, the Collatz function produces a sequence of
numbers that always resolves to 1. If n is even, divide it by 2 to get the next
integer in the sequence. If n is odd, multiply it by 3 and add 1 to get the next
integer in the sequence. Repeat the steps until the next integer is 1. The

number of integers in the sequence varies, depending on the starting value, n.

The Collatz problem is to prove that the Collatz function will resolve to 1 for all
positive integers. The M-files for this example are useful for studying the
Collatz problem. The file collatz.m generates the sequence of integers for any
given n. The file collatzplot.m calculates the number of integers in the
sequence for all integers from 1 through m, and plots the results. The plot shows
patterns that can be further studied.

Following are the results when nis 1, 2, or 3.

n Sequence Number of Integers in the Sequence
1 1 1
2 21 2
3 3105168421 8

M-Files for the Collatz Problem

Following are the two M-files you use for the debugging example. To create
these files on your system, open two new M-files. Select and copy the following
code from the Help browser and paste it into the M-files. Save and name the
filescollatz.mand collatzplot.m. Save them to your current directory or add
the directory where you save them to the search path. One of the files has an
embedded error to illustrate the debugging features.

6-37

6 Editing and Debugging M-Files

Code for collatz.m.

function sequence=collatz(n)
% Collatz problem. Generate a sequence of integers resolving to 1
For any positive integer, n:

Divide n by 2 if n is even

Multiply n by 3 and add 1 if n is odd

Repeat for the result

Continue until the result is 1%

0 o° o° o°

o°

sequence = n;
next_value = nj;
while next_value > 1
if rem(next_value,2)==0
next_value = next_value/2;
else
next_value = 3*next_value+i;
end
sequence = [sequence, next_value];
end

Code for collatzplot.m

function collatzplot(m)

% Plot length of sequence for Collatz problem
% Prepare figure

clf

set(gcf, 'DoubleBuffer','on')

set(gca, 'XScale', 'linear')

o°

% Determine and plot sequence and sequeence length
for N = 1:m
plot_seq = collatz(N);
seq_length(N) = length(plot_seq);
line(N,plot_seq, 'Marker','."','MarkerSize',9, 'Color', 'blue')
drawnow
end

6-38

Debugging M-Files

Trial Run for Example

Try out collatzplot to see if it works correctly. Use a simple input value, for
example, 3, and compare the results to those shown in the preceding table.

Typing
collatzplot(3)

produces the plot shown in the following figure.

) Figure 1 M [=] E3
File Edit “iew Inset Tools Deskiop ‘Window Help N
D& Kk RAM® | 0B 00
16 - .
14 L
12}
10 *
al .
[N
o I
Al : I
o
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

The plot for n = 1 appears to be correct—for 1, the Collatz series is 1, and
contains one integer. But for n = 2 and n = 3, it is wrong because there should
be only one value plotted for each integer, the number of integers in the
sequence, which the preceding table shows to be 2 (for n = 2) and 8 (for n = 3).

6-39

6 Editing and Debugging M-Files

6-40

Instead, multiple values are plotted. Use MATLAB debugging features to
isolate the problem.

Debugging Process and Features

You can debug the M-files using the Editor/Debugger, which is a graphical user
interface, as well as using debugging functions from the Command Window.
You can use both methods interchangeably. The example describes both
methods. Debugging process consists of

¢ “Preparing for Debugging” on page 6-40

¢ “Setting Breakpoints” on page 6-41

¢ “Running an M-File with Breakpoints” on page 6-44

¢ “Stepping Through an M-File” on page 6-46

¢ “Examining Values” on page 6-47

¢ “Correcting Problems and Ending Debugging” on page 6-52
Some additional debugging options include

¢ “Conditional Breakpoints” on page 6-59
¢ “Breakpoints in Anonymous Functions” on page 6-61

¢ “Error Breakpoints” on page 6-62

Preparing for Debugging
Do the following to prepare for debugging:

¢ Open the file—To use the Editor/Debugger for debugging, open it with the
file you will run.

¢ Save changes—If you are editing the file, save the changes before you begin
debugging. If you try to run a file with unsaved changes from within the
Editor, the file is automatically saved before it runs. If you run a file with
unsaved changes from the Command Window, MATLAB runs the saved
version of the file, so you will not see the results of your changes.

¢ Add the files to a directory on the search path or put them in the current
directory—Be sure the file you run and any files it calls are in directories
that are on the search path. If all files to be used are in the same directory,
you can instead make that directory be the current directory.

Debugging M-Files

Example —Preparing for Debugging

Open the file collatzplot.m. Make sure the current directory is the directory
in which you saved collatzplot.

Setting Breakpoints

Set breakpoints to pause execution of the function so you can examine values
where you think the problem might be. You can set breakpoints in the
Editor/Debugger, using functions in the Command Window, or both.

There are three basic types of breakpoints you can set in M-files:

¢ A standard breakpoint, which stops at a specified line in an M-file. For
details, see “Setting Standard Breakpoints” on page 6-42.

® A conditional breakpoint, which stops at a specified line in an M-file only
under specified conditions. For details, see “Conditional Breakpoints” on
page 6-59.

® An error breakpoint that stops in any M-file when it produces the specified
type of warning, error, or NaN or infinite value. For details, see “Error
Breakpoints” on page 6-62.

You can disable standard and conditional breakpoints so that MATLAB
temporarily ignores them, or you can remove them. For details, see “Disabling
and Enabling Breakpoints” on page 6-53. Breakpoints are not maintained after
you exit the MATLAB session.

You can only set valid standard and conditional breakpoints at executable lines
in saved files that are in the current directory or in directories on the search
path. When you add or remove a breakpoint in a file that is not in a directory
on the search path or in the current directory, a dialog box appears, presenting
you with options that allow you to add or remove the breakpoint. You can either
change the current directory to the directory containing the file, or you can add
the directory containing the file to the search path.

You cannot set breakpoints while MATLAB is busy, for example, running an
M-file, unless that M-file is paused at a breakpoint.

6-41

6 Editing and Debugging M-Files

6-42

Click where there is
a - (dash) to set a
breakpoint at that
line. The red icon
indicates a valid

breakpoint is set at

that line.

Setting Standard Breakpoints

To set a standard breakpoint using the Editor/Debugger, click in the
breakpoint alley at the line where you want to set the breakpoint. The
breakpoint alley is the column on the left side of the Editor/Debugger, just right
of the line number. Set breakpoints at lines that are preceded by a - (dash).
Lines not preceded by a dash, such as comments or blank lines, are not
executable—if you try to set a breakpoint there, it is actually set at the next
executable line. Other ways to set a breakpoint are to position the cursor in the
line and then click the Set/Clear Breakpoint button Elon the toolbar, or select
Set/Clear Breakpoint from the Breakpoints menu or the context menu. A
breakpoint icon appears.

Set Breakpoints for the Example. It is unclear whether the problem in the example
isin collatzplot or collatz. To start, set breakpoints in collatzplot.m at
lines 10, 11, and 12. The breakpoint at line 10 allows you to step into collatz
to see if the problem might be there. The breakpoints at lines 11 and 12 stop
the program where you can examine the interim results.

& Editor - D:Amymfilesicollatzplot. m
File Edit Text Cell Tools Debug Desktop Window Help A x

N Bt 2@ « |S|#hrf|R|BAE - >0

1 function collatzplot(m) |
2 % Plot length of sequence for Collatz problen
i % Prepare ficure

4 - clf

Sl= setigct, 'DoubleBuffer' , 'on')

5 = setigca, 'X3cale' ['linear')

7

5

g % Determine and plot sedquence and sequeence length

L= = for N = lim

10 & plot_seq = collatz(M):

11 @ gedq_length(N) = lengthi{plot_sedq);

iz & line(N,plot_seq, 'MHarker','. ', 'Narkeriize', 9, 'Colox', 'blue')

13 - drammon i

14 - end _|;|

B | »

collatzplot Lh 1 ol 1 [ovR 4

Debugging M-Files

When breakpoints
are gray, they are
not valid. In this
example, it is
because the file
has not been
saved since
changes were
made to it. Save
the file to make the
breakpoints valid
(red).

Valid (Red) and Invalid (Gray) Breakpoints. Red breakpoints are valid standard
breakpoints. If breakpoints are instead gray, they are not valid.

& Editor - DAmymfiles\collatzplot.m™

File Edit Text Cell Tools Debug Desktop ‘Window Help E | A X
N d| {R2@B0 |&é#ésf | @RBR[E -] *0O]
1 function collatzploti(m) =
2 % Plot length of sequence for Collatz problem
& % Prepare figqure
4 - clf
== setigcE, 'DoubleButffer', 'on')
58 setigca, 'Xacale!' ['linear')
7 %
3 % Determine and plot sequence and sequeence length
gl= for N = lin
rlo @& plot_seq = collatz(N);:
11 & seq lengthiN) = lengthiplot seq);
1z @ line (N,plot_seq, 'Harker','.','Markeriize',9,'Color', 'hlue')
13 - drawmonr i
dbd= end -
4 T

| collatzplot Ln 8 Col 22 |owR g

Breakpoints are gray for either of these reasons:

¢ The file has not been saved since changes were made to it. Save the file to
make breakpoints valid. The gray breakpoints become red, indicating they
are now valid. Any gray breakpoints that were entered at invalid breakpoint
lines automatically move to the next valid breakpoint line with the
successful file save.

¢ There is a syntax error in the file. When you set a breakpoint, an error
message appears indicating where the syntax error is. Fix the syntax error
and save the file to make breakpoints valid.

6-43

6 Editing and Debugging M-Files

6-44

Function Alternative for Setting Breakpoints
To set a breakpoint using the debugging functions, use dbstop. For the
example, type

dbstop in collatzplot at 10
dbstop in collatzplot at 11
dbstop in collatzplot at 12

Some useful related functions are

¢ dbtype—Lists the M-file with line numbers in the Command Window.
¢ dbstatus—Lists breakpoints.

Running an M-File with Breakpoints

After setting breakpoints, run the M-file from the Command Window or the
Editor/Debugger.

Running the Example

For the example, run collatzplot for the simple input value, 3, by typing in
the Command Window

collatzplot(3)

The example, collatzplot, requires an input argument and therefore runs
only from the Command Window and not from the Editor/Debugger.

Debugging M-Files

Results of Running an M-File Containing Breakpoints
Running the M-file results in the following:

¢ The prompt in the Command Window changes to

K>>

indicating that MATLAB is in debug mode.

® The program pauses at the first breakpoint. This means that line will be
executed when you continue. The pause is indicated in the Editor/Debugger
by the green arrow just to the right of the breakpoint, which in the example,
is line 10 of collatzplot as shown here.

|1E| L3 plot_seq = collatz(N):

If you use debugging functions from the Command Window, the line at which
you are paused is displayed in the Command Window. For the example, it
would show

10 plot_seq = collatz(N);

¢ The function displayed in the Stack field on the toolbar changes to reflect the
current function (sometimes referred to as the caller or calling workspace).
The call stack includes subfunctions as well as called functions. If you use
debugging functions from the Command Window, use dbstack to view the
current call stack.

¢ Ifthe file you are running is not in the current directory or a directory on the
search path, you are prompted to either add the directory to the path or
change the current directory.

In debug mode, you can set breakpoints, step through programs, examine
variables, and run other functions.

6-45

6 Editing and Debugging M-Files

Stepping Through an M-File

While debugging, you can step through an M-file, pausing at points where you
want to examine values.

Use the step buttons or the step items in the Debug menu of the

Editor/Debugger or desktop, or use the equivalent functions.

Toolbar Debug Menu Description Function
Button ltem Alternative
Continue or Continue execution of M-file dbcont
e Run or until completion or until
Save and Run gpother breakpoint is
encountered. The menu item
says Run or Save and Run if a
file is not already running.
None Go Until Continue execution of M-file None
Cursor until the line where the cursor
is positioned. Also available on
the context menu.
2 Step Execute the current line of the dbstep
M-file.
Step In Execute the current line of the dbstep in
) M-file and, if the line is a call to
another function, step into that
function.
Step Out After stepping in, run the rest dbstep
El of the called function or out

subfunction, leave the called
function, and pause.

Continue Running in the Example

In the example, collatzplot is paused at line 10. Because the problem results
are correct for N/n = 1, we want to continue running until N/n = 2. Press the
continue button three times to move through the breakpoints at lines 10, 11,
and 12. Now the program is again paused at the breakpoint at line 10.

6-46

Debugging M-Files

Stepping In in the Example

Now that collatzplot is paused at line 10 during the second iteration, use the
step-in button or type dbstep inin the Command Window to step into collatz
and walk through that M-file. Stepping into line 10 of collatzplot goes to line
9 of collatz. If collatz is not open in the Editor/Debugger, it automatically
opens if you have selected Debug -> Open M-Files When Debugging.

The pause indicator at line 10 of collatzplot changes to a hollow arrow =,
indicating that MATLAB control is now in a subfunction called from the main
program. The call stack shows that the current function is now collatz.

In the called function, collatz in the example, you can do the same things you
can do in the main (calling) function—set breakpoints, run, step through, and
examine values.

Examining Values

While the program is paused, you can view the value of any variable currently
in the workspace. Examine values when you want to see whether a line of code
has produced the expected result or not. If the result is as expected, continue
running or step to the next line. If the result is not as expected, then that line,
or a previous line, contains an error. Use the following methods to examine
values:

¢ “Selecting the Workspace” on page 6-48

* “Viewing Values as Datatips in the Editor/Debugger” on page 6-48

* “Viewing Values in the Command Window” on page 6-49

® “Viewing Values in the Workspace Browser and Array Editor” on page 6-50
¢ “Evaluating a Selection” on page 6-51

Many of these methods are used in “Examining Values in the Example” on
page 6-51.

6-47

6 Editing and Debugging M-Files

6-48

Selecting the Workspace

Variables assigned through the Command Window and created using scripts
are considered to be in the base workspace. Variables created in each function
have their own workspace. To examine a variable, you must first select its
workspace. When you run a program, the current workspace is shown in the
Stack field. To examine values that are part of another function workspace
currently running or the base workspace, first select that workspace from the
list in the Stack field.

If you use debugging functions from the Command Window, use dbstack to
display the call stack. Use dbup and dbdown to change to a different workspace.
Use who or whos to list the variables in the current workspace.

Workspace in the Example. At line 10 of collatzplot, we stepped in, putting us at
line 9 of collatz. The Stack shows that collatz is the current workspace.

Viewing Values as Datatips in the Editor/Debugger

In the Editor/Debugger, position the cursor to the left of a variable on that line.
Its current value appears—this is called a datatip, which is like a tooltip for
data. The datatip stays in view until you move the cursor. If you have trouble
getting the datatip to appear, click in the line and then move the cursor next to
the variable.

Datatips in the Example. Position the cursor over n in line 9 of collatz. The
datatip shows that n = 2, as expected.

Debugging M-Files

& Editor - d:A\mymfiles\collatz.m = [=] B3
File Edit Text Cell Tools Debug Desktop “Window Help A ox
DEH 2B ~ & AaFf 88 AR Ra . -0
1 function sequence=collatz(n) =
2 % Collatz problem. Generate a sequence of integers resolwving to 1
3 % For any positive integer, n:
4 % Diwvide n by 2 if n is even
5 3 Multiply nn by 3 and add 1 if n iz odd
[% Fepeat for rha rosnls
7 5 Contimy™ 1L dowble =h. o s
Hold the cursor 8 z
over a variable. 9 - & sequence = p
Its current value BNl next value = n;
temporarily I whiln.a next_walue > 1
displays asa L% = if reminext walue,Z)==
datatip. 13 - next walue = next walue/Z:
il = elze
15 next_walue = 3*next walue+l:
16 - end
S sequence = [sequence, next wvalue]; 1
15 - end LI
J collatzplot.m = || collatz.m ><| |
| collatz Lh @ co 1 |[ovR 4

Viewing Values in the Command Window

You can examine values while in debug mode at the K>> prompt. To see the
variables currently in the workspace, use who. Type a variable name in the
Command Window and MATLAB displays its current value. For the example,
to see the value of n, type

n

MATLAB returns the expected result

n =
2

and displays the debug prompt, K>>.

6-49

6 Editing and Debugging M-Files

6-50

Viewing Values in the Workspace Browser and Array Editor
You can view the value of variables in the Value column of the Workspace

browser. The Workspace browser displays all variables in the current
workspace. Use the Stack in the Workspace browser to change to another

workspace and view its variables.

+).Workspace
File Edit ¥iew Graphics Debug Desktop ‘“Window Help =~

1 LS |] | '|Stack:|collatz vl

Mame £ | Value | Clags |
in i 2 double

2

The Value column does not show all details for all variables. To see details,
double-click a variable in the Workspace browser. The Array Editor opens,
displaying the content for that variable. You can open the Array Editor directly

for a variable using openvar.

To see the value of n in the Array Editor for the example, type
openvar n

and the Array Editor opens, showing that n = 2 as expected.

g4 Array Editor-n
File Edit Wiew Graphics Debug Desktop Window Help ~ | a x

Eﬁ| dh B | §| - | tm |Stack:|co|latz VI ||:| vl
1 2] 4 =)

i— -
BT o

Debugging M-Files

Evaluating a Selection

Select a variable or equation in an M-file in the Editor/Debugger. Right-click
and select Evaluate Selection from the context menu. MATLAB displays the
value of the variable or equation in the Command Window. You cannot
evaluate a selection while MATLAB is busy, for example, running an M-file.

Examining Values in the Example

Step from line 9 through line 13 in collatz. Step again, and the pause
indicator jumps to line 17, just after the if loop, as expected. Step again, to line
18, check the value of sequence in line 17 and see that the array is

2 1

as expected for n = 2. Step again, which moves the pause indicator from line 18
to line 11. At line 11, step again. Because next_value is now 1, the while loop
ends. The pause indicator is at line 11 and appears as a green down arrow .
This indicates that processing in the called function is complete and program
control will return to the calling program. Step again from line 11 in collatz
and execution is now paused at line 10 in collatzplot.

Note that instead of stepping through collatz, the called function, as was just
done in this example, you can step out from a called function back to the calling
function, which automatically runs the rest of the called function and returns
to the next line in the calling function. To step out, use the step-out button or
type dbstep out in the Command Window.

In collatzplot, step again to advance to line 11, then line 12. The variable
seq_lengthin line 11 is a vector with the elements

1 2

which is correct.

Finally, step again to advance to line 13. Examining the values in line 12,
N = 2 as expected, but the second variable, plot_seq, has two values, where
only one value is expected. While the value for plot_seq is as expected

2 1

it is the incorrect variable for plotting. Instead, seq_length(N) should be
plotted.

6-51

6 Editing and Debugging M-Files

6-52

Correcting Problems and Ending Debugging

These are some of the ways to correct problems and end the debugging session:

¢ “Changing Values and Checking Results” on page 6-52

¢ “Ending Debugging” on page 6-52

¢ “Disabling and Clearing Breakpoints” on page 6-53

® “Correcting an M-File” on page 6-54

¢ “Completing the Example” on page 6-55

¢ “Running Sections in M-Files That Have Unsaved Changes” on page 6-58

Many of these features are used in “Completing the Example” on page 6-55.

Changing Values and Checking Results

While debugging, you can change the value of a variable in the current
workspace to see if the new value produces expected results. While the program
is paused, assign a new value to the variable in the Command Window,
Workspace browser, or Array Editor. Then continue running or stepping
through the program. If the new value does not produce the expected results,
the program has a different or another problem.

Ending Debugging

After identifying a problem, end the debugging session. You must end a
debugging session if you want to change and save an M-file to correct a
problem, or if you want to run other functions in MATLAB.

Note It is best to quit debug mode before editing an M-file. If you edit an
M-file while in debug mode, you can get unexpected results when you run the
file. If you do edit an M-file while in debug mode, breakpoints turn gray,
indicating that results might not be reliable. See “Valid (Red) and Invalid
(Gray) Breakpoints” on page 6-43 for details.

To end debugging, click the exit debug mode icon ¥3, or select Exit Debug
Mode from the Debug menu.

You can instead use the function dbquit to end debugging.

Debugging M-Files

After quitting debugging, the pause indicators in the Editor/Debugger display
no longer appear, and the normal prompt >> appears in the Command Window
instead of the debugging prompt, K>>. You can no longer access the call stack.

Disabling and Clearing Breakpoints

Disable a breakpoint to temporarily ignore it. Clear a breakpoint to remove it.

Disabling and Enabling Breakpoints. You can temporarily disable selected
breakpoints so the program ignores them and runs uninterrupted, for example,
after you think you identified and corrected a problem. This is especially useful
for conditional breakpoints—see “Conditional Breakpoints” on page 6-59.

To disable a breakpoint, right-click the breakpoint icon and select Disable
Breakpoint from the context menu, or click anywhere in a line and select
Enable/Disable Breakpoint from the Breakpoints or context menu. You can
also disable a conditional breakpoint by clicking the breakpoint icon. The
breakpoint icon has an X through it as shown here.

Disabled 10 & plot_seqg = collatz(MN);
breakpoint

After disabling a breakpoint, you can enable it to make it active again, or clear
it. To enable it, right-click the breakpoint icon and select Enable Breakpoint
from the context menu, or click anywhere in a line and select Enable/Disable
Breakpoint from the Breakpoints or context menu. The X no longer appears
on the breakpoint icon and program execution will pause at that line.

When you run dbstatus, the resulting message for a disabled breakpoint is

Breakpoint on line 10 has conditional expression 'false'.

Clearing (Removing) Breakpoints. All breakpoints remain in a file until you clear
(remove) them or until they are automatically cleared. Clear a breakpoint after
determining that a line of code is not causing a problem.

To clear a breakpoint in the Editor/Debugger, click anywhere in a line and
select Set/Clear Breakpoint from the Breakpoints or context menu. The
breakpoint for that line is cleared. Another way to clear a breakpoint is to click
a standard breakpoint icon, or a disabled conditional breakpoint icon.

6-53

6 Editing and Debugging M-Files

6-54

To clear all breakpoints in all files, select Debug -> Clear Breakpoints in All
Files, or click the equivalent button %) on the toolbar (clear breakpoints in all
files).

The function that clears breakpoints is dbclear. To clear all breakpoints, use
dbclear all. For the example, clear all of the breakpoints in collatzplot by

typing
dbclear all in collatzplot

Breakpoints are automatically cleared when you

¢ End the MATLAB session
¢ Clear the M-file using clear name or clear all

Note When clear name or clear allisin a statement in an M-file that you
are debugging, it clears the breakpoints.

Correcting an M-File
To correct a problem in an M-file:

1 Quit debugging.

Do not make changes to an M-file while MATLAB is in debug mode. If you
do edit an M-file while in debug mode, breakpoints turn gray, indicating that
results might not be reliable. See “Valid (Red) and Invalid (Gray)
Breakpoints” on page 6-43 for details.

2 Make changes to the M-file.
3 Save the M-file.
4 Set, disable, or clear breakpoints, as appropriate.

5 Run the M-file again to be sure it produces the expected results.

Debugging M-Files

Completing the Example
To correct the problem in the example, do the following:

1 End the debugging session. One way to do this is to select Exit Debug Mode
from the Debug menu.

2 Incollatzplot.mline 12, change the stringplot_seqto seq_length(N) and
save the file.

3 Clear the breakpoints in collatzplot.m. One way to do this is by typing
dbclear all in collatzplot

in the Command Window.

4 Run collatzplot for m = 3 by typing
collatzplot(3)

in the Command Window.

6-55

6 Editing and Debugging M-Files

5 Verify the result. The figure shows that the length of the Collatz series is 1
when n =1, 2 when n = 2, and 8 when n = 3, as expected.

) Figure 1 I [=] 3
File Edit “iew Inset Tools Deskiop MWindow Help N
NEeEdE K& Me |« 08 0O

8_ -

7l

al

5

4l

At

2- L]

1 1 | | 1 1 | 1 1 | |

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

6-56

Debugging M-Files

6 Test the function for a slightly larger value of m, such as 6, to be sure the
results are still accurate. To make it easier to verify collatzplot form =6
as well as the results for collatz, add this line at the end of collatz.m

sequence

which displays the series in the Command Window. The results for when
n = 6 are

sequence =

6 3 10 5 16 8 4 2 1

Then run collatzplot for m = 6 by typing
collatzplot(6)

7 To make debugging easier, you ran collatzplot for a small value of m. Now
that you know it works correctly, run collatzplot for a larger value to
produce more interesting results. Before doing so, you might want to

suppress output for the line you just added in step 6, line 19 of collatz.m,
by adding a semicolon to the end of the line so it appears as

sequence;

Then run

collatzplot(500)

6-57

6 Editing and Debugging M-Files

The following figure shows the lengths of the Collatz series for n = 1 through

n = 500.
<) Figure 1 I [=] 3
File Edit “iew Inset Tools Deskiop MWindow Help N
NEeEdE K& Me |« 08 0O
150 -
100} e T, . . -
5ol . . - o.. e .._. LI 1] ..m
'.o...." ... ‘e . e TM® . . e * e -
C| }.. 1 | | 1 1 | 1 1 | |
0 50 100 150 200 250 300 350 400 450 500

Running Sections in M-Files That Have Unsaved Changes

It is a good practice to make changes to an M-file after you quit debugging, and
to save the changes and then run the file. Otherwise, you might get unexpected
results. But there are situations where you might want to experiment during
debugging, to make a change to a part of the file that has not yet run, and then
run the remainder of the file without saving the change.

To do this, while stopped at a breakpoint, make a change to a part of the file
that has not yet run. Breakpoints will turn gray, indicating they are invalid.
Then select all of the code after the breakpoint, right-click, and choose

6-58

Debugging M-Files

Evaluate Selection from the context menu. You can also use cell mode to do
this.

Conditional Breakpoints

Set conditional breakpoints to cause MATLAB to stop at a specified line in a
file only when the specified condition is met. One particularly good use for
conditional breakpoints is when you want to examine results after a certain
number of iterations in a loop. For example, set a breakpoint at line 10 in
collatzplot, specifying that MATLAB should stop only if N is greater than or
equal to 2. This section covers the following topics:

¢ “Setting Conditional Breakpoints” on page 6-59
* “Copying, Modifying, Disabling, and Clearing Conditional Breakpoints” on
page 6-60

¢ “Function Alternative for Conditional Breakpoints” on page 6-60

Setting Conditional Breakpoints
To set a conditional breakpoint, follow these steps:

1 Click in the line where you want to set the conditional breakpoint. Then
select Set/Modify Conditional Breakpoint from Breakpoints or context
menu. If an standard breakpoint already exists at that line, use this same
method to make it conditional.

The MATLAB Editor conditional breakpoint dialog box opens.

‘B MATLAB Editor

File: D waymfiles\collatzplot i

@ Condition far line 10 (for example, < == 11

Mote: the condition will be checked before the line is executed.

QK I Cancel | Helm |

6-59

6 Editing and Debugging M-Files

6-60

2 Type a condition in the dialog box, where a condition is any legal MATLAB
expression that returns a logical scalar value. Click OK. As noted in the
dialog box, the condition is evaluated before running the line. For example,
at line 10 in collatzplot, enter

N>=2

A yellow breakpoint icon (indicating the breakpoint is conditional) appears
in the breakpoint alley at that line.

Conditional breakpoint (yellow).

=] for W = 1:m
10 & plot_seq = collatz(N):
11 - zeq length(N) = length(plot_segq):
12 - line (M,plot_seq, 'Marker','.','Harkerfize',3,'Color', 'blus')
13 - drawnow
14 - end

When you run the file, MATLAB enters debug mode and pauses at the line only
when the condition is met. In the collatzplot example, MATLAB runs
through the for loop once and pauses on the second iteration at line 10 when N
is 2. If you continue executing, MATLAB pauses at line 10 on the third iteration
when N is 3.

Copying, Modifying, Disabling, and Clearing Conditional Breakpoints
To copy a conditional breakpoint, right-click the icon in the breakpoint alley
and select Copy from the context menu. Then right-click in the breakpoint
alley at the line where you want to paste the conditional breakpoint and select
Paste from the context menu.

Modify the condition for the breakpoint in the current line by selecting
Set/Modify Conditional Breakpoint from the Breakpoints or context menu.

Click a conditional breakpoint icon to disable it. Click a disabled conditional
breakpoint to clear it.

Function Alternative for Conditional Breakpoints

Use the dbstop function with appropriate arguments to set conditional
breakpoints from the Command Window, and use dbclear to clear them. Use
dbstatus to view the breakpoints currently set, including any conditions,

Debugging M-Files

Breakpoint

which are listed in the expression field. If no condition exists, the value in the
expression fieldis [] (empty).

Breakpoints in Anonymous Functions

There can be multiple breakpoints in lines in M-files that contain anonymous
functions. There can be a breakpoint for the line itself (MATLAB stops at the
start of the line), as well as a breakpoint for each anonymous function in that
line. When you add a breakpoint to a line containing an anonymous function,
the Editor/Debugger asks exactly where in the line you want to add the
breakpoint. If there is more than one breakpoint in a line, the breakpoint icon
is blue ®.

When there are multiple breakpoints set on a line, the icon is always blue,
regardless of the status of any of the breakpoints on the line. Position the
mouse on the icon and a tooltip displays information about all breakpoints in
that line.

To perform a breakpoint action for a line that can contain multiple breakpoints,
such as Clear Breakpoint, right-click in the breakpoint alley at that line and
select the action. MATLAB prompts you to specify the exact breakpoint on
which to act in that line.

When you set a breakpoint in an anonymous function, MATLAB stops when
the anonymous function is called. The following illustration shows the
Editor/Debugger when you set a breakpoint in the anonymous function sqr in
line 2, and then run the file. MATLAB stops when it runs sqr in line 4. After
you continue execution, MATLAB stops again when it runs sqr the second time
in line 4. Note that the Stack display shows the anonymous function.

‘B Editor - H:\Documents'MATLABFiles'matlab_files'pythag.m 2 101l
File Edit Text Cell Tools Debug Desktop MWindow Help k] | A X

setin

D H|i2@-~ |S(AfF R BA|lenxe | [O]

anonymous
function
sqr.

MATLAB —

1 function & = pythagia,h)
T2 e sgr = Bix) x."2
o disp a,b

| 4 - oz = sgrtisgria)+sgrib))
&= disp o

stops when
it runs sqr.

| pythag Ln 2 co 1 |owr A

6-61

6 Editing and Debugging M-Files

6-62

Error Breakpoints

Set error breakpoints to stop program execution and enter debug mode when
MATLAB encounters a problem. Unlike standard and conditional breakpoints,
you do not set these breakpoints at a specific line in a specific file. Rather, once
set, MATLAB stops at any line in any file when the error condition specified via
the error breakpoint occurs. MATLAB then enters debug mode and opens the
file containing the error, with the pause indicator at the line containing the
error. Files open only when the you select Debug -> Open M-Files When
Debugging. Error breakpoints remain in effect until you clear them or until
you end the MATLAB session. You can set error breakpoints from the Debug
menu in any desktop tool. This section covers the following topics:

¢ “Setting Error Breakpoints” on page 6-62

¢ “Error Breakpoint Types and Options” on page 6-63 (Errors, Try/Catch
Errors, Warnings, NaN or Inf, Use Message Identifiers)

¢ “Function Alternative for Error Breakpoints” on page 6-64

Setting Error Breakpoints

To set error breakpoints, select Debug -> Stop if Errors/Warnings. In the
resulting Stop if Errors/Warnings for All Files dialog box, specify error
breakpoints on all appropriate tabs and click OK. To clear error breakpoints,
select the Never stop if ... option for all appropriate tabs and click OK.

& Stop it ErrorsfWarnings for All Files E3

Errors I TryfCatch Errorsl Warningsl T or Ian

% pever stop if errar (dbclear if errar)
o Always stop if error (dbstop if error)

 Use message idertifiers (dbatop if error messageid)

(Mo meszage identifiers; will uze all) (E[ef

Remuyve

i

Edit:...

Cancel | Help |

Debugging M-Files

For example, to pause execution when a warning occurs, select the Warnings
tab and from it select Always stop if warning, then click OK. When you run
an M-file and MATLAB produces a warning, execution pauses, MATLAB
enters debug mode, and the file opens in the Editor/Debugger at the line that
produced the warning. To remove the warning breakpoint, select Never stop if
warning in the Warnings tab and click OK.

Error Breakpoint Types and Options

The four basic types of error breakpoints you can set are Errors, Try/Catch
Errors, Warnings, and NaN or Inf. Select the Always stop if ... option for each
tab to set that type of breakpoint. Select the Use message identifiers ... option
to limit each type of error breakpoint (except Nan or Inf) so that execution stops
only for specific errors.

Errors. When an error occurs, execution stops, unless the error is in a
try...catch block. MATLAB enters debug mode and opens the M-file to the
line that produced the error. You cannot resume execution.

Try/Caich Errors. When an error occurs in a try. . .catch block, execution
pauses. MATLAB enters debug mode and opens the M-file to the line that
produced the error. You can resume execution or use debugging features.

Warnings. When a warning is produced, MATLAB pauses, enters debug mode,
and opens the M-file, paused at the line that produced the warning. You can
resume execution or use debugging features.

NaN or Inf. When MATLAB encounters a NaN (not-a-number) or Inf (infinite)
value, it pauses, enters debug mode, and opens the M-file, paused at the line
that encountered the value. You can resume execution or use debugging
features.

6-63

6 Editing and Debugging M-Files

6-64

Use Message Identifiers. Execution stops only when MATLAB encounters one of
the specified errors. This option is not available for the Nan or Inf type of error
breakpoint. To use this feature, select the Errors, Try/Catch Errors, or
Warnings tab, select the Use Message Identifiers option, and click the Add
button.

In the resulting Add Message Identifier dialog box, supply the message
identifier of the specific error you want to stop for, where the identifier is of the
form component:message, and click OK. The message identifier you added
appears in the Stop If Errors/Warnings for All Files dialog box, where you
click OK. You can add multiple message identifiers, and edit or remove them.

One way to obtain an error message identifier generated by a MATLAB
function for example, is to produce the error, and then run the lasterror
function. MATLAB returns the error message and identifier. Copy the
identifier from the Command Window output and paste it into the Add
Message Identifier dialog box. An example of an error message identifier is
MATLAB:UndefinedFunction. Similarly, to obtain a warning message
identifier, produce the warning and then run [m,id] = lastwarn; MATLAB
returns the last warning identifier to id. An example of a warning message
identifier is MATLAB:divideByZero.

Function Alternative for Error Breakpoints

The function equivalent for each option appears in the Stop if
Errors/Warnings for All Files dialog box. For example, the function
equivalent for Always stop if error is dbstop if error. Use the dbstop
function with appropriate arguments to set error breakpoints from the
Command Window, and use dbclear to clear them. Use dbstatus to view the
error breakpoints currently set. Error breakpoints are listed in the cond field
and message identifiers for breakpoints are listed in the identifier field of the
dbstatus output.

Rapid Code lteration Using Cells

Rapid Code Iteration Using Cells

When working with MATLAB, you often experiment with your code—
modifying it, testing it, and updating it—until you have an M-file that does
what you want. Use the cell features in the MATLAB Editor to make the
experimental phase of your work with M-file scripts easier. You can also use
cell features with function M-files, but there are some restrictions—see “Using
Cells in Function M-Files” on page 6-75.

If you are using the Help browser, watch the Rapid Code Iteration Using Cells
video demo for an overview of the major functionality.

The overall structure of many M-file scripts seems to naturally consist of
multiple sections. Especially for larger files, you often focus efforts on a single
section at a time, refining the code in just that section. To facilitate this
process, use M-file cells, where a cell is a defined section of code.

This is the overall process of using cells for rapid code iteration:

In the MATLAB Editor, enable cell mode. Select Cell -> Enable Cell Mode.
Items in the Cell menu become selectable and the cell toolbar appears.

Define the boundaries of the cells in an M-file script using cell features. Cells
are denoted by a specialized comment syntax. For details, see “Defining
Cells” on page 6-66.

Once you define the cells, use cell features to navigate quickly from cell to
cell in your file, evaluate the code in a cell in the base workspace, and view
the results. To facilitate experimentation, use cell features to modify values
in cells and then reevaluate them, to see how different values impact the

result. For details, see “Navigating and Evaluating with Cells” on page 6-71.

Cells are also useful if you want to share your results by publishing your
work in a presentation format, such as an HTML document. See Chapter 8,
“Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells”, for
details.

6-65

6 Editing and Debugging M-Files

6-66

Cell

toolbar——

Current
cell.

File Edit Text | Cell Tools Debug Desktop Window Help N
00 B & Disable CellMade @ |[ea =]
m Ewaluate Current Cell Cirl+Enter —
——————— Ewaluate Current Cell and Advance Cirl+Shift+Enter
! % Plot | Ewvaluate Entire File - =
2 % Calcul a =
3 Insert Cell Divider
4 w% Calcu Insert Cell Divicers anaunc Selectian
5 % Define Insent Text Markup]
@ i [Mext Cell Cirl+Diown
@ o GED BE Previous Cell Cirl+lJp
g %
9 % Calculate and plot ¥ = sini(x).
10 ¥ = 0:.125:6%pi;
11 ¥ = sin(x):
12 plotix,¥)
13
14 %% Modify Plot Properties
15 title('%ine Wawve' ['FontiWleight', 'bold')
16 xlabel|'x'] b
17 ylabel('sin(=)")
15 setigca, 'Colaor' 'uw') LI

o DAmymfiles\sine_wave.m

Cell features.

| seript ln & ool 3 ||ouR |z

Defining Cells

Cell features operate on contiguous lines of code you want to evaluate as a
whole in an M-file script, called cells. To define a cell, first be sure that cell
mode is enabled (see step 1 on page 6-65). Position the cursor just before the
line you want to start the cell and then select Cell -> Insert Cell Divider or
click the insert cell divider button #2. MATLAB inserts a line after the cursor
containing two percent signs (%%), which is the “start new cell” indicator to
MATLAB. A cell consists of the line starting with %% and the lines that follow,
up to the start of the next cell, which is identified by %% at the start of a line.

You can also define a cell by entering two percent signs (%%) at the start of the
line where you want to begin the new cell. Alternatively, select the lines of code
to be in the cell and then select Cell -> Insert Cell Dividers Around Selection.

Rapid Code lteration Using Cells

You can, of course, define a cell at the start of a new file, enter code for the cell,
define the start of the next cell, enter its code, and so on. Redefine cells by
defining new cells, removing existing cells, and moving lines of code.

MATLAB will not execute the code in lines beginning with %%, so be sure to put
any executable code for the cell on the following line. For program control
statements, such as if ... end, a cell must contain both the opening and

closing statements, that is, it must contain both the if and the end statements.

Note that the first cell in a file does not have to begin with %%. MATLAB
automatically understands any lines above the first %% line to be a cell. If there
are no cell dividers in an M-file, MATLAB understands the entire file to be a
single cell.

Cell Titles and Highlighting

After the %%, type a space followed by a description of the cell. The Editor
emphasizes the special meaning of the start of a cell by making any text
following the percent signs and space bold. The text on the %% line is called the
cell title (like a section title). Including cell titles is optional, however, they
improve readability of the file and are used for cell publishing features.

When the cursor is positioned in any line within a cell, the Editor highlights
the entire cell with a yellow background. This identifies it as the current cell.
For example, the highlighted cell is the cell evaluated by the Evaluate Current
Cell option on the Cell menu.

If you want cell titles to appear in plain rather than bold text, or if you do not
want yellow highlighting for the current cell, change these preferences. Select
File -> Preferences -> Editor/Debugger -> Display and change the
appropriate Cell display options.

6-67

6 Editing and Debugging M-Files

6-68

Example —Define Cells

This examples defines two cells for a simple M-file called sine_wave, shown in
the following code and figure. The first cell creates the basic results, while the
second decorates the plot. The two cells in this example allow you to
experiment with the plot of the data first, and then when that is final, change
the plot properties to affect the style of presentation.

o°

Define the range for x.

Calculate and plot y = sin(x).

= 0:1:6*pi;

y = sin(x);

plot(x,y)

title('Sine Wave', 'FontWeight', 'bold')
xlabel('x")

ylabel('sin(x)"')

set(gca, 'Color','w")

set(gcf, 'MenuBar', 'none')

o°

x

& Editor - D:Amymfiles\sine_wave.m
File Edit Text Cell Toaols Debug Desktop ‘Window Help ~ |2 x

Dﬁn|‘}l‘3 Eﬂ ﬁl|§|ﬂ fv|@ﬁlaa-..'l »ID "j
-ﬂl*%ﬁ%ig|'l1.0 +|+I1,1 x|%9é%9§

Define the range for x. 1=
Calculate and plot ¥ = sin(x).

= 0:l:6%pis

- ¥ = sin(x);

plotix,¥)

= titlel'Aine Wave','Fontlleight', 'hold')

- xlabel'=x")

= wlahel{'sinix) ")

= setigca, 'Color! ,'uw')

= setigct, 'MernuBar', 'none') j
w

| seript Ln & col 1 ||ovR |z

M-file before
defining cells.

L

O W -] e on s) N
I

=

=
=

Rapid Code lteration Using Cells

Select Cell -> Enable Cell Mode, if it is not already enabled.

Position the cursor at the start of the first line. Select Cell -> Insert Cell
Divider.

The Editor inserts %% as the first line and moves the rest of the file down one
line. All lines are highlighted in yellow, indicating that the entire file is a
single cell.

Enter a cell title following the %%. Type a space first, followed by the
description.

Calculate and Plot Sine Wave

Position the cursor at the start of line 7, title. ... Select Cell -> Insert Cell
Divider.

The Editor inserts a line containing only %% at line 7 and moves the
remaining lines down by one line. Lines 7 through 12 are highlighted in
yellow, indicating they comprise the current cell.

Enter a cell title for the new cell. On line 7, type a space after the %%, followed
by the description

Modify Plot Properties

Save the file. The file appears as shown in this figure.

6-69

6 Editing and Debugging M-Files

& Editor - DAmymfiles\sine_wave.m
File Edit Text Cell Tools Debug Desktop ‘Window Help ™ | A X
D H|f 2R | S éf|a8E >0
2868 8| - [0+ | = x|t
M-fileafter [1 %% Calculate and Plot Sine Wave
defining 2 % Define the range for x.
cells. 3 % Calculate and plot ¥ = sin(x).
4= x o= 0:l:6%pi;
5 - v = sinix):;
&6 - plotix,¥)
7 %% Modify Plot Properties
B titlel'3ine Wawve','FontWeight','bold')
9 - xlahel('x')
10 = wlabel('sini=]')
it = setigca, 'Color' ,'w')
= setigct, 'MenuEar', 'none')
L3
| seript Ln 7 Col 26 |owR g

Removing Cells

To remove a cell, delete one of the percent signs (%) from the line that starts the
cell. This changes the line from a cell to a standard comment and merges the
cell with the preceding cell. You can also just delete the entire line that
contains the %%.

6-70

Rapid Code lteration Using Cells

Navigating and Evaluating with Cells

While you develop an M-file, you can use these Editor cell features:

¢ “Navigating Among Cells in an M-file” on page 6-71
¢ “Evaluating Cells in an M-file” on page 6-71

® “Modifying Values in a Cell” on page 6-72

¢ “Example—Evaluate Cells” on page 6-73

Navigating Among Cells in an M-file

To move to the next cell, select Cell -> Next Cell. To move to the previous cell,
select Cell -> Previous Cell. To move to a specific cell, click the show cell titles
button #2 and from it, select the cell title to which you want to move. Cells
without titles are not listed.

Evaluating Cells in an M-file

To evaluate the code in a cell, use the Cell menu evaluation items or buttons
in the cell toolbar. When you evaluate a cell, the results display in the
Command Window, Figure window, or otherwise, depending on the code
evaluated.

The cell evaluation features run the code currently shown in the Editor, even
if the file contains unsaved changes. The file does not have to be on the search
path. To evaluate a cell, it must contain all the values it requires, or the values
must already exist in the MATLAB workspace.

Note While you can set breakpoints and debug a file containing cells, when
you evaluate a file from the Cell menu, breakpoints are ignored. To run the
file and stop at breakpoints, use Run/Continue in the Debug menu.

Evaluate Current Cell. Select Cell -> Evaluate Current Cell or click the evaluate
cell button *& to run the code in the current cell.

Evaluate and Advance. Select Cell -> Evaluate Current Cell and Advance or

click the evaluate cell and advance button & to run the code in the current cell
and move to the next cell.

6-71

6 Editing and Debugging M-Files

6-72

Evaluate _File. Select Cell -> Evaluate Entire File or click the evaluate entire file
button B to run all of the code in the file.

Note A beep means there is an error. See the Command Window for the error
message.

Modifying Values in a Cell

You can use cell features to modify numbers in a cell, which also automatically
reevaluates the cell.

To modify a number in a cell, select the number (or place the cursor near it) and
use the value modification tool in the cell toolbar. Using this tool, you can
specify a number and press the appropriate math operator to add (increment),
subtract (decrement), multiply, or divide the number. The cell then
automatically reevaluates.

Increment/decrement number
Multiplier/divisor number

= [1.0 + = 11 X

Ilivisor/multiplier buttons

Decrement/increment buttons

You can use the numeric keypad operators instead of the operator buttons on
the toolbar.

Note MATLAB does not automatically save changes you make to values
using the cell toolbar. To save changes, select File -> Save.

Rapid Code lteration Using Cells

Plot generated by J Figure 1 I [=] E
running — File Edit ¥iew Insert Tools Desktop MWindow Help =

sine_wave.m.

Example —Evaluate Cells
In this example, modify the values for x in sine_wave.m.

1 Run the first cell in sine_wav.m. Click somewhere in the first cell, that is,
between lines 1 and 6. Select Cell -> Evaluate Current Cell. The following

figure appears.

D& k| &RaMe | €08 O

6-73

6 Editing and Debugging M-Files

6-74

2 Assume you want more values for x, to produce a smoother curve. Position

the cursor in line 4, next to the 1. In the cell toolbar, change the 1.1 default
multiplier/divisor value to 2. Click the divisor button *.

Line 4 becomes

4 - x = D:m:ﬁ*pi;

and the length of x doubles. The plot automatically updates. The curve still
has some rough edges.

To add more values for x, click the divisor button three more times. Line 4
becomes

The curve is smooth, but because there are more values, processing time is
slower. It would be better to find a smaller x that still produces a smooth
curve.

In the cell toolbar, click the multiplier button once. The increment for x as
shown in line 4 changes from 0.0625 to 0.125.

The resulting curve is still smooth.
Save these changes. Select File -> Save.

You do not need to evaluate the entire file to modify the plot properties.
Instead, evaluate the second cell, that is, lines 7 through 12. You can use the
shortcut Ctrl+Enter to evaluate the current cell. (The shortcut appears with
the menu item, Cell -> Evaluate Current Cell).

MATLAB updates the figure.

Rapid Code lteration Using Cells

<} Figure 1 =] B3

0.8r

0.6

0.2

sin(x)

0.4k

0.6

20

Using Cells in Function M-Files

You can define and evaluate cells in function M-files as long as the variables
referred to in the cell are in your workspace. For example, this can be useful
during debugging. If execution is stopped at a breakpoint, you can define cells
and execute them without saving the file. If you are not debugging, add the
necessary variables to the base workspace and then execute the cells. Cell
publishing is not supported for function M-files.

6-75

6 Editing and Debugging M-Files

6-76

Tuning and Managing
M-Files

This set of tools provides useful information about the M-files in a directory that can help you refine
the files and improve performance. The tools can help you polish M-files before providing them to
others to use. If you are using the Help browser, watch the Directory Reports video demo for an
overview of the major functionality.

Visual Directory in Current Directory = An alternate view of the current directory, it is useful for

Browser (p. 7-2) managing groups of M-files.

Directory Reports in Current Directory HTML reports about files in the current directory:

Browser (p. 7-11) TODO/FIXME, Help, Contents, Dependency, File
Comparison, Coverage (for Profiling), and M-Lint Code
Check.

M-Lint Code Check Report (p. 7-25) Report that identifies potential errors, problems, and
opportunities for improvement in your code.

Profiling for Improving Performance Report that identifies where an M-file spends the most
(p. 7-35) time, indicating where to focus when looking for
performance improvements.

7 Tuning and Managing M-Files

7-2

Visual Directory in Current Directory Browser

The MATLAB Current Directory browser displays directories and their files,
and allows you to make changes to them. To display the Current Directory
browser, select Desktop -> Current Directory. For more information, see

“Current Directory Browser” on page 5-32.

The Visual Directory is an alternate view in the Current Directory browser. To
access the Visual Directory, click the show visual directory button &
Current Directory browser toolbar. Click the button again to show the classic

view of the Current Directory browser.

Click to view Visual Directory.

<} Current Directory - d:\mymfiles
File Edit Yiew Debug Desktop ‘“Window Help

I o rymfiles

Ml mcke s B

Al files £

| File Type | Lazt Modified

| Descrigtion

[html
[CArmydemos
[results

[bucky.m

il caution. mdl
[] collatzall.asy
[collatzall.m
[collatzplot.m
[E@ Contents.m

Kl

Folder Dec 30, 2003 5:57...

Folder Apr 10,2003 12:5...

Folder Feh 22, 2002 10:2. .
hi-file Moy 27, 1997 5:28. .
Model Mov 13, 1997 1:43
Editor Aute Aug 12, 2003 5:43...

h-file Jul 2, 2003 12:08:...

M-file Aug 20, 2003 5:28..

M-file Sep 3, QEIIDS 846

Yisual Directory Tonlj

BUCKY Connectivity

Plot length of sequer
Plot length of sequer

Description of this dir

3

Z

Visual Directory in Current Directory Browser

Visual Directory view of current directory.

). Current Directory - d:\mymfiles I [=] 3
.|

File Edit “iew Debug Desktop Window Help
Id:‘.mymfiles LI J I__“F m|§| & T

Subfolders
zUP= | html | mydemos (117 | results (1)

Refresh |

I son by Contents.m I Show actions T Show thumbnails

|»

™ Show file sizes ™ Show fendscript

[edit Contents.m | run contentsrpt | new file]

Contents Contents for directory D:\mymfiles

bucky Conmectivity graph of the Buckminster
Fuller geodesic dome.

collatzall Compute and plot length of secquence for
Collatz problem

collatezplot Plot length of secuence for Collatz problem

falling o help

finish DLG Display a dialog to cancel cquitting

These are the actions you can take using the Visual Directory tool:

¢ “Navigate Directory Hierarchy” on page 7-4

¢ “View and Edit Files” on page 7-5

® “Sort by Contents.m” on page 7-6

¢ “Run, Make Thumbnail, Delete File (Show Actions)” on page 7-7
¢ “Show File Sizes” on page 7-9

¢ “Show Function or Script” on page 7-9

7 Tuning and Managing M-Files

7-4

Navigate Directory Hierarchy

The subdirectories of the current directory are listed under Subfolders, with

the number of M-files they contain listed in parentheses. Click a subdirectory
to make it the current directory and display its contents.

The mydemos subdirectory contains 11 M-files. Click mydemos to make it the current
directory and display its contents.

<} Current Directory - d:Amymfiles

File Edit Yiew Dabug Desktop ‘Window Help
Id:im\,n'mfiles LI J Ef @|§| = -

Subfolders
=P | htrnl | mydemos (110 | results (1)

Refresh | o

I son by Contents.m I Show actions T Show thumbnails

| »

I Show file sizes ™ Show fendseript

[edit Contents.m | run contentsrpt | new file |

Contents Contents for directory D:\mymfiles
bucky Connectivity graph of the Buckminster Fuller

geodesic dome.

-

Z

Click the <UP> link or [El (the go up one level button) in the toolbar to make
the parent directory become the current directory and to display its contents.

When you navigate up and down through directories, the Visual Directory
display automatically updates to reflect the currently selected check boxes.

Visual Directory in Current Directory Browser

View and Edit Files

Click a filename to open that file in the Editor where you can view and edit it.

M-files you published using cells also show an html link. Click html to view the
published output. For more information about publishing M-files, see
“Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells” on
page 8-2.

<} Current Directory - d:\mymfiles\mydemos M [=] E3
File Edit “iew Debug Desktop Window Help N
Id:im\,r'mfilesxmydemos LI J i @ |§| 5 T
Subfolders I~
=UP= | html
Refresh |
I son by ™ Show
I_ .
Contents.m Show actions thumbnails
r
I Show fle sizes func?il;i:\tscri t
Click a filename to P
open it in the Editor [edit Contents.m | run contentsrpt | new file]
where you can view
its contents and Contents Mydemos Toolbox

make changes.——— chirpy Chirping

collatzall Plot length of secquence for Collatz

Click html to view the problem
output for an M-file you fractal Fractal Tree
published using cells.—+ (html}

7-5

7 Tuning and Managing M-Files

Sort by Contents.m

By default, M-files in the current directory are listed in alphabetical order. To
instead list them as they are ordered in the Contents.m file for the directory,

select the Sort by Contents.m check box and click Refresh. A Contents.m file
is a file you create that contains the filename and a brief description for M-files
in the directory. When a user types help followed by the directory name, such
as help mydemos, MATLAB displays the Contents.m file, effectively providing
an overview of the files in the directory. The Contents report is a tool to help

you create and maintain Contents.m files. You can create and edit the via the
links in the Visual Directory, edit Contents.m, and run contentsrpt, or via
the Directory Reports. For more information about the Contents report and

Contents.m file, see the Directory Reports documentation for “Contents

Report” on page 7-17.

<} Current Directory - d:\mymfiles\mydemos

File Edit %iew Debug Desktop “Window Help

I o wnynfileswydemos

dle s & e -

Select Sortby |
Contents.mand
click Refresh.

M-files are
listed as they
are ordered in
the Contents.m
file for the

directory,. =™

— M sort by Contents.m ™ Show actions

Subfolders
=P | html {1}

Refresh |

™ Show thumbnails

™ Show file sizes ™ Show fendscript

[edit Contents.m | run contentsrpt | new file |

Vizsual Directory Toolbox

General purpose functions.

logos This is the basic logo image for MATLAR V5
chirpy Chirping

7-6

Visual Directory in Current Directory Browser

Run, Make Thumbnail, Delete File (Show Actions)

Select the Show actions check box and click Refresh. Below the description for
each M-file, the Visual Directory lists the actions you can perform on that file.
The make thumbnail and delete thumbnail entries appear only when the
Show thumbnails check box is also selected.

Available actions for the M-file.

<} Current Directory - d:\mymfiles\mydemos I [=] 3
File Edit “iew Debug Desktop Window Help N
Id:‘.mymfilesimydemns LI J 53 @|§| @ T
Subfolders —
=P | html (1)

Refresh |

M sor by Contents.m M Show actions ™ Show thufnbnails

™ Show file sizes ™ Show fendscript |

[edit Contents.m | run contentsrpt | new file]

Vizual Directory Toolbox

General purpose functions.

logos This is the basic logo image for MATLAR V5

[run | make thumbnail | delete thumbnail | delete]

chirpy Chirping
[run | make thumbnail | delete] -
4
Run M-File

Click run to execute an M-file. Script M-files run, but M-file functions that
require an input argument do not run.

Delete M-File

Click delete to remove the file. The file is permanently removed from the
directory.

7-7

7 Tuning and Managing M-Files

7-8

Make and Delete Thumbnail

When Show thumbnails is also selected, the make thumbnail and delete
thumbnail actions appear. A thumbnail is a snapshot of the graphical output
the M-file produces. Specifically, the snapshot is the figure returned by gcf
after the M-file runs. In the example, there is a snapshot shown for 1ogo5.m.
Thumbnails help you to

¢ Distinguish between similar M-files, such as different versions of a file you
experimented with.

¢ Find a file when you do not remember the exact name.

¢ Look at files created by others and quickly identify the ones in which you
might be interested, based on the snapshots.

To create a thumbnail for a file, click make thumbnail. You cannot make a
thumbnail for M-file functions that require an input argument. To delete a
thumbnail, click delete thumbnail. The thumbnail does not automatically
update when you make changes to the file. To update a thumbnail to reflect the
latest version of the M-file, click make thumbnail again.

Visual Directory in Current Directory Browser

<} Current Directory - d:\mymfiles\mydemos o [=] k3
File Edit %iew Debug Desktop Window Help N
Id:‘.mymfilesimydemns LI J B @|§| @ 2
Subfolders I
=P | html (1)

Refresh |

M sor by Contents.m W Show actions ™ Show thumbnails

™ Show file sizes ™ Show fendscript e

[edit Contents.m | run contentsrpt | new file]

Vizual Directory Toolbox

Deleted the General purpose functions.

thumbnail for 1logo5 logos This iz the basic logo image for MATLAE W5
and made the [run | make thumbnail | delete]

thumbnail for chirpy Chirping

chirpy. = [run | make thumbnail | delete thumbnail | delete]

Show File Sizes

Select the Show file sizes check box and click Refresh. The actual file size
appears, as well as a blue horizontal bar representing the file size that allows
you to quickly identify the relative file sizes.

Show Function or Script

Select the Show function/script check box and click Refresh. Each M-file is
labeled and color coded as a script or function, with scripts highlighted in
yellow and functions highlighted in blue. For descriptions of these types of
M-files, see the reference pages for script and function.

7-9

7 Tuning and Managing M-Files

Color coded labeling lets you quickly identify M-files as scripts or functions.

<} Current Directory - d:\mymfiles\mydemos
File Edit Yiew [Debug Desktop ‘“Window Help e
Id:im\,r'mfilesxmydemos LI J i @|§| 5 T
Subfolders —
=P | htral {11
Refrash |

I son by Contents.m I Show actions T Show thumbnails

I Show file sizgs ¥ Show functionfscript
[edit Contents.m | run contentsrpt | new file |
Contents Vizual Directory Toolbox
chirpy Chirping
collatzall Plot length of secuence for Collatz problem
fractal Fractal Tree
(html] -

S

7-10

Directory Reports in Current Directory Browser

Directory Reports in Current Directory Browser

® “Accessing and Using Directory Reports” on page 7-11
¢ “M-Lint Code Check Report” on page 7-25

¢ “TODO/FIXME Report” on page 7-12

¢ “Help Report” on page 7-13

* “Contents Report” on page 7-17

¢ “Dependency Report” on page 7-20

¢ “File Comparison Report” on page 7-22

¢ “Coverage Report” on page 7-24

Accessing and Using Directory Reports

Directory reports help you refine the M-files in a directory and improve their
performance. They are also useful for when you prepare files for use by others,
such as for a finished project, to share on MATLAB Central, or for a toolbox to
be distributed.

Access directory reports from the MATLAB Current Directory browser. To
display the Current Directory browser, select Desktop -> Current Directory.
For more information, see “Current Directory Browser” on page 5-32.

Navigate to the directory whose M-files you want to produce reports about.
Then, in the Current Directory browser toolbar, click the down arrow button
and select the type of report you want to run for all the M-files in the current
directory.

<) Current Directory - d:\mymfiles\mydemos =] E3

File Edit %iew Debug Desktop “Window Help e

Id:‘.mymfiles\m\,fdemos LI J ck @ 5| @ T

Al files £ | File Type | Last hodified | A % M-Lint Cade Check Repart
dhtml Folder Jan &, 2004 6:04:3.. Co B TODO/FIMME Report
[] chirpy.asy Editor Autc Apr 10, 2003 12:4.. 2 Help Report

chirpy.m h-file Jan 5, 2004 5:56:0... % [5] Contents Fepaort

Kl I 2 Dependency Report

Ry File Comparison Report

Bl Coverage Repart

7-11

7 Tuning and Managing M-Files

7-12

The report you selected appears as an HTML document in the MATLAB Web
browser.

¢ In a report, click a filename to open that file in the Editor, where you can
view it or make changes to it. Click a line number to open the file at that line.

¢ To update a report after making changes to the report options or files, or
after changing the current directory, click Refresh at the top of the report.

® When you run a report, it replaces the report currently displayed. Use the
back * and forward # buttons in the toolbar to see a previously run report
and then return to the most recent.

You cannot run directory reports when the path is a UNC (Universal Naming
Convention) pathname, that is, starts with \\. Instead, use an actual hard
drive on your system, or a mapped network drive.

TODO/FIXME Report

The TODO/FIXME report shows M-files that contain text strings you included
as notes to yourself, such as TODO. Use this report to easily identify M-files that
still require work or some other actions.

In the report, select one or more check boxes to display lines containing the
specified strings (TODO and FIXME), and click Refresh. You can also select the
check box for the text field and enter any text string in the field, such as NOTE
or TBD to identify lines containing that string.

Directory Reports in Current Directory Browser

The TODO/FIXME report identifies lines containing specified text strings, such as TODO and
NOTE shown here, so you can easily see reminders you included.

%' TODO{FIXME Report I [=]
-]

File Edit “iew Go Debug Desktop ‘Window Help
LIy

Refresh |

Enter any text ¥ topo T Fegae ™ [mote
string in this field. !

M-File List

Contents

Click the line
number to open
the file at that line collatzall
in the Editor, fractal
where you can
make changes.

chirpy 19 TODO: add features from image toolbox

a

agos

:

agob

:

logoimace
woebius

sift 12 NOTE: I can probably remove this loop
aplash

Help Report

The Help report presents a summary view of the help component of your
M-files. In MATLAB, the M-file help component is all contiguous
nonexecutable lines (comment lines and blank lines), starting with the second
line of a function M-file or the first line of a script M-file. For more information
about creating help for your own M-files, see the reference page for the help
function.

Select one or more check boxes to display the specified help information and
click Refresh.

7-13

7 Tuning and Managing M-Files

7-14

Use this information to help you identify files of interest or files that lack help
information. It is a good practice to provide help for your files not only to help
you recall their purpose, but to help others who might use the files.

%'Help Report =] B3

File Edit “iew Go Debug Deskiop ‘Window Help N
-9 S #

Refresh |

M Show subfunctions M Description = Examples

|»

M Show all help M See alzo = Copyright

Help for directory dvmymfilesimydemos

M-File List b
chirpy Chirping
Chirping

TUsa a polynomial-defined curwe o

signal. Make the chirping sound o

Mo example

Mo see-also line

Mo copyright line

Seleot Description to collat=zall FPlot lencgth of sequence for Collat:z
show the first help line.

Plot lencgth of =zequence for Coll:
Select Show all help to Prepare figure

see the rest of the help.

Mo example

Mo see-also line

Mo copyright line

Select Show _ | collatzall/collatz Collatz problem. Generate & sequend
subfunctions to see help

information for For any positive integer, n: -
subfunctions. Kl | =

2

Collatz problem. Genesrate a sedus

Directory Reports in Current Directory Browser

Show Subfunctions

With Show subfunctions selected, the Help report displays help information
for all subfunctions called by each function. Help information for subfunctions
is highlighted in gray.

Description

With Description selected, the Help report displays the first line of help in the
M-file. If the first comment line is empty, or if there is not a comment before

the executable code, No description line, highlighted in pink, appears instead.

Examples

With Examples selected, the Help report displays the line number where the
examples section of the M-file help begins. The Help report looks for a line in
the M-file help that begins with the string example or Example and displays any
subsequent non-blank comment lines. Check this option to easily locate and go
to examples in your M-files.

It is a good practice to include examples in the help for your M-files. If you do
not have examples in the help for all your M-files, use this option to identify
those without examples. If the report does not find examples in the M-file help,
No example, highlighted in pink, appears.

Show All Help

With Show all help selected, the Help report displays all the M-file help, which
is all contiguous nonexecutable lines (comment lines and blank lines), starting
with the second line of a function M-file, or the first line of a script M-file. The
M-file help shown also includes overloaded functions and methods, which are
not actually part of the M-file help comments, but are automatically generated
when help runs.

If the comment lines before the executable code are empty, or if there are no
comments before the executable code, No help, highlighted in pink, appears
instead.

7-15

7 Tuning and Managing M-Files

7-16

See Also

With See Also selected, the Help report displays the line number for the
See-also line in the M-file help. The See-also line in M-file help lists related
functions. When MATLAB displays the help for an M-file, any function name
listed on the See-also line appears as a link you can click to display its help. It
is a good practice to include a See-also line in the help for your M-files.

The report looks for a line in the M-file help that begins with the string See
also. If the report does not find a See-also line in the M-file help, No see-also
line, highlighted in pink, appears. This helps you identify those M-files without
a See-also line, should you want to include one in each M-file.

The report also indicates when a See-also M-file is not in a directory on the
search path. You might want to move that file to a directory that is on the
search path. If not, you will not be able to click the link to get help for the file,
unless you then add its directory to the path or make its directory become the
current directory.

Copyright

With Copyright selected, the Help report displays the line number for the
copyright line in the M-file. The report looks for a comment line in the M-file
that begins with the string Copyright and is followed by year1-year2 (with no
spaces between the years and the hyphen that separates them). It also notes if
the end of the date range is not the current year.

It is a good practice to include a Copyright line in the help for your M-files, that
notes the year you created the file and the current year. For example, for an
M-file you created in 2001, include this line

% Copyright 2001-2004
If the report does not find a Copyright line in the M-file help, No copyright

line, highlighted in pink, appears. This helps you identify those files without a
Copyright line, should you want to include one in each M-file.

Directory Reports in Current Directory Browser

Contents Report

The Contents report displays information about the integrity of the
Contents.m file for the directory. A Contents.m file includes the filename and
a brief description of each M-file in the directory. When you type help followed
by the directory name, such as help mydemos, MATLAB displays the
information in the mydemos/Contents.m file. For more information, see

“Providing Help for Your Program” in MATLAB Programming documentation.

Ifthere is no Contents.m file for the directory and you run the Contents report,
the report tells you the Contents.m file does not exist and asks if you want to
create one. Click yes to automatically create the Contents.m file. Edit the
Contents.mfile in the Editor to include the names of files you plan to create, or
to remove “internal” or “helper” files that you do not want to expose when
displaying help for the directory.

You need to update the Contents.m file to reflect changes you make to files in
the directory. For example, when you remove a file from a directory, remove its
entry from the Contents.m file. The Contents report helps you to maintain the
Contents.mfile. It displays discrepancies between the Contents.m file and the
M-files in the directory.

7-17

7 Tuning and Managing M-Files

7-18

%' Contents Report M [=]ES
|

File Edit “iew Go Debug Deskiop MWindow Help
-0 & #

Contents Manager
Refresh

[edit Contents.mm | fix spacing | fix all]

Mirdemos Toolbox

General purpose functions.
helloworld - Testing file

File hellowarld does not appear in this directory.
Remaove it from Contents.m? [yes |

logos - Thiz is the basic logo image for MATLAR

Description lines do not match for file logoS.
Use this description from the file? (default) [yes |

logos - Thiz iz the basic logo image for MATLAR V5

Or put this description from the Contents into the file? [yes]

logoh - Thiz iz the basic logo image for MATLAR
chirpy - Chirping

Other functions
File collatzall is in the directory but not Contents.m
collatzall - Plot length of sequence for Collatz problem
Add the line shown ahove? [yes |

« | 5

]

Use the links displayed for each line, or edit the Contents.mfile directly, or edit
the M-files to make the changes. To make all of the suggested changes at once,
click fix all. To automatically align the filenames and descriptions in the
Contents.m file, click fix spacing.

Directory Reports in Current Directory Browser

If you always want the Contents.m file to reflect all files in the directory, it you
can automatically generate a new Contents.m file rather than changing the file
based on the Contents report. To do this, first delete the existing Contents.m
file, run the Contents report, and click yes when prompted for MATLAB to
automatically create one.

Messages in the Contents File Report

No Contents File. This message appears if there is no Contents.m file in the
directory. Click yes to automatically create a Contents.m file, which contains
the filenames and descriptions for all M-files in the directory.

No Contents.m file. Make one? [yes]

File Not Found. This message appears when a file included in Contents.mis not
in the directory. These messages are highlighted in pink. For example, a
message such as

File helloworld does not appear in this directory.
Remove it from Contents.m? [yes]

means the Contents.mfile includes an entry for helloworld, but that file is not
in the directory. This might be because you removed the file helloworld, or you
manually added it to Contents.m because you planned to create the file but
have not as yet, or you renamed helloworld.

Description Lines Do Not Match. This message appears when the description line in
the M-file help does not match the description provided for the M-file in
Contents.m. These messages are highlighted in pink. Click yes (default) to
replace the description in the Contents.m file with the description from the
M-file. Or select the option to replace the description line in the M-file help
using the description for that file in Contents.m.

Description lines do not match for file logo5.

Use this description from the file? (default) [yes]
logo5 - This is the basic logo image for MATLAB V5

Or put this description from the Contents into the file? [yes]
logo5 - This is the basic logo image for MATLAB

7-19

7 Tuning and Managing M-Files

7-20

Files Not In Contents.m. This message appears when a file in the directory is not
in Contents.m. These messages are highlighted in gray. Click yes to add the
filename and its description line from the M-file help to the Contents.m file.

collatzall is in the directory but not Contents.m
collatzall - Plot length of sequence for Collatz problem
Add the line shown above? [yes]

Dependency Report

The Dependency report shows dependencies among M-files in a directory. This
helps you determine all the M-files you need to provide when you tell someone
to run a particular M-file. If you do not provide all the dependent M-files along
with the M-file you want them to run, they will not be able run the file. The
report does not list as dependencies the M-files in the toolbox/matlab
directory because every MATLAB user already has those files. Select Show
child functions to see a list of all M-files (children) called by each M-file in the
directory (parent). The report also indicates where each child function resides,
for example, in a specified toolbox. If a child function’s location is listed as
unknown, it could be because the child function is not on the search path or in
the current directory.

Directory Reports in Current Directory Browser

%'Dependency Report M [=]E3
|

File Edit “iew Go Debug Deskiop MWindow Help

O S
Y
Dependency Report for Directory D:\mymfiles\mydemos
ow child functions ow parent functions (current dir. on
W Show child functions T Show parent funct t dir. only
I Show subfunctions
The file chirpy.m
calls two M-files in Built-in functions and files in toolbox/matlab are not shown
the Signal
Processing Children
toolbox and one in Mfiles (called functions)
the |mage Contents
Processmg I~ chirpy toolbhox : signalysignalbychirp.m
toolbox. toolbox : signallsignal'\specygran.n
toolbhox : images\imagestierode.m
collatzall
Thefile go.mcalls | fractal
moebius.m | 42 current dir : moebius
located in the logos
current directory. Logos
logoimacge toolbhox o wrhwryBvrfigqure) capture.m
moehius
sift o
1 lash hat

Z

The Dependency report is similar to running the depfun function, although the
two do not provide the exact same results. For performance purposes, the
Dependency report limits the functions considered.

Select Show parent functions to list the M-files that call each M-file. The
report limits the parent (calling) functions to those in the current directory.
Select Show subfunctions to include subfunctions in the report. Subfunctions
are listed directly after the main function and are highlighted in gray.

7-21

7 Tuning and Managing M-Files

File Comparison Report

The File Comparison report identifies the differences between two files in the
current directory. Some other tools refer to this as a diff report. As an example,
you can use this to easily compare an autosaved version of a file to the latest
version.

In the File Comparison report listing for a directory, click file 1 for the first
file. Then click file2 for the file you want to compare the first file to.

%'File Comparison Report I =]
File Edit %iew Go Debug Desktop Window Help &
- 2| S #A

Refrezh |

File Comparison Report
To compare two files, click =file 1= for the first file and =file 2= for
the second file. e

Contents Contents for directory D:i'\mymfiles
[file 1]file2]
bucky Connectivity graph of the
Buckninster Fuller geodesic dome.
To compare [file 1 | file 2]
lengthofline tO. lengthofline Calculates the length of a line
lengthofline2, first object
click file 1 for [file 1| file 2]
lengthofline. Then lengthofline? LENGTHOFLINE Calculates the length
click file 2for of a line object
lengthofline2. [file 1| file 2]

The File Comparison report then displays the files next to each other and
highlights lines that do not match. Pink highlighting and an x at the start of
the line indicates that the content of the lines differs. Green highlighting and
a > at the start of the line indicates a line that exists in one file but not the
other.

7-22

Directory Reports in Current Directory Browser

Excerpt of File Comparison report.

Pink highlighting or an x at the start of a line denotes the lines differ.

Green highlighting or a > at the start of a line denotes the line
exists in one file but not the other.

%' File Difference I =]
File Edit %iew Go Debug Desktop Window | Help N
- 25 &
18 % hl = plotil:10,rand(10,5])); % hl = plotc{l:10,rand{10,5)); 13 ;I
19 % [len,dim] = lengthofline([hl hZ] % [len,dim] = lengthoflinei[hl hZ] 19
20 . 20
2l % Find input indices that are not line o . ¥ Find input indices that are not line o 21
22 nothandle = ~ishandleihline); . mothandle = ~ishandle(hline): 22
- > notline = false(size(hline)): _a3
_&23 for nh = l:prodisizei{hline)) ¥ for nh = l:inumel (hline) _ad
24 notlineinh) = ~ishandleihlineinh)) | = notline(nh) = nothandle(nh) || ~strc 25
25 end . end 26
26 . 27
27 len = zeros(size(hline)):; . len = zerosi(sizeihline)); 28
- = dim = len: _a9
_&8 for nl = l:prodisizeihline)) ¥ for nl = l:numel (hline) _ao0
29 % If it's a line, get the data and c . % If it's a line, get the data and c 31
an if ~notlineinl) . if ~notline(nl) 3z
31 flds = get{hline(nl)): . £lds = getihlineinl)): 33 [
%

7-23

7 Tuning and Managing M-Files

Coverage Report

Run the Coverage report after you run the Profiler to identify how much of a
file ran when it was profiled. For example, when you have an if statement in
your code, that section might not run during profiling, depending on conditions.

You can run the coverage report from the Profiler, or follow these steps:
1 Inthe MATLAB desktop, select Desktop -> Profiler. Profile an M-file in the

Profiler. For detailed instructions, see “Profiling for Improving
Performance” on page 7-35.

2 In the Current Directory browser, select Coverage Report. The Coverage
Report appears, providing a summary of coverage for the M-file you profiled.

%' Coverage Report 1] 3
File Edi Wiev Go Debu Deskto Windo Help =
- 2| S #A

e

Coverage Report for D:\mymfiles

The Coverage Report Refresh |

shows the percentage

of the file windir.m I [&
i windir.m
that ran when it was — Coverage 33.3%
profiled. Total time: 0.5 sec
Line count: 9

Contents.m

bucky.m

collatzall.m

collatzplot.m

3 Click the Coverage link to see the profile detail report for the file.

7-24

M:Lint Code Check Report

M-Lint Code Check Report

The M-Lint Code Check report displays potential errors and problems, as well
as opportunities for improvement in your code. The term “lint” is the name
given to similar tools used with other programming languages such as C. In
MATLAB, the M-Lint tool displays a message for each line of an M-file it
determines might be improved. For example, a common M-Lint message is that
a variable is defined but never used in the M-file.

® “Accessing M-Lint” on page 7-25
¢ “M-Lint Graphical User Interface (GUI)” on page 7-25
¢ “Making Changes Based on M-Lint Messages” on page 7-28

Accessing M-Lint

You can get M-Lint messages using

¢ The mlint function. See the mlint reference page for instructions.

¢ A graphical user interface (GUI) for M-Lint in the Current Directory browser
Directory Reports, as described in the remainder of this section. You can also
access this GUI from the Editor or Profiler.

M-Lint Graphical User Interface (GUI)
1 Create, run, and debug an M-file, or multiple M-files in a directory.

2 Inthe Current Directory browser, navigate to the directory that contains the
M-files you want to check with M-Lint. In the toolbar, select the M-Lint Code
Check Report from the Directory Reports listing. For the example shown, go
to $matlabroot/matlab/help/techdoc/matlab_env/examples to use
M-Lint to check lengthofline.m.

The M-Lint report displays in the MATLAB Web browser, showing those
M-files that M-Lint identified as having potential problems or opportunities
for improvement.

7-25

7 Tuning and Managing M-Files

%"M-Lint Code Checker Report =] B3
File Edit “iew Go Debug Deskiop ‘Window Help N
-= 8|8
s
Refresh |
M-Lint Code Checker Report
Line number and Contents
message Mo messages
describing bucky
potential problem MNa messages
or |mprov_ement lengthofline 22: The walue assigned here to wariahle
opportunlty. 13 messages 'nothandle' is newer used
Click line number 23: NUMEL(x) is usually faster than
to open the M-file FROD [SIZE (x])
in the Editor at 24: Array 'notline' is constructed using
that line subscripting. Consider preallocating for
’ speed -
4

7-26

M:Lint Code Check Report

3 For each message, review the message and code and make changes to the
code based on the message as described here:

Click the line number to open the M-file in the Editor at that line.

Review the M-Lint message in the report and change the code in the
M-file, based on the message.

Note that in some cases, you should not make any changes based on the
M-Lint messages because the M-Lint messages do not apply to that
specific situation. M-Lint does not provide perfect information about every
situation. In the event you do not want to change the code but you also do
not want to see the M-Lint message for that line in the M-Lint report,
suppress the message by adding %#ok to the end of the statement in the
M-file.

Save the M-file. Consider saving the file to a different name if you made
significant changes that might introduce errors. Then you can refer to the
original file as you resolve problems with the updated file. Use the File
Comparison Report, a tool that can help you identify the changes you made
in the updated file. For more information, see “File Comparison Report” on
page 7-22.

If you are not sure what a message means or what to change in the code as
a result, use the Help browser to look for related topics in the online
documentation. For examples of messages and what to do about them, see
“Making Changes Based on M-Lint Messages” on page 7-28.

Run and debug the file(s) again to be sure you have not introduced any

inadvertent errors.

5 Ifthe M-Lint report is already displayed, click the Refresh button to update
it, or run the M-Lint report again. Ensure the M-Lint messages are gone,
based on the changes you made to the M-files.

7-27

7 Tuning and Managing M-Files

7-28

Making Changes Based on M-Lint Messages

For information on how to correct the potential problems presented by M-Lint,
use the following resources:

¢ Review the MATLAB Programming and Programming Tips documentation.

¢ Use the Help browser Index and Search features to look in the
documentation for terms presented in the M-Lint messages.

Other techniques to help you identify problems in and improve your M-files
include:

¢ Syntax highlighting features in the Command Window and Editor
¢ Error messages generated when you run the M-file
® Debugging tools, namely the Editor/Debugger and debugging functions

¢ Profiler for improving performance

Example Using M-Lint Messages to Improve Code

An example file, lengthofline.m, is included with MATLAB in
$matlabroot/matlab/help/techdoc/matlab_env/examples.

To run the M-Lint Code Check report for 1engthofline.m, use the Current
Directory browser to navigate to the
$matlabroot/matlab/help/techdoc/matlab_env/examples directory. Select
the M-Lint Code Check report from the list of reports on the toolbar. Note that
lengthofline.mis not on the MATLAB path by default. You can run the file or
open it in the Editor when
$matlabroot/matlab/help/techdoc/matlab_env/examples is the current
directory.

The M-Lint Code Check report appears, with its list of messages suggesting
improvements you can make to lengthofline.m.

M:Lint Code Check Report

%' M-Lint Code Checker Report M [=]E3
|

File Edit “iew Go Debug Deskiop MWindow Help

TN

Refresh |

Contents
Mo messages

bucky
Mo messages

lengthofline
13 messages

M-Lint Code Checker Report

22: The walue assigned here to wariahle
'nothandle' is never used

23: NUMEL(x) is usually faster than

PROD (SIZE(x])

24: Array 'notline' is constructed using
subscripting. Consider preallocating for speed
24: Tae AFTRCMPI(strl,stri) instead of using
LOWEE. in a call to STRCHP

26: NUMEL(x) is usually faster than

PROD (SIZE(x])

34: Array 'data'’ iz constructed using
subscripting. Consider preallocating for speed
3d: Tae dynamic fieldnames with structurezs
instead of GETFIELD. Type 'doc struct' for
nmore information

38: Use || instead of | as the OR operator in
conditional statements
39: Use || instead of | as the OR operator in
conditional statements
40: Use || instead of | as the OR operator in

conditional statements

43: Array 'dim' iz constructed using
subscripting. Consider preallocating for speed
49: Tae of brackets [] iz unnecessary. Use
parentheses to group, 1f needed

SA: Format atring dogs not agree with arqument
count

7-29

7 Tuning and Managing M-Files

7-30

The following table describes each message and demonstrates a way to change
the file, based on the message.

Message — — Code

Explanation and Updated Code

22: The value assigned here to variable
‘nothandle' is never used

22 nothandle = ~ishandle(hline);
23 for nh = 1:prod(size(hline))
24 notline(nh) = ~ishandle(hline(nh))

23: NUMEL(x) is usually faster than
PROD (SIZE(x))

23 for nh = 1:prod(size(hline))

24: Array 'notline' is constructed using
subscripting. Consider preallocating for
speed

22 nothandle = ~ishandle(hline);
23 for nh = 1:numel(hline)
24 notline(nh) = ~ishandle(hline(nh))

In line 22, nothandle is assigned a value, but
nothandle is not used anywhere after that in
the file. The line might be extraneous and you
could delete it. But it might be that you
actually intended to use the variable, which is
the case for the lengthofline example.
Update line 24 to use nothandle, which is
faster than computing ~ishandle for each
iteration of the loop, as shown here.

nothandle = ~ishandle(hline);
for nh = 1:numel(hline)
notline(nh) = nothandle(nh)

While prod(size(x)) returns the number of
elements in a matrix, the numel function was
designed to do just that, and therefore is
usually more efficient. Type doc numel to see
the numel reference page. Change the line to

for nh = 1:numel(hline)

When you increase the size of an array within
a loop, it is inefficient. Before the loop,
preallocate the array to its maximum size to
improve performance. For more information,
see Preallocating Arrays in the MATLAB
Programming documentation. In the example,
add a new line to preallocate notline before
the loop.

notline = false(size(hline));
for nh = 1:numel(hline)
notline(nh) = nothandle(nh)

M:Lint Code Check Report

Message — — Code

Explanation and Updated Code (Continued)

24: Use STRCMPI(stri1,str2) instead of
using LOWER in a call to STRCMP

24 notline(nh)=~ishandle(hline(nh)) ||
~strcmp('line',lower(get(hline(nh),
‘type')));

28: NUMEL(x) is usually faster than
PROD(SIZE(x))

28 for nl = 1:prod(size(hline))

34: Array 'data' is constructed using
subscripting. Consider preallocating for
speed

33 for nd = 1:length(fdata)
34 data{nd} =
getfield(flds,fdata{nd});

While

strcmp
('1line',lower(get(hline(nh) 'type'))

converts the result of the get function to a
lowercase string before doing the comparison,
the strcmpi function ignores the case while
performing the comparison, with advantages
that include more efficiency. Change the line
to

notline(nh) = nothandle(nh) ||
~strcmpi('line',get(hline(nh), 'type'));

See the same message and explanation
reported for line 23. Change the line to

for nl = 1:numel(hline)

See the same message and explanation
reported for line 24. Add this line before the
loop

data = cell(size(fdata));

7-31

7 Tuning and Managing M-Files

7-32

Message — — Code

Explanation and Updated Code (Continued)

34: Use dynamic fieldnames with
structures instead of GETFIELD. Type
‘doc struct' for more information

34 data{nd} =
getfield(flds,fdata{nd});

38: Use || instead of |
operator in conditional
39: Use || instead of |
operator in conditional
40: Use || instead of |
operator in conditional

as the OR
statements
as the OR
statements
as the OR
statements

38 if isempty(data{3}) | .
39 (length(unique(data{1}(:)))==1 |
40 length(unique(data{2}(:)))=

41 length(unique(data{3}(:)))==1)

43: Array 'dim' is constructed using
subscripting. Consider preallocating for
speed

43 dim(nl) = 2;

You can access a field in a structure as a
variable expression that MATLAB evaluates
at run-time. This is more efficient than using
getfield. For more information, type doc
struct to see the reference page for
structures, or see Using Dynamic Field Names
in the MATLAB Programming documentation.
Change the line to

data{nd} = flds.(fdata{nd});

While | (the elementwise logical OR operator)
performs the comparison correctly, use the | |
(short circuit OR operator) for efficiency. For
details, see Logical Operators in the MATLAB
Programming documentation. Change the
lines to

if isempty(data{3}) || .
(length(unique(data{1}(:)))=
length(unique(data{2}(:)))=
length(unique(data{3}(:)))=

=1 |
111
1)

See the same message and explanation
reported for line 24. Before the first line of the
loop

29 for nl = 1:numel(hline)

add the line

dim = len;

M:Lint Code Check Report

Message — — Code

Explanation and Updated Code (Continued)

49: Use of brackets [] is unnecessary.
Use parentheses to group, if needed

49 len(nl) =
sum([sqrt(dot(temp',temp'))]);

56: Format string does not agree with
argument count

55 warning
('lengthofline:FillWithNaNs',...

56 '\n%s of non-line objects are being
filled with %s.',

57 'Lengths', 'NaNs', '‘Dimensions', ‘NaNs')

For more information about the use of
brackets and parentheses, see the Special
Characters reference page. In this example,
remove the brackets because they are not
needed. They add processing time because
MATLAB concatenates unecessarily. Change
the line to

len(nl) = sum(sqrt(dot(temp',temp')));

The number of %s in the warning statement is
2, but the number of trailing arguments is 4.
Because this format will be used twice, the
code is correct as written. M-Lint was not able
to recognize that and so issued the message. In
this case, you do not want to change the code,
but you also do not want to see the M-Lint
message. To suppress the M-Lint message, add
%#ok to the end of the statement. Change line
57 to

'Lengths', 'NaNs', '‘Dimensions', 'NaNs')
%#Hok

7-33

7 Tuning and Managing M-Files

Updated M-Lint report after changing the file lengthofline.mbased
on M-Lint messages. No messages are reported.

%"M-Lint Code Checker Report =] B3
File Edit “iew Go Debug Deskiop ‘Window Help N
-2 0 & #M

Refresh |

M-Lint Code Checker Report

|

Contents
Mo messages

bucky
Mo messages

lengthofline
Mo messages

-

2

You can view the M-file with all of these changes. Navigate to the

$matlabroot/matlab/help/techdoc/matlab_env/examples directory and
open lengthofline2.m.

7-34

Profiling for Improving Performance

Profiling for Improving Performance

One way to improve the performance of your M-files is using profiling tools.
MATLAB provides the M-file Profiler, a graphical user interface that is based
on the results returned by the profile function. Use the Profiler to help you
determine where you can modify your code to make performance
improvements. This section covers the following topics:

¢ “What Is Profiling?” on page 7-35—Profiling assesses where time is being
spent in your M-code.

¢ “The Profiling Process—Guidelines” on page 7-36—Provides guidelines on
using profiling to optimize performance.

¢ “The Profiler” on page 7-38—A graphical user interface for viewing where
the time is being spent in your M-code.

® “Profile Summary Report” on page 7-42—Describes the summary report
produced by the Profiler.

¢ “Profile Detail Report” on page 7-45—Describes the detail reports produced
by the Profiler.

¢ “The profile Function” on page 7-51—The function on which the Profiler is
based, profile.

What Is Profiling?

Profiling is a way to measure where a program spends its time. Using the
MATLAB Profiler, you can identify which functions in your code consume the
most time. You can then determine why you are calling them and look for ways
to minimize their use. It is often helpful to decide whether the number of times
a particular function is called is reasonable. Because programs often have
several layers, your code may not explicitly call the most time-consuming
functions. Rather, functions within your code might be calling other
time-consuming functions that can be several layers down in the code. In this
case it is important to determine which of your functions are responsible for
such calls.

Profiling helps to uncover performance problems that you can solve by

® Avoiding unnecessary computation, which can arise from oversight
® Changing your algorithm to avoid costly functions

¢ Avoiding recomputation by storing results for future use

7-35

7 Tuning and Managing M-Files

7-36

When you reach the point where most of the time is spent on calls to a small
number of built-in functions, you have probably optimized the code as much as
you can expect.

The Profiling Process—Guidelines

Here is a general process you can follow to use the Profiler to improve
performance in your M-files. This section also describes how you can use
profiling as a debugging tool and as a way to understand complex M-files.

Note Premature optimization can increase code complexity unnecessarily
without providing a real gain in performance. Your first implementation
should be as simple as possible. Then, if speed is an issue, use profiling to
identify bottlenecks.

1 Inthe summary report produced by the Profiler, look for functions that used
a significant amount of time or were called most frequently. See “Profile
Summary Report” on page 7-42 for more information.

2 View the detail report produced by the Profiler for those functions and look
for the lines that use the most time or are called most often. See “Profile
Detail Report” on page 7-45 for more information.

You might want to keep a copy of your first detail report to use as a reference
to compare with after you make changes and profile again.

3 Determine whether there are changes you can make to the lines most called
or the most time-consuming lines to improve performance.

For example, if you have a 1oad statement within a loop, 1oad is called every
time the loop is called. You might be able to save time by moving the load
statement so it is before the loop and therefore is only called once.

Profiling for Improving Performance

4 C(Click the links to the files and make the changes you identified for potential
performance improvement. Save the files and run clear all. Run the
Profiler again and compare the results to the original report. Note that there
are inherent time fluctuations that are not dependent on your code. If you
profile the exact same code twice, you can get slightly different results each
time.

5 Repeat this process to continue improving the performance.

Using Profiling as a Debugging Tool

The Profiler is a useful tool for isolating problems in your M-files.

For example, if a particular section of the file did not run, you can look at the

detail reports to see what lines did run, which might point you to the problem.

You can also view the lines that did not run to help you develop test cases that
exercise that code.

If you get an error in the M-file when profiling, the Profiler provides partial
results in the reports. You can see what ran and what did not to help you isolate
the problem. Similarly, you can do this if you stop the execution using Ctrl+C,
which might be useful when a file is taking much more time to run than
expected.

Using Profiling for Understanding an M-File

For lengthy M-files that you did not create or that you have not used for awhile
and are unfamiliar with, you can use the Profiler to see how the M-file actually
worked. Use the Profiler detail reports to see the lines actually called.

If there is an existing GUI tool (or M-file) similar to one that you want to create,
start profiling, use the tool, then stop profiling. Look through the Profiler detail
reports to see what functions and lines ran. This helps you determine the lines
of code in the file that are most like the code you want to create.

7-37

7 Tuning and Managing M-Files

The Profiler
The Profiler is a tool that shows you where an M-file is spending its time. This

section covers

¢ “Opening the Profiler” on page 7-38

¢ “Running the Profiler” on page 7-39

¢ “Profiling a Graphical User Interface” on page 7-41

¢ “Profiling Statements from the Command Window” on page 7-41
¢ “Changing Fonts for the Profiler” on page 7-42

For information about the reports generated by the Profiler, see “Profile
Summary Report” on page 7-42 and “Profile Detail Report” on page 7-45.

Opening the Profiler

You can use any of the following methods to open the Profiler.

¢ Select Desktop-> Profiler from the MATLAB desktop.
¢ Select Tools->Open Profiler from the menu in the MATLAB Editor.

® Select one or more statements in the Command History window, right-click
to view the context menu, and choose the Profile Code option.

¢ Enter the following function in the Command Window:
profile viewer

7-38

Profiling for Improving Performance

Running the Profiler
This is a quick summary. Details follow.
1 Type profile viewer to open the Profiler.

2 Type statement to run. ———

3 Click Start Profiling.

) Profiler
File | Edit Debug Desktop ‘Window Help e

4-1-»3@|§|M

Start Prnfilingl Run thiz code: Icnllatz ll ' Profile time: 0 zec

Profiler for Improving Performance

One way to improve the performance of your M-files is using profiling tools.
MATLAB provides the M-file Profiler, a graphical user interface that is based on
the results returned by the profile function. Use the Profiler to help you
determine where you can modify your code to make performance improvements.

Faor details on how to use the Profiler, see the Profiler documentation.

To profile an M-file or a line of code, follow these steps:

1 In the Run this code field in the Profiler, type the statement you want to
run.

You can run this example

[t,y] = ode23('lotka',[0 2],[20;20])

as the code is provided with MATLAB demos. It runs the Lotka-Volterra
predator-prey population model. For more information about this model,
type lotkademo, which runs the demonstration.

If you are running a statement you previously profiled in the current
MATLAB session, select the statement from the list box and skip to step 3.

7-39

7 Tuning and Managing M-Files

7-40

2 Click Start Profiling (or press Enter after typing the statement).

While the Profiler is running, the Profile time indicator (at the top right of
the Profiler window) is green and the number of seconds it reports increases.

) Profile tirme: 4 sec

When the profiling is finished, the Profile time indicator becomes black and
shows the length of time the Profiler ran.

@ Frofile tirme: 6 sec

This is not the actual time that your statements took to run, but is the time
elapsed from when you clicked Start Profiling until profiling completed. If
the time reported is much different from what you expected (for example
hundreds of seconds for a simple statement), you might have had profiling
on longer than you realized.

Profile time is CPU time. The total time reported by the Profiler is not the
same as the time reported using the tic and toc functions or the time you
would observe using a stopwatch.

When profiling is complete, the Profile Summary report appears in the
Profiler window. For more information about this report, see “Profile
Summary Report” on page 7-42.

Profiling for Improving Performance

Profiling a Graphical User Interface
You can run the Profiler for a graphical user interface, such as the Filter
Design and Analysis tool included with the Signal Processing Toolbox. You can

also run the Profiler for an interface you created, such as one built using
GUIDE.

To profile a graphical user interface, do the following.

In the Profiler, click Start Profiling. Make sure that no code appears in the
Run this code field.

Start the graphical user interface. (If you do not want to include its startup
process in the profile, do not click Start Profiling, step 1, until after you
have started the graphical interface.)

Use the graphical interface. When you are finished, click Stop Profiling in
the Profiler.

The Profile Summary report appears in the Profiler.

Profiling Statements from the Command Window
To profile more than one statement, do the following:

In the Profiler, clear the Run this code field and click the Start Profiling
button.

In the Command Window, enter and run the statements you want to profile.

The status bar in the desktop reports Profiler on when MATLAB is not
busy and the Profiler is running.

After running all the statements, click Stop Profiling in the Profiler.

The Profile Summary report appears in the Profiler.

7-41

7 Tuning and Managing M-Files

7-42

Changing Fonts for the Profiler
To change the fonts used in the Profiler, follow these steps:

1 Select File -> Preferences -> Fonts to open the Font Preferences dialog
box.

2 In the Font Preferences dialog box, select the code or text font that you
want to use in the Profiler. For more information, click the Help button in
the dialog box.

3 Click Apply or OK.

4 In the Profiler, click the refresh button = to update the display.

Profile Summary Report

The Profile Summary report presents statistics about the overall execution of
the function and provides summary statistics for each function called. The
report formats these values in four columns.

¢ Function Name—A list of all the functions and subfunctions called by the
profiled function. When first displayed, the functions are listed in order by
the amount of time they took to process. To sort the functions alphabetically,
click the Function name link at the top of the column.

¢ Calls—The number of times the function was called while profiling was on.
To sort the report by the number of times functions were called, click the
Calls link at the top of the column.

¢ Total Time—The total time spent in a function, including all child functions
called, in seconds. The time for a function includes time spent on child
functions. To sort the functions by the amount of time they consumed, click
the Total Time link at the top of the column. By default, the summary report
displays profiling information sorted by Total Time. Note that the Profiler
itself uses some time, which is included in the results. Also note that total
time can be zero for files whose running time was inconsequential.

¢ Self Time—The total time spent in a function, not including time for any

child functions called, in seconds. To sort the functions by this time value,
click the Self Time link at the top of the column.

Profiling for Improving Performance

Following is the summary report for the Lotka-Volterra model described in
“Example: Using the profile Function” on page 7-53.

To print a summary report, clicking the print button &.

To get more detailed information about a particular function, click its name in
the Function Name column. See “Profile Detail Report” on page 7-45 for more
information.

7-43

7 Tuning and Managing M-Files

7-44

Click any
column

labelto sort
by column.

Click any
function
name to
display
detailed
report.

File Edit

Debug Desktop Window Help

=0l x|

LIRS A =R

Start Profiling | Run this code: I

LI ‘ Profile titme: 0 sec

Profile Summary
Generated 0G-Apr-2004 14:59: 27

—— Function name Calls | Total Self Total Time Plot
Tirre Time™ (dark band = self
time)

odeZd 1 0921 = 0491 = I
funfuniprivate’odearguments 1 0170 s 0.100 L
cell.ismember 1 0.160 s 0.080 = | L
odeget " 0.050 = 0.040 = 1
ismember 1 0.070 = 0.040 L
repmat 2 0.030 s 0.030 s I =
funfuntprivate’odefinalize 1 0.190 s 0030 = (L
matlabhlang (Builtin-function) 41 0.030 s 0.030 = I
funfuniprivateodemass 1 0.030 s 0020 = 1
matlab\sparfun (Builtin-function) 1 0.010 s 0010 = [
double. superioloat 1 0.010 s 0010 s I
matlabiops (Builtin-function) 166 | 0.010 s 0.010 s |
cellstr 1 0010 s 0010 s |
funfumtnrivatelndeewent 1 nnin nnin | h

FY

Profiling for Improving Performance

Profile Detail Report

The Profile Detail report shows profiling results for a selected function that
was called during profiling. A Profile Detail report is made up of seven
sections, summarized below. By default, the Profile Detail report includes all
seven sections, although, depending on the function, not every section contains
data. You can customize the display to include only sections you are interested
in—see “Controlling the Contents of the Detail Report Display” on page 7-45.
The following sections provide more detail about each section.

¢ “Profile Detail Report Header” on page 7-47 — Provides general information
about the function.

¢ “Parent Files” on page 7-47 — Provides information about the parent
function.

® “Busy Lines” on page 7-48 — Lists the lines in the function that used the
greatest amount of processing time.

® “Child Files” on page 7-48 — Lists the functions called by this function, with
links to Profile Detail reports for these functions.

¢ “M-Lint Results” on page 7-49 — Lists the lines in the functions that M-lint
highlighted.

* “File Coverage” on page 7-50 — Provides statistics about the lines of code in
the function that executed while profiling was on.

¢ “File Listing” on page 7-50 — Includes the source code for the function, if it
is an M-file.

To return to the Profile Summary report from the Profile Detail report, click
the home button %! in the toolbar.

Controlling the Contents of the Detail Report Display

You can determine which sections are included in the display by selecting them
and then clicking the Refresh button. The following sections provide more
detail about each section of this report.

7-45

7 Tuning and Managing M-Files

7-46

Select
report
options to
display and

«): Profiler =10/]

click
Refresh.

File Edit Debug Desktop ‘Window Help a
- = 5 S
Start Profilingl Run this code: I LI ' Profile titne: 0 sec
funfuniprivate\odearguments (1 call, 0.170 sec)
Generated 06-Apr-2004 15:32:17
h-function in file Mbat1MAminightlyinatlabbtoolboxvmatlabMunfuntprivatedodearguments. m
[Copy to new window far camparing multiple runs) |
Refrash |
M Show parent files M Show busy lines M Show child files
W Show M-Lint results ™ Show fils caoverage M Shaw file listing
Parents (calling functions)
Filename | File Type | Calls
ode3 M-function | 1
Lines where the most time was spent
. Tuotal % Time
Line Murmher Code Calls Time Time Plat
146 rtol = odegetioptions, 'RelTol'... 0030s 176% 1WA
110 f0 = feval (ode,td,¥0,args{: ... 1 0o020s 118% M
94 end 1 Do020s 118% MW
g0 if (nargin(ode] == 2] e 1 0020s 118% M
13 if strecmp(solver,'odelSi') 2 0020 118% W
Other lines & 0.0B0s 353% N
owerhead
Totals 0170 s 100% hd
Rl | 3
S

Profiling for Improving Performance

Profile Detail Report Header

The detail report header includes the name of the function that was profiled,
the number of times it was called in the parent function, and the amount of
time it used.

The header includes a link that opens the function in your default text editor.

The header also includes a link that copies the report to a separate window.
Creating a copy of the report can be helpful when you make changes to the file,
run the Profiler for the updated file, and compare the Profiler detail reports for
the two runs. Do not make changes to M-files provided with MathWorks
products, that is, files in $matlabroot/toolbox directories.

Open file in default editor.

funfuniprivate\odearguments|(1 call, 0.140 sec)

Generated 0G-Apr-2004 15:47:04

M-function in file What10WAminightlymatlabMoolboxmatlabhunfuniprivatelodearguments. m
[Copy to new window for comparing multiple runs]

Copy this detail report to a new window.

Parent Files

To include the Parents section in the detail report, click the Show parent files
check box. This section of the report provides information about the parent
function, with a link to its detail report.

Parents (calling functions)

Click to open Filename File Type | Calls
parent detail)
report. ode?3 hi-function | 1

7-47

7 Tuning and Managing M-Files

Busy Lines

To include information about the lines of code that used the most amount of
processing time in the detail report, click the Show busy lines check box. Click
a line number to view that line of code in the source listing.

Click on line number to go to that line in the file.

Lines where the most time was spent

: Tuotal % Time
Line Number Code Calls e Tirne Plat
146 rtol = odegetjoptions, 'RelTol'... |1 00405 286% N
135 dataType = superiorfloat(td,¥0... 1 0020s 143% W
a4 end 1 D020s (143% W
13 if strcwpisolwer,'odel5i') 2 0020s 143% W
182 htry = abza(odegetioptions, 'Ini... 1 0010s | 7F.1% []
Other lines & 0030 s | 21 4% @
overhead
Totals 0.140 5 | 100%

Child Files

To include the Children section of the detail report, click the Show child files
check box. This section of the report lists all the functions called by the profiled
function. If the called function is an M-file, you can view the source code for the
function by clicking on its name.

7-48

Profiling for Improving Performance

Click to view detail report for file.

Children (called functions)

Filename

odeget

matlabilang

matlabistrun
matlabielmat
matlabidatafun
matlahiops
matlabidatatypes

double superiofloat

matlabhelfun

Totals

File Type
M-function
Builtin-function
Builtin-function
Builtin-function
Builtin-function
Builtin-function
Builtin-function
Wl-function

Builtin-function

Self time (built-ins, overhead, etc.)

Calls

5

Tatal Tirne

0.040 =

0.010 5

0=

0=

0.090 5

0.140 =

% Time | Time Flot

28.6%

7%

0%

0%

0%

0%

0%

0%

0%

B4.2%

100%

M-Lint Results

To include the M-Lint results section in the detail report display, click the
Show M-Lint results check box. This section of the report provides information

generated by M-Lint about the function.

M-Lint results
Click on line Line number
number to go »
to line in code. =

|"*-4
1]

Message

EXI53T with two input arguments is faster than with

EXI5T with two input argquments is faster than with

7-49

7 Tuning and Managing M-Files

7-50

File Coverage

To include the Coverage results section in the detail report display, click the
Show file coverage check box. This section of the report provides statistical
information about the number of lines in the code that executed during the
profile run.

Coverage results
| Show coverage for parent directory |

Tatal lines in file 186

Mon-code lines (comments, blank lines) | 26

Code lines (lines that can run) 137
Code lines that did run 52
Percentage of file Code lines that did not run B85
that executed during ——
profile run. Coverage (did run/can run) 3796 %

File Listing

To include the File listing section in the detail report display, click the Show
file listing check box. If the file is an M-file, the Profile Detail report includes
a column listing the execution time for a particular line, a column listing the
number of times the line was called, and the source code for the function.

In the file listing, comment lines appear in green, lines of code that executed
appear in black, and lines of code that did not execute appear in gray. If you
click a function name in the listing, you can view its detail report.

By default, the Profile Detail report uses color to highlight the lines of code
with the longest execution time. The darker the shade of color, the longer the
line of code took to execute. Using the menu in this section of the detail report
you can change this default and choose to highlight other lines of code in the
listing, such as the lines called the most, lines called out by M-Lint, or lines of
code that were (or were not) executed. Using this menu, you can also turn off
highlighting completely.

Profiling for Improving Performance

Select category of
code to highlight, or

File listing

Color highlight code according tnl'ﬁi"n'a "I

turn highlighting off:

time
time calls line numecalls
cowerage

noncowerage

mlint

none

O0DEARGUMENTS Helper function that processes argquments for

e

o

See also ODELL%, ODELSI, ODELSS, UDEZ3, ODEZ3S, ODEZST,

o

Mike Karr, Jacek EKEierzenka
Copyright 1984-2003 The MathWorks, Inc.
fRewvision: 1.12.4.4 § sDate: 2004703709 la:l6:40 §

e

o

Highlighted line

0.0z 2 13 if stremp(solwer, 'odelii')

1 11 if FenHandlesUsed % function handles used

The profile Function

The Profiler is based on the results returned by the profile function. This
section describes

¢ “profile Function Syntax Summary” on page 7-52

¢ “Example: Using the profile Function” on page 7-53

® “Accessing Profiler Results” on page 7-54

* “Saving Profile Reports” on page 7-56

7-51

7 Tuning and Managing M-Files

profile Function Syntax Summary

Here is a summary of the main forms of profile. For details about these and
other options, type doc profile Some people use profile simply to see the
child functions; see also depfun for that purpose.

Syntax Description
profile on Starts profile, clearing previously recorded
statistics.

profile on -detail Specifies the level of function to be profiled. Level
level can be either:

‘mmex ' —M-functions, M-subfunctions, and
MEX-functions

‘builtin'—M-functions, M-subfunctions,
MEX-functions, and built-ins

profile on -history Specifies that the exact sequence of function calls
is to be recorded.

profile off Suspends profile.

profile resume Restarts profile without clearing previously
recorded statistics.

profile clear Clears the statistics recorded by profile.

profile viewer Opens the Profiler, a graphical user interface and
displays the information gathered as an
HTML-formatted report.

Note: If you run the obsoleted syntax
profile report, the profile function calls this

syntax.
s = Displays a structure containing the current
profile('status') profile status.
stats = Suspends profile and displays a structure
profile('info') containing profile results.

7-52

Profiling for Improving Performance

Example: Using the profile Function
This example demonstrates how to run profile:

To start profile, type in the Command Window

profile on

Execute an M-file. This example runs the Lotka-Volterra predator-prey
population model. For more information about this model, type lotkademo,
which runs a demonstration.

[t,y] = ode23('lotka',[0 2],[20;20]);
Generate the profile report and display it in the Profiler window. This
suspends profile.

profile viewer

Restart profile, without clearing the existing statistics.

profile resume

The profile function is now ready to continue gathering statistics for any
more M-files you run. It will add these new statistics to those generated in
the previous steps.

Stop profile when you finish gathering statistics.

profile off

To view the profile data, call profile specifying the 'info' argument. The
profile function returns data in a structure.

p = profile('info')

FunctionTable: [27x1 struct]
FunctionHistory: [2x766 double]
ClockPrecision: 1.0000e-007

Name: 'MATLAB'
ClockSpeed: 1000

7-53

7 Tuning and Managing M-Files

7-54

7 To save the profile report, use the profsave function. This function stores

the profile information in separate HTML files, for each function listed in
the FunctionTable field of the structure, p.

profsave(p)

By default, profsave puts these HTML files in a subdirectory of the current
directory named profile results. You can specify another directory name
as an optional second argument to profsave.

Accessing Profiler Results

The profile function returns results in a structure. This example illustrates
how you can access these results:

1

To start profile, specifying the detail and history options, type in the
Command Window.

profile on -detail builtin -history

The detail option specifies that built-ins should be included in the profile
data. The history option specifies that the report include information about
the sequence of functions as they are entered and exited during profiling.

Execute an M-file. This example runs the Lotka-Volterra predator-prey
population model. For more information about this model, type lotkademo,
which runs a demonstration.

[t,y] = ode23('lotka',[0 2],[20;20]);

Get the structure containing profile results.

stats = profile('info')

stats =

FunctionTable: [34x1 struct]
FunctionHistory: [2x968 double]
ClockPrecision: 1.1111e-007
Name: 'MATLAB'
ClockSpeed: 1000

Profiling for Improving Performance

4 The FunctionTable field is an array of structures, where each structure
represents an M-function, M-subfunction, MEX-function, or, because the
builtin option is specified, MATLAB builtin function.

stats.FunctionTable

ans

41x1 struct array with fields:

FunctionName
FileName

Type

NumCalls

TotalTime
TotalRecursiveTime
Children

Parents
ExecutedLines

5 View one of the structures in the FunctionTable field.
stats.FunctionTable(3)

ans

FunctionName:
FileName:

Type:

NumCalls:
TotalTime:
TotalRecursiveTime:
Children:

Parents:
ExecutedLines:
IsRecursive:
AcceleratorMessages:

‘ode23'

[1x55 char]
‘M-function'
1

0.6810
0.6810

[11x1 struct]
[0x1 struct]
[132x4 double]
0

{1x0 cell}

7-55

7 Tuning and Managing M-Files

7-56

6 To view the history data generated by profile, view the FunctionHistory
field. The history data is a 2-by-n array. The first row contains Boolean
values where 1 means entrance into a function and 0 (zero) means exit from
a function. The second row identifies the function being entered or exited by
its index in the FunctionTable field. To see how to create a formatted
display of history data, see the example on the profile reference page.

Saving Profile Reports
To save the profile report, use the profsave function.

This function stores the profile information in separate HTML files, for each
function listed in the FunctionTable field of the structure, p.

profsave(p)

By default, profsave puts these HTML files in a subdirectory of the current
directory named profile results. You can specify another directory name as
an optional second argument to profsave.

profsave(p, ‘'mydir')

Publishing Results

Publishing to HTML, XML, LaTeX,
Word, and PowerPoint Using Cells
(p. 8-2)

Marking Up Text in Cells for
Publishing (p. 8-9)

Publishing M-Files Using Cells
(p. 8-15)

Notebook for Publishing to Word
(p. 8-18)

Defining MATLAB Commands as
Input Cells for Notebook (p. 8-23)

Evaluating MATLAB Commands with
Notebook (p. 8-27)

Printing and Formatting an M-Book
(p. 8-33)

Configuring Notebook (p. 8-39)
Notebook Feature Reference (p. 8-41)

Use cells to publish an M-file scripts to a popular output
format, including the code, comments, and results.

Prepare an M-file for publishing.

Publish the file and set preferences for publishing.
Create an M-book in Microsoft Word, enter commands,
and perform other basic tasks.

Make text in the M-book become a MATLAB command.
Run the MATLAB commands in the M-book.

Control styles and print M-books.

Set up Notebook for use with your version of Word.

Alphabetical listing of features.

8 Publishing Results

Publishing to HTML, XML, LaTeX, Word, and PowerPoint
Using Cells

¢ “Overview of Publishing” on page 8-2
¢ “Example of Publishing Without Text Markup” on page 8-3
¢ “Example of Publishing with Text Markup” on page 8-4

Overview of Publishing

When you have completed writing and debugging an M-file script, use the
Editor cell features to quickly publish the M-file and its results in any of
several presentation formats: HTML, XML, LaTeX, or, when the applications
are installed, Microsoft Word or PowerPoint. This allows you to share your
work with others, presenting not only the code, but also commentary on the
code and results from running the file.

Publishing features evaluate each cell in the M-file script and display the
contents of the cell along with the results in a nicely formatted document. For
example, published documents include output to the Command Window and
figures, and bold headings for each section of the file. The cells in the Editor
you use for publishing are the same ones you might already have used for
improving your code as described in “Rapid Code Iteration Using Cells” on
page 6-65.

If you are using the Help browser, watch the Publishing M Code from the
Editor video demo for an overview of the major functionality.

This is the overall process to publish an M-file using cell features in the Editor:

1 Enable cell mode and define cells as described in steps 1 through 3 in “Rapid
Code Iteration Using Cells” on page 6-65. For formatted publishing, all
comments must appear at the start of a cell, before the code. Comments
appearing after code in a cell appear as unformatted comments in code in the
output.

2 Use Cell -> Insert Text Markup to insert markup symbols in the M-file
comments to stylize the text for the presentation format, for example,
displaying selected text as bold or monospace. For details, see “Marking Up
Text in Cells for Publishing” on page 8-9.

8-2

Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells

3 Select File -> Publish To, and select the format in which you want to
publish the M-file: HTML, XML, LaTeX, Word, or PowerPoint. For details,

see “Publishing M-Files Using Cells” on page 8-15.

4 Change Editor/Debugger Publishing and Publishing Images preferences to
adjust the output. For example, you can choose to include or exclude the code
from the output. For details, see “Modifying Published Output Via

Preferences” on page 8-17.

MATLAB publishes the M-file by writing the cell titles, comment text, and code
to a file using the specified format. MATLAB also evaluates the cells and writes
the results of the evaluation to the output file as well. Any figures created
during the evaluation are saved as graphics files, and are shown with the
results.

Example of Publishing Without Text Markup
This is based on the M-file used in “Example—Evaluate Cells” on page 6-73, as

shown here.

B Editor - DAmymfiles\sine_wave.m
File Edit Text Cell Tools Debug Desktop Window Help ~ |2 x

Dﬁ|é¢:gnﬁ|§|ﬁ f_l@@lﬁ »m

Z (88 B| -Je +| sk x|k

= (e T, Y R 6 R N

%% Calculate and Plot Sine Wave
% Define the range for x.

% Calculate and plot ¥ = sin(x).
¥ = :0,125:6%pi;

¥ = sinix);

plotix,¥)

%% Modify Plot Properties
title('%ine Wawve' ['FontiWleight', 'bold')
xlabel('x']

ylabel('sin(=)")

set(gca, 'Colaor!' 'w')

set(gct, 'MenuEar', 'none']

| script Ln 1

col 2 |owr 4

8-3

8 Publishing Results

8-4

M-file published to
HTML format.

Publishing
automatically
generates a contents
listing with links to all
cell (section) titles.

Automatic
formatting makes
cell titles bold and
shows code in a
monospace font.

Results from
running the M-file
are included in the
published
document.

Select File -> Publish to HTML to produce the following result.

€'Web Browser - sine_wave - |O0]

File Edit “iew Go Debug Deskiop ‘Window Help

| x

= = {7 | & | #h | LDC&ﬂDr‘IZID:.l'mymfilesfrﬂmlisine_wave.Html

Contents

+ Calculate and Plot Sine Wave

+ Modify Plot Properties

¥ =
¥

o:

- Calculate and Plot Sine Wave

0.125:6%pi;

sin(x):

08

0.6

0.4

0.2

0.2

plot (%, 7]

Define the range for x. Calculate and plot y = sin(x).

~| BmB &0

Example of Publishing with Text Markup

This simple example adds text markup to the sine_wave.m file used in
“Example of Publishing Without Text Markup” on page 8-3 to produce the
following published HTML document. General instructions for marking up
M-files for publishing follow this example.

Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells

Add a title for the I

document.

Display comment lines
using TeX format.

Make selected

%'wWeb Browser - Plot Sine Wave
File Edit Yiew Go Debug Deskiop ‘Window Help

= = 7 | & | i |LDC&ﬂDr‘IZID:.l'mymfiles;‘rﬂmlisine_wawll ID LI

Plot Sine Wave
Calculate and plot a sine wawe.
Contents

+ Calculate and Plot Sine Wyave
+ Modify Plat Properties

Calculate and Plot Sine Wave
Define the range for x.

0 < 6w

Calculate snd plot v = sinix=).

comment text appear
in monospace.

Reduce the size of the
figure output in the
document using
Preferences for
Publishing Images.

¥ = 0:0.125:6%pi;
¥ = zin(x):
plotix,¥)

Modify Plot Properties

title('S3ine Wave','Fontleight', 'hold')

label('x')

Rl |

8 Publishing Results

8-6

1 Add an overall title for the published document
a Add a blank line at the top of the file.

b Select Cell -> Insert Text Markup -> Cell Title. MATLAB adds the

following in the new blank line and adds a blank line beneath it.

%% TITLE

The %% indicates the start of a new cell, where a cell is a section of an
M-file.

Type over the text TITLE, replacing it with Plot Sine Wave. Add a
comment about the overall file in line 2. Type

% Calculate and plot a sine wave.

and add a blank line beneath it for better readability.

You can add any overall comments about the file in the lines following the
this title. You cannot add code after the first title and before the next cell
(line starting with %%) if you want the first title to appear as the overall
document title.

2 Display equations in comments with symbols and Greek characters using
the TeX format. For a list of symbols you can display and the character
sequence to create them, see the String property on the MATLAB reference
page for graphics text properties.

a Position the cursor in the line 5, Define the range for x.

b Use text markup to insert a comment containing the equation

0<x<6m

Select Cell -> Insert Text Markup -> Insert TeX Equation.

MATLAB inserts the following lines that contain a sample equation you
will replace.

% $$e~{\pi i} + 1 = 0%$$

[
“©

The sample equation is the text between the set of $$, and is highlighted.

Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells

¢ Type the following TeX equation to replace the sample equation.
0 \leqg x \leq 6\pi
The three new lines that will display the TeX equation in the published
document appear as follows in the M-file.

[
“©

% $30 \leq x \leq 6\pi$$

[
“©

Display selected comment text in a monospaced font.

a Position the cursor in the comment in line 9
% Calculate and plot y = sin(x).
b To make the equationy = sin(x) appear in monospace in the published

document, add the | symbol before and after the equation so it appears
as follows.

% Calculate and plot |y = sin(x)]|.

To reduce the size of the resulting figure, select File -> Preferences ->
Editor/Debugger -> Publishing Images. In the Preferences dialog box, for
Resize image, select the check box Restrict height to and enter 200 for the
number of pixels. Click OK to close the dialog box.

Select File -> Save and Publish to HTML.

The HTML file displays in your system’s default browser, as shown at the
start of this example, “Example of Publishing with Text Markup” on
page 8-4

By default, MATLAB stores the HTML document, sine_wave.html, and the
associated image files in d: /mymfiles/html for this example.

8 Publishing Results

The file sine_wave.m now appears as shown in the following illustration.

& Editor - DAmymfiles\sine_wave.m
File Edit Text Cell Tools Debug Desktop Window Help ~ |2 x
D | tB2Bo - |S|6f 86 O >0
Z (82 8 -fo +[=Fk x | odf o
1 %% Flot Sine Wave |
2 % Calculate and plot a sine wave.
3
4 %% Calculate and Plot Sine Wave
5 % Define the range for x.
& %
7 5 550 Yleqg 6ypiss
g %
9 % Calculate and |plot ¥ = sinix)|.
10 = = = 0:0.125:6%pi;
11 = v = sini(x);
12 = plotix,¥)
13
14 %% Modify Plot Properties
it = titlel'Aine Wave','Fontlleight', 'hold')
16 = ®label('=')
17 = wlabel('sini=]"')
LEd = setigca, 'Color! ,'uw')
19 - szetfgef, 'MenuBar', 'none') .
2 LI
| seript Lh 13 co 1 [ovR 4

Marking Up Text in Cells for Publishing

Marking Up Text in Cells for Publishing

To publish an M-file and results, mark up the file using cell features. This adds
and formats comments for the published results. You can include the markup
as you write the basic code, mark up the file after you've written the code, or do
both. The markup applies to any of the available publishing options: HTML,
XML, LaTeX, Word, and PowerPoint.

Any cell features you use for evaluating and improving your code will be used
for publishing purposes as well. The “Example of Publishing Without Text
Markup” on page 8-3 shows how the cells used for improving an M-file appear
when the M-file is published. You might want to change the existing cells for
publishing purposes, but note that of course changes the cells for evaluation
purposes as well. For example, to use text markup and format comments in the
output document, the comments must appear at the start of a cell, before any
code.

Mark up comment text in one of two ways:

¢ Use Cell -> Insert Text Markup menu items to format the code, which
automatically inserts the markup symbols for you, or

® Type the markup symbols directly in the code. Note that what you type is the
same as the code that results if you instead use the equivalent menu item.

The following table describes each markup option and how to use it, and refers
to “Example of Publishing with Text Markup” on page 8-4.

8-9

8 Publishing Results

Format Menu ltem to Resulting Code Published Results
Produce Format (Cell
-> Insert Text
Markup -> Item)
Overall Cell Title %% TITLE Formatted as a top level
document . heading (h1 in HTML),
heading Add a blank line at Add any overall comments using a large bold font.

Section title
(also known
as a cell
title)

the top of the M-file,
select this menu
item, and replace
TITLE in the
resulting text with
the document
heading you want.

See step 1 in the
example.

Cell Title

Position the cursor at
the start of a cell,
select this menu
item, and replace
TITLE in the
resulting text with
the cell title you
want.

about the file in the lines
following this title. But do
not add code after the first
title and before the next
cell (line starting with %%
if you want the first title
to appear as the overall
document title.

In the example, it is

%% Plot Sine Wave

%% TITLE

In the example, these are

%% Calculate and Plot
Sine Wave

%% Modify Plot
Properties

Note that the title text
automatically appears in
bold in the M-file and in
the resulting published
document.

Formatted as a heading
(h2 in HTML), using a
medium size, bold font.

Note that the title text
automatically appears in
bold in the M-file and in
the resulting published
document.

8-10

Marking Up Text in Cells for Publishing

Format Menvu ltem to Resulting Code Published Results
Produce Format (Cell (Continued)
-> Insert Text
Markup -> Item)

Descriptive Descriptive Text % DESCRIPTIVE TEXT Text appears as a

text .. formatted comment in the
Position the cursor tout
where you want to output.
add a formatted _ Note that descriptive text
comment, select this must appear before the
menu item, and first line of code in a cell.
replace the resulting
DESCRIPTIVE TEXT
with your comment.

Bold text Bold Text % *Bold text* Text appears in bold.
Select the text within Bold text

a comment that you
want to appear in
bold and then select
this menu item.

If no text is selected,
inserts a new bold
comment with
sample text, and you
replace the sample
text.

8-11

8 Publishing Results

8-12

Format Menu ltem to Resulting Code Published Results
Produce Format (Cell (Continued)
-> Insert Text
Markup -> Item)
Monospaced Monospaced text % |Monospaced text| Text appears in
text monospace.

Select the text within
a comment that you
want to appear in a
monospaced font and
then select this menu
item. See step 3 in
the example.

If no text is selected,
inserts a new
monospaced
comment with
sample text, and you
replace the sample
text.

Monospaced text

Marking Up Text in Cells for Publishing

Format

Menu Item to
Produce Format (Cell
-> Insert Text
Markup -> Item)

Resulting Code

Published Results
(Continued)

Indented
text

Bullets

Preformatted Text

Position the cursor
before the line where
you want to add
indented text and
select this menu
item. Replace the
sample text inserted
with the text you
want, including tabs
and spaces.

A line of
preformatted text
must begin with a %
symbol, followed by
two or more spaces.

Bulleted List

Position the cursor
before the line where
you want to add a
bulleted list and
select this menu
item. Replace the
sample text inserted,
ITEM 1 and ITEM 2,
with the text you
want.

o°

Preformatted
Text

o° o°

o°

The blank comment lines
above and below the
preformatted lines
distinguish the lines in
between as preformatted.

o°

o°

* Itemi
* Item2

o°

o°

The blank comment lines
above and below the bullet
items, as well as the *
before each item,
distinguish the bulleted
list.

The indents, spacing, and
line lengths in the M-file
are preserved in the
output.

Preformatted

Text

Items appear in a
bulleted list.

® Ttemi
® Ttem2

8-13

8 Publishing Results

8-14

Format Menu ltem to Resulting Code Published Results
Produce Format (Cell (Continued)
-> Insert Text
Markup -> Item)

Equations TeX Equation % Equation and symbols

and symbols

Links (for
HTML
output)

Position the cursor
before the line where
you want to add an
equation or symbols
and select this menu
item. Replace the
sample text inserted,
e~{\pi i} + 1 =0,
with the TeX
equation you want.
See step 2 in the
example.

For a list of symbols
you can display and
the character
sequence to create
them, see the String

property on MATLAB

graphics reference
page for text
properties.

Enter comment text
that includes a valid
Internet address.

o°

$$e~{\pi i} + 1 = 0$$%

o°

The blank comment lines
above and below the
equation line, as well as
the $$ before and after the
equation text, distinguish
the TeX equation.

% http://www.
mathworks.com

appear in TeX output
format.
eM+1 =0

http://www.mathworks.
com

Publishing M-Files Using Cells

Publishing M-Files Using Cells

When you publish an M-file that contains cells and text markup, MATLAB
produces an output document consisting of the M-file code, comments, and
results.

How to Publish an M-File

After adding cells and text markup to an M-file, select File -> Publish To and
select an output format from those listed in the menu: HTML, XML, LaTeX,
Word, or PowerPoint. If the M-file contains unsaved changes, the menu item
becomes Save and Publish To.

You can also publish to the default output format using the publish button &
in the Editor toolbar.

MATLAB displays the published document in the appropriate tool for the
selected output format:

e HTML displays in your system’s default Web browser.

e XML displays in the MATLAB Editor.

e LaTeX displays in the MATLAB Editor.

e Word displays in Microsoft Word.

® PowerPoint displays in Microsoft PowerPoint.

Note Publishing to Microsoft Word and to PowerPoint features are available
only on Windows and Macintosh systems that have the applications installed.

The published file contains the formatted comments, code including syntax
highlighting, and results (in gray to distinguish it from code) for each cell, and
for all cells in the M-file. When code produces a figure, the last figure generated
in a cell appears in the published file. It also contains a Contents heading at
the top of the file with a bulleted list of links to the named cells in the rest of
the document.

8-15

8 Publishing Results

8-16

Function Alternative

From the Command Window, run the publish function to run the M-file and
publish the results. See the reference page for options you can set.

About Published M-Files

Published Filenames and Locations

MATLAB names the published file the same as the M-file that produced it,
adding the relevant extension for the selected output format: .html, .xml,
.tex, .doc, or .ppt. MATLAB stores this output file, along with supporting
files such as images of figure windows, in the html subdirectory under the
directory containing the M-file you published.

For example, when you publish d: /mymfiles/sine_wave.m to HTML,
MATLAB creates a directory d: /mymfiles/html that includes the published
document sine_wave.html. Any figure windows produced by running the
M-file appears as an image file in the directory, for example,
sine_wave_img.png. TeX equations are image files as well: in the example, the
equation file is sine_wave_eq_eg####.png. In addition, MATLAB creates a
thumbnail file for the document, sine_wave _img thumbnail.png in the
example, used in the Visual Directory in the Current Directory browser.

Publishing M-Files Using Cells

Publishing Code that Displays Hyperlinks in Command Window

If the M-file you publish contains statements that display hyperlinks in the
MATLAB Command Window, the published document shows the code rather
than the hyperlinks.

For example

disp('Link to MathWorks"')

displays

Link to Mathllorks

in the Command Window. You can click the link to go to the MathWorks Web
site. When that disp statement is in an M-file you publish, the hyperlink tag
and the text between it, that is,

Link to MathWorks
rather than the link, appears in the published document.
Similarly results occur if you include

help matlab_functioname

in an M-file.

Modifying Published Output Via Preferences

Use preferences to control execution, output, and options related to images
created during publishing. For details about these preferences, click the Help
button in the Preferences dialog box for those panes to view the following
sections in the online documentation:

¢ “Publishing Preferences for the Editor/Debugger”

¢ “Publishing Images Preferences for the Editor/Debugger”

8-17

8 Publishing Results

Notebook for Publishing to Word

8-18

Notebook allows you to access the numeric computation and visualization
software of MATLAB from within the word processing environment, Microsoft
Word. Using Notebook, you can create a document, called an M-book, that
contains text, MATLAB commands, and the output from MATLAB commands.

You can think of an M-book as a record of an interactive MATLAB session
annotated with text, or as a document embedded with live MATLAB commands
and output. Notebook is useful for creating electronic or printed records of
MATLAB sessions, class notes, textbooks or technical reports. This section
introduces basic Notebook capabilities:

¢ “Creating an M-Book” on page 8-18

¢ “Entering MATLAB Commands in an M-Book” on page 8-21

¢ “Protecting the Integrity of Your Workspace in M-Books” on page 8-22

¢ “Ensuring Data Consistency in M-Books” on page 8-22

Note Notebook is available only on Windows and Macintosh systems that
have Microsoft Word installed.

Creating an M-Book

This section includes

¢ “Creating an M-Book from MATLAB” on page 8-19

¢ “Creating an M-Book While Running Notebook” on page 8-20
¢ “Opening an Existing M-Book” on page 8-20

¢ “Converting a Word Document to an M-Book” on page 8-21

Notebook for Publishing to Word

Creating an M-Book from MATLAB
To create a new M-book from within MATLAB, type

notebook

at the prompt. If you are running Notebook for the first time, you may need to
configure it. See “Configuring Notebook” on page 8-39 for more information.

Notebook starts Microsoft Word on your system and creates a new M-book,
called Document1.

When Word is opening, if a dialog box appears asking you to enable or disable
macros, choose to enable macros. Notebook defines Microsoft Word macros that
enable MATLAB to interpret the different types of cells that hold MATLAB
commands and their output. For more information on macro security, see
“Configuring Notebook” on page 8-39.

Notebook adds the Notebook menu to the Word menu bar. Use this menu,
illustrated below, to access Notebook features.

JEiIe Edit “iew |nsert Format Tools Table | Notebook Window Help x|
EE SRR SR B AU Define Input Cell

Define Autolnit Cell

Define Calc Zone

Undefine Cells

Purge Selected Dutput Cells

Group Cells

Ungroup Cells

Hide Cell Markers

Toggle Graph Output far Cell

Evaluate Cell
Evaluate Calc Zone
Evaluate M-book

Ewvaluate Loop

Bring MATLAE to Front
Motebook Options. .

I:IIBIEIIEI(I I

| Page 1 Sec 1 11 |aE 1" Lm 1

8-19

8 Publishing Results

8-20

Creating an M-Book While Running Notebook
With Notebook running, you can create a new M-book by selecting New
M-book from the Word File menu.

Opening an Existing M-Book
You can use the notebook command to open an existing M-book
notebook filename

where filename is the M-book you want to open, or you can simply double-click
an M-book file in a Windows file management tool, such as Explorer.

@l Document! - Microsoft Word

Jlﬁ Edit Yiew Insert Format Tools Table MNotebook Window Help =]
-[D [ew.. OeN [-2 g %
= Open... Ctrl+0
Close
H Save Cirl+3
Save AS..
Sawve as Weh Page...
YErsions...

YWieh Pacge Preview

Fage Setup...
@, Print Presdiew
&5 Print... Cirl+P
F3
Send Ta 4 <@
[Froperies 5 z
[Eat [1" n1 cot | [ReC [RE BT VR [

When you double-click on an M-book, Microsoft Word opens the M-book and
starts MATLAB if it is not already running. Notebook adds the Notebook
menu to the Word menu bar and adds New M-book to the File menu.

Notebook for Publishing to Word

Converting a Word Document to an M-Book
To convert a Word document to an M-book, follow these steps:

1 Create a new M-book.
2 From the Insert menu, select the File.
3 Select the file you want to convert.

4 (Click OK.

Entering MATLAB Commands in an M-Book

Note A good way to learn how to use Notebook is to open the sample M-book,
Readme.doc, and try out the various techniques described in this section. You
can find this file in the $matlabroot/notebook/pc directory.

You enter MATLAB commands in an M-book the same way you enter text in
any other Word document. For example, you can enter the following text in a
Word document. The example uses text in Courier Font but you can use any

font:

Here is a sample M-book.
a = magic(3)
To execute the MATLAB magic command in this document, you must

¢ Define the command as an input cell

¢ Evaluate the input cell

MATLAB displays the output of the command in the Word document in an
output cell.

8-21

8 Publishing Results

8-22

Protecting the Integrity of Your Workspace in
M-Books

When you work on more than one M-book in a single word processing session,
note that:

¢ Each M-book uses the same “copy” of MATLAB.

¢ All M-books share the same workspace.

If you use the same variable names in more than one M-book, data used in one
M-book can be affected by another M-book. You can protect the integrity of your
workspace by specifying the clear command as the first autoinit cell in the
M-book.

Ensuring Data Consistency in M-Books

An M-book can be thought of as a sequential record of a MATLAB session.
When executed in order, from the first MATLAB command to the last, the
M-book accurately reflects the relationships among these commands.

If, however, you change an input cell or output cell as you refine your M-book,
Notebook does not automatically recalculate input cells that depend on either
the contents or the results of the changed cells. As a result, the M-book may
contain inconsistent data.

When working on an M-book, you might find it useful to select Evaluate
M-book periodically to ensure that your M-book data is consistent. You could
also use calc zones to isolate related commands in a section of the M-book. You
can then use Evaluate Calc Zone to execute only those input cells contained
in the calc zone.

Debugging and Notebook

Do not use debugging functions or use the Editor/Debugger while evaluating
cells with Notebook. Instead debug M-files from within MATLAB, and then
after completing debugging, clear all the breakpoints and access the M-file via
Notebook. If you debug while evaluating from Notebook, you might experience
problems with MATLAB.

Defining MATLAB Commands as Input Cells for Notebook

Defining MATLAB Commands as Input Cells for Notebook

To define a MATLAB command in a Word document as an input cell:

1 Type the command into the M-book as text. For example,

This is a sample M-book.
a = magic(3)

2 Position the cursor anywhere in the command and select Notebook ->
Define Input Cell or press Alt+D. If the command is embedded in a line of
text, use the mouse to select it. Notebook defines the MATLAB command as
an input cell:

This is a sample M-book.

[a = magic(3)]

Note how Notebook changes the character font of the text in the input cell to a
bold, dark green color and encloses it within cell markers. Cell markers are
bold, gray brackets. They differ from the brackets used to enclose matrices by
their size and weight. For information about changing these default formats,
see “Modifying Styles in the M-Book Template” on page 8-33.

For information about defining other types of input cells, see

¢ “Defining Cell Groups for Notebook” on page 8-23

¢ “Defining Autoinit Input Cells for Notebook” on page 8-25

¢ “Defining Calc Zones for Notebook” on page 8-25

¢ “Converting an Input Cell to Text with Notebook” on page 8-26

For information about evaluating the input cells you define, see “Evaluating
MATLAB Commands with Notebook” on page 8-27.

Defining Cell Groups for Notebook

You can collect several input cells into a single input cell. This is called a cell
group. Because all the output from a cell group appears in a single output cell
that Notebook places immediately after the group, cell groups are useful when
several MATLAB commands are needed, such as, to fully define a graphic.

8-23

8 Publishing Results

8-24

For example, if you define all the MATLAB commands that produce a graphic
as a cell group and then evaluate the cell group, Notebook generates a single
graphic that includes all the graphic components defined in the commands. If
instead you define all the MATLAB commands that generate the graphic as
separate input cells, evaluating the cells generates multiple graphic output
cells.

See “Evaluating Cell Groups with Notebook” on page 8-28 for information
about evaluating a cell group. For information about undefining a cell group,
see “Ungroup Cells” on page 8-47.

Creating a Cell Group for Notebook

To create a cell group:
1 Use the mouse to select the input cells that are to make up the group.

2 Select Notebook -> Group Cells or press Alt+G.

Notebook converts the selected cells into a cell group and replaces cell markers
with a single pair that surrounds the group:

This is a sample cell group.

[date
a = magic(3)]

Note the following:

¢ A cell group cannot contain output cells. If the selection includes output cells,
Notebook deletes them.

¢ A cell group cannot contain text. If the selection includes text, Notebook
places the text after the cell group. However, if the text precedes the first
input cell in the selection, Notebook leaves it where it is.

¢ If you select part or all of an output cell but not its input cell, Notebook
includes the input cell in the cell group.

When you create a cell group, Notebook defines it as an input cell unless its
first line is an autoinit cell, in which case Notebook defines the group as an
autoinit cell.

Defining MATLAB Commands as Input Cells for Notebook

Defining Autoinit Input Cells for Notebook

You can use autoinit cells to specify MATLAB commands to be automatically
evaluated each time an M-book is opened. This is a quick and easy way to
initialize the workspace. Autoinit cells are simply input cells with the following
additional characteristics:

* Notebook evaluates the autoinit cells when it opens the M-book.

® Notebook displays the commands in autoinit cells using dark blue
characters.

Autoinit cells are otherwise identical to input cells.

Creating an Autoinit Cell for Notebook
You can create an autoinit cell in two ways:

¢ Enter the MATLAB command as text, then convert the command to an
autoinit cell by selecting Notebook -> Define Autolnit Cell.

¢ If you already entered the MATLAB command as an input cell, you can
convert the input cell to an autoinit cell. Either select the input cell or
position the cursor in the cell, then select Notebook -> Define Autolnit Cell.

See “Evaluating MATLAB Commands with Notebook” on page 8-27 for
information about evaluating autoinit cells.

Defining Calc Zones for Notebook

You can partition an M-book into self-contained sections, called calc zones. A
calc zone is a contiguous block of text, input cells, and output cells. Notebook
inserts Microsoft Word section breaks before and after the section to define the
calc zone. The section break indicators include bold, gray brackets to
distinguish them from standard Word section breaks.

You can use calc zones to prepare problem sets, making each problem a
separate calc zone that can be created and tested on its own. An M-book can
contain any number of calc zones.

Note Using calc zones does not affect the scope of the variables in an M-book.
Variables used in one calc zone are accessible to all calc zones.

8-25

8 Publishing Results

8-26

Creating a Calc Zone

After you create the text and cells you want to include in the calc zone, you
define the calc zone by following these steps:

1 Select the input cells and text to be included in the calc zone.

2 Select Notebook -> Define Calc Zone.

Note You must select an input cell and its output cell in their entirety to
include them in the calc zone.

See “Evaluating a Calc Zone with Notebook” on page 8-30 for information
about evaluating a calc zone.

Converting an Input Cell to Text with Notebook
To convert an input cell (or an autoinit cell or a cell group) to text:

1 Select the input cell with the mouse or position the cursor in the input cell.

2 Select Notebook -> Undefine Cells or press Alt+U.

When Notebook converts the cell to text, it reformats the cell contents
according to the Microsoft Word Normal style. For more information about
M-book styles, see “Modifying Styles in the M-Book Template” on page 8-33.
When you convert an input cell to text, Notebook also converts the
corresponding output cell to text.

Evaluating MATLAB Commands with Notebook

Evaluating MATLAB Commands with Notebook

After you define a MATLAB command as an input cell, or as an autoinit cell,
you can evaluate it in your M-book. Use the following steps to define and
evaluate a MATLAB command:

1 Type the command into the M-book as text. For example:

This is a sample M-book
a = magic(3)

2 Position the cursor anywhere in the command. If the command is embedded
in a line of text, use the mouse to select it. Then select Notebook -> Define
Input Cell or press Alt+D.

Notebook defines the MATLAB command as an input cell. For example:

This is a sample M-book
[a = magic(3)]

3 Specify the input cell to be evaluated by selecting it with the mouse or by
placing the cursor in it. Then select Notebook -> Evaluate Cell or press
Ctrl+Enter.

Notebook evaluates the input cell and displays the results in a output cell
immediately following the input cell. If there is already an output cell,
Notebook replaces its contents, wherever it is in the M-book. For example:

This is a sample M-book.

[a = magic(3)]
[a =
8 1 6
3 5 7
4 9 2]

8-27

8 Publishing Results

8-28

The text in the output cell is blue and is enclosed within cell markers. Cell
markers are bold, gray brackets. They differ from the brackets used to enclose
matrices by their size and weight. Error messages appear in red. For
information about changing these default formats, see “Modifying Styles in the
M-Book Template” on page 8-33.

For more information about evaluating MATLAB commands in an M-book, see

¢ “Evaluating Cell Groups with Notebook” on page 8-28

¢ “Evaluating a Range of Input Cells with Notebook” on page 8-29
¢ “Evaluating a Calc Zone with Notebook” on page 8-30

¢ “Evaluating an Entire M-Book” on page 8-30

¢ “Using a Loop to Evaluate Input Cells Repeatedly with Notebook” on
page 8-31.

¢ “Converting Output Cells to Text with Notebook” on page 8-32

¢ “Deleting Output Cells with Notebook” on page 8-32

Evaluating Cell Groups with Notebook

You evaluate a cell group the same way you evaluate an input cell (because a
cell group is an input cell):

1 Position the cursor anywhere in the cell or in its output cell.

2 Select Notebook -> Evaluate Cell or press Ctrl+Enter.

For information about creating a cell group, see “Defining Cell Groups for
Notebook” on page 8-23.

When MATLAB evaluates a cell group, the output for all commands in the
group appears in a single output cell. By default, Notebook places the output
cell immediately after the cell group the first time the cell group is evaluated.
If you evaluate a cell group with an existing output cell, Notebook places the
results in the output cell wherever it is located in the M-book.

Note Text or numeric output always comes first, regardless of the order of
the commands in the group.

Evaluating MATLAB Commands with Notebook

The illustration shows a cell group and the figure created when you evaluate
the cell group.

This is a sample M-book with a cell group.

k= 0:pi/100:2%pi;
¥ = sin(t);
plot(t,v)]

qz2F

A4

A5

Evaluating a Range of Input Cells with Notebook

To evaluate more than one MATLAB command contained in different but
contiguous input cells:

1 Select the range of cells that includes the input cells you want to evaluate.
You can include text that surrounds input cells in your selection.

2 Select Notebook -> Evaluate Cell or press Ctrl+Enter.

Notebook evaluates each input cell in the selection, inserting new output cells
or replacing existing ones.

8-29

8 Publishing Results

8-30

Evaluating a Calc Zone with Notebook
To evaluate a cale zone:

1 Position the cursor anywhere in the calc zone.

2 Select Notebook -> Evaluate Calc Zone or press Alt+Enter.

For information about creating a calc zone, see “Defining Calc Zones for
Notebook” on page 8-25.

By default, Notebook places the output cell immediately after the calc zone the
first time the calc zone is evaluated. If you evaluate a calc zone with an existing
output cell, Notebook places the results in the output cell wherever it is located
in the M-book.

Evaluating an Entire M-Book
To evaluate the entire M-book, either select Notebook -> Evaluate M-book or
press Alt+R.

Notebook begins at the top of the M-book regardless of the cursor position and
evaluates each input cell in the M-book. As it evaluates the M-book, Notebook
inserts new output cells or replaces existing output cells.

Controlling Execution of Multiple Commands

When you evaluate an entire M-book, and an error occurs, evaluation
continues. If you want to stop evaluation if an error occurs, follow this
procedure:

1 Select Notebook -> Notebook Options.
The Notebook Options dialog box opens.

2 Select the Stop evaluating on error check box and click OK.

Evaluating MATLAB Commands with Notebook

Using a Loop to Evaluate Input Cells Repeatedly
with Notebook

To evaluate a sequence of MATLAB commands repeatedly:

1 Use the mouse to select the input cells, including any text or output cells
located between them.

2 Select Notebook -> Evaluate Loop or press Alt+L. Notebook displays the
Evaluate Loop dialog box.

Evaluate Loop

Loop Counk: 0

Stop After: IlD
Loop Speed: Slower | Faster |

Pause | Close |

3 Enter the number of times you want MATLAB to evaluate the selected
commands in the Stop After field, then click Start. The button changes to
Stop. Notebook begins evaluating the commands and indicates the number
of completed iterations in the Loop Count field.

You can increase or decrease the delay at the end of each iteration by clicking
Slower or Faster. Slower increases the delay. Faster decreases the delay.

To suspend evaluation of the commands, click Pause. The button changes to
Resume. Click Resume to continue evaluation.

To stop processing the commands, click Stop. To close the Evaluate Loop
dialog box, click Close.

8-31

8 Publishing Results

8-32

Converting Output Cells to Text with Notebook

You can convert an output cell to text by undefining cells. If the output is
numeric or textual, Notebook removes the cell markers and converts the cell
contents to text according to the Microsoft Word Normal style. If the output is
graphical, Notebook removes the cell markers and dissociates the graphic from
its input cell, but does not alter its contents.

Note Undefining an output cell does not affect the associated input cell.

To undefine an output cell:

1 Select the output cell you want to undefine.

2 Select Notebook -> Undefine Cells or press Alt+U.

Deleting Output Cells with Notebook

To delete output cells:

1 Select an output cell, using the mouse, or place the cursor in the output cell.

2 Select Notebook -> Purge Selected Output Cells or press Alt+P.

If you select a range of cells, Notebook deletes all the output cells in the selected
range, but any associate input cells remain intact.

Printing and Formatting an M-Book

Printing and Formatting an M-Book

This section describes

¢ “Printing an M-Book” on page 8-33

* “Modifying Styles in the M-Book Template” on page 8-33

® “Choosing Loose or Compact Format for Notebook” on page 8-34
¢ “Controlling Numeric Output Format for Notebook” on page 8-35
¢ “Controlling Graphic Output for Notebook” on page 8-35

Printing an M-Book

You can print all or part of an M-book by selecting File -> Print. Word follows
these rules when printing M-book cells and graphics:

¢ Cell markers are not printed.

¢ Input cells, autoinit cells, and output cells (including error messages) are
printed according to their defined styles. If you prefer to print these cells
using black type instead of colors or shades of gray, you can modify the styles.

Modifying Styles in the M-Book Template

You can control the appearance of the text in your M-book by modifying the
predefined styles stored in the M-book template. These styles control the
appearance of text and cells. By default, M-books use the Word Normal style
for all other text.

For example, if you print an M-book on a color printer, input cells appear dark
green, output and autoinit cells appear dark blue, and error messages appear
red. If you print the M-book on a grayscale printer, these cells appear as shades
of gray. To print these cells using black type, you need to modify the color of the
Input, Output, Autolnit, and Error styles in the M-book template.

The table below describes the default styles used by Notebook. If you modify
styles, you can use the information in the tables below to help you return the
styles to their original settings. For general information about using styles in
Word documents, see the Word documentation.

8-33

8 Publishing Results

8-34

Style Font Size Weight Color
Normal Times New Roman 10 points N/A Black
Autolnit Courier New 10 points Bold Dark blue
Error Courier New 10 points Bold Red

Input Courier New 10 points Bold Dark green
Output Courier New 10 points N/A Blue

When you change a style, Word applies the change to all characters in the
M-book that use that style and gives you the option to change the template. Be
cautious about making changes to the template. If you choose to apply the
changes to the template, you will affect all new M-books you create using the
template. See the Word documentation for more information.

Choosing Loose or Compact Format for Notebook

You can specify whether a blank line appears between the input and output
cells by selecting the loose or compact format:

1 Select Notebook -> Notebook Options.

2 In the Notebook Options dialog box, select either Loose or Compact. Loose
format adds an empty line. Compact format does not.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for output generated after you click OK. To affect existing input or output
cells, you must reevaluate the cells.

Printing and Formatting an M-Book

Controlling Numeric Output Format for Notebook

To change how Notebook displays numeric output:
1 Select Notebook -> Notebook Options.

2 In the Notebook Options dialog box, select a format from the Numeric
Format list. These settings correspond to the choices available with the
MATLAB format command.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for output generated after you click OK. To affect existing input or output
cells, you must reevaluate the cells.

Controlling Graphic Output for Notebook

This section describes how to control several aspects of the graphic output

produced by MATLAB commands in an M-book, including

¢ “Embedding Graphic Output in the M-Book” on page 8-36

¢ “Suppressing Graphic Output for Individual Input Cells in Notebook” on
page 8-37

¢ “Sizing Graphic Output in Notebook” on page 8-37

¢ “Cropping Graphic Output in Notebook” on page 8-38

¢ “Adding White Space Around Graphic Output in Notebook” on page 8-38

¢ “Specifying Color Mode in Notebook” on page 8-38

8-35

8 Publishing Results

8-36

Embedding Graphic Output in the M-Book

By default, graphic output is embedded in an M-book. To display graphic
output in a separate figure window:

1 Select Notebook -> Notebook Options.

2 In the Notebook Options dialog box, clear the Embed Figures in M-book
check box.

~Figure Opkions
[w Embed Figures in M-book:

™ Use 16-Color Figures

Units IInches - I

width [+
Height [3.5
3 Click OK.

Note Embedded figures do not include Handle Graphics objects generated by
the uicontrol and uimenu functions.

Notebook determines whether to embed a figure in the M-book by examining
the value of the figure object’s Visible property. If the value of the property is
off, Notebook embeds the figure. If the value of this property is on, all graphic
output is directed to the current figure window.

Printing and Formatting an M-Book

Suppressing Graphic Output for Individual Input Cells in Notebook

If an input or autoinit cell generates figure output that you want to suppress:
1 Place the cursor in the input cell.

2 Select Notebook -> Toggle Graph Output for Cell.
Notebook suppresses graphic output from the cell, inserting the string (no
graph) after the input cell.

To allow graphic output for a cell, repeat the procedure. Notebook removes the
(no graph) marker and allows graphic output from the cell.

Note Toggle Graph Output for Cell overrides the Embed Figures in
M-book option, if that option is set.

Sizing Graphic Output in Notebook
To set the default size of embedded graphics in an M-book:

1 Select Notebook -> Notebook Options.

2 In the Notebook Options dialog box, use the Units, Height, and Width
fields to set the size of graphics generated by the M-book.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for graphic output generated after you click OK. To affect existing input or
output cells, you must reevaluate the cells.

You change the size of an existing embedded figure by selecting the figure,
clicking the left mouse button anywhere in the figure, and dragging the resize
handles of the figure. If you resize an embedded figure using its resize handles
and then regenerate the figure, its size reverts to its original size.

8-37

8 Publishing Results

8-38

Cropping Graphic Output in Notebook

To crop an embedded figure to cut off areas you do not want to show:
1 Select the graphic by clicking the left mouse button anywhere in the figure.
2 Hold down the Shift key.

3 Drag a sizing handle toward the center of the graphic.

Adding White Space Around Graphic Output in Notebook

You can add white space around an embedded figure by moving the boundaries
of a graphic outward. Select the graphic, then hold down the Shift key and drag
a sizing handle away from the graphic.

Specifying Color Mode in Notebook

If you print graphic output that includes surfaces or patches, the output uses
16-color mode by default. To use 256-color mode:

1 Select Notebook -> Notebook Options.

2 Clear the Use 16-Color Figures check box in the Notebook Options dialog
box.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for graphic output generated after you click OK. To affect existing input or
output cells, you must reevaluate the cells.

Configuring Notebook

Configuring Notebook

After you install Notebook but before you begin using it, you must configure it.
(Notebook is installed as part of the MATLAB installation process. For more
information, see the MATLAB installation documentation for your platform.)

In Word versions for Office 2000 or higher, before configuring Notebook, you

must specify that Word can use the Notebook macros. Do either of the
following:

¢ Set the macro security level to medium. In Word, select Tools -> Macros ->
Security, and in the resulting dialog box, choose Medium.

¢ After launching Notebook, when Word first opens, a security warning dialog
box appears. In the dialog box, select Always trust macros from this

source. This allows you to use Notebook, but still maintain a high security
level for other macros you use in Word.

To configure Notebook:

1 In the MATLAB command window, type

notebook -setup

Notebook prompts you to specify which version of Microsoft Word you are
using.

Welcome to the utility for setting up the MATLAB Notebook for
interfacing MATLAB to Microsoft Word

Choose your version of Microsoft Word:
[1] Microsoft Word 97

[2] Microsoft Word 2000

[3] Microsoft Word 2002 (XP)

[4] Microsoft Word 2003 (XP)

[5] Exit, making no changes

Microsoft Word Version:

8-39

8 Publishing Results

2 Type the number that corresponds to your version. For example, type 3 if you
have Microsoft Word 2002 XP.

Notebook performs the setup. If Notebook cannot find all of the necessary
files, it will prompt you to specify the locations of the files, including the
Microsoft Word executable (winword.exe) and the template file
(normal.dot).

When setup is complete, the following message appears:

Notebook setup is complete.

8-40

Notebook Feature Reference

Notebook Feature Reference

This section provides reference information about each of the Notebook
features, listed alphabetically. To use these features, select them from the
Notebook menu:

¢ “Bring MATLAB to Front” on page 8-41

¢ “Define Autoinit Cell” on page 8-41

¢ “Define Calc Zone” on page 8-42

¢ “Define Input Cell” on page 8-42

¢ “Evaluate Calc Zone” on page 8-43

¢ “Evaluate Cell” on page 8-43

¢ “Evaluate Loop” on page 8-44

¢ “Evaluate M-Book” on page 8-44

¢ “Group Cells” on page 8-44

¢ “Hide Cell Markers” on page 8-45

® “Notebook Options” on page 8-45

¢ “Purge Selected Output Cells” on page 8-45

® “Toggle Graph Output for Cell” on page 8-46

¢ “Undefine Cells” on page 8-46

¢ “Ungroup Cells” on page 8-47

Bring MATLAB to Front

Bring MATLAB to Front brings the MATLAB Command Window to the
foreground.

Define Autoinit Cell

Define Autolnit Cell creates an autoinit cell by converting the current
paragraph, selected text, or input cell. An autoinit cell is an input cell that is
automatically evaluated whenever you open an M-book.

8-41

8 Publishing Results

8-42

Result. If you select this feature while the cursor is in a paragraph of text,
Notebook converts the entire paragraph to an autoinit cell. If you select this
feature while text is selected, Notebook converts the text to an autoinit cell. If
you select this feature while the cursor is in an input cell, Notebook converts
the input cell to an autoinit cell.

Format. Notebook formats the autoinit cell using the Autolnit style, defined as
bold, dark blue, 10-point Courier New.

See Also. For more information about autoinit cells, see “Defining Autoinit
Input Cells for Notebook” on page 8-25.

Define Calc Zone

Define Calc Zone defines the selected text, input cells, and output cells as a
calc zone. A calc zone is a contiguous block of related text, input cells, and
output cells that describes a specific operation or problem.

Result. Notebook defines a calc zone as a Word document section, placing
section breaks before and after the calc zone. However, Word does not display
section breaks at the beginning or end of a document.

See Also. For information about evaluating calc zones, see “Evaluating a Calc
Zone with Notebook” on page 8-30. For more information about document
sections, see the Microsoft Word documentation.

Define Input Cell

Define Input Cell creates an input cell by converting the current paragraph,
selected text, or autoinit cell. An input cell contains a MATLAB command.

Result. If you select this feature while the cursor is in a paragraph of text,
Notebook converts the entire paragraph to an input cell. If you select this
feature while text is selected, Notebook converts the text to an input cell.

If you select this feature while the cursor is in an autoinit cell, Notebook
converts the autoinit cell to an input cell.

Format. Notebook encloses the text in cell markers and formats the cell using
the Input style, defined as bold, dark green, 10-point Courier New.

Notebook Feature Reference

See Also. For more information about creating input cells, see “Defining
MATLAB Commands as Input Cells for Notebook” on page 8-23. For
information about evaluating input cells, see “Evaluating MATLAB
Commands with Notebook” on page 8-27.

Evaluate Calc Zone

Evaluate Calc Zone sends the input cells in the current calc zone to MATLAB
to be evaluated. A calc zone is a contiguous block of related text, input cells, and
output cells that describes a specific operation or problem.

The current cale zone is the Word section that contains the cursor.

Result. As Notebook evaluates each input cell, it generates an output cell. When
you evaluate an input cell for which there is no output cell, Notebook places the
output cell immediately after the input cell that generated it. If you evaluate
an input cell for which there is an output cell, Notebook replaces the results in
the output cell wherever it is in the M-book.

See Also. For more information, see “Evaluating a Calc Zone with Notebook” on
page 8-30.

Evaluate Cell

Evaluate Cell sends the current input cell or cell group to MATLAB to be
evaluated. An input cell contains a MATLAB command. A cell group is a single,
multiline input cell that contains more than one MATLAB command. Notebook
displays the output or an error message in an output cell.

Result. If you evaluate an input cell for which there is no output cell, Notebook
places the output cell immediately after the input cell that generated it. If you
evaluate an input cell for which there is an output cell, Notebook replaces the
results in the output cell wherever it is in the M-book. If you evaluate a cell
group, all output for the cell appears in a single output cell.

An input cell or cell group is the current input cell or cell group if

¢ The cursor is in the input cell or cell group.

¢ The cursor is at the end of the line that contains the closing cell marker for
the input cell or cell group.

¢ The cursor is in the output cell for the input cell or cell group.

¢ The input cell or cell group is selected.

8-43

8 Publishing Results

8-44

Note Evaluating a cell that involves a lengthy operation may cause a
time-out. If this happens, Word displays a time-out message and asks whether
you want to continue waiting for a response or terminate the request. If you
choose to continue, Word resets the time-out value and continues waiting for a
response. Word sets the time-out value; you cannot change it.

See Also. For more information, see “Evaluating MATLAB Commands with
Notebook” on page 8-27. For information about evaluating the entire M-book,
see “Evaluating an Entire M-Book” on page 8-30.

Evaluate Loop
Evaluate Loop evaluates the selected input cells repeatedly.

For more information, see “Using a Loop to Evaluate Input Cells Repeatedly
with Notebook” on page 8-31.

Evaluate M-Book

Evaluate M-book evaluates the entire M-book, sending all input cells to
MATLAB to be evaluated. Notebook begins at the top of the M-book regardless
of the cursor position.

Result. As Notebook evaluates each input cell, it generates an output cell. When
you evaluate an input cell for which there is no output cell, Notebook places the
output cell immediately after the input cell that generated it. If you evaluate
an input cell for which there is an output cell, Notebook replaces the results in
the output cell wherever it is in the M-book.

See Also. For more information, see “Evaluating an Entire M-Book” on
page 8-30.

Group Cells

Group Cells converts the input cells in the selection into a single multiline
input cell called a cell group. You evaluate a cell group using Evaluate Cell.
When you evaluate a cell group, all of its output follows the group and appears
in a single output cell.

Notebook Feature Reference

Result. If you include text in the selection, Notebook moves it after the cell
group. However, if text precedes the first input cell in the group, the text will
remain before the group.

If you include output cells in the selection, Notebook deletes them. If you select
all or part of an output cell before selecting this feature, Notebook includes its
input cell in the cell group.

If the first line in the cell group is an autoinit cell, the entire group acts as a
sequence of autoinit cells. Otherwise, the group acts as a sequence of input
cells. You can convert an entire cell group to an autoinit cell by using Define
Autolnit Cell.

See Also. For more information, see “Defining Cell Groups for Notebook” on
page 8-23. For information about converting a cell group to individual input
cells, see the description of the “Ungroup Cells” on page 8-47.

Hide Cell Markers
Hide Cell Markers hides cell markers in the M-book.

When you select this feature, it changes to Show Cell Markers.

Note Notebook does not print cell markers whether you choose to hide them
or show them on the screen.

Notebook Options

Notebook Options allows you to examine and modify display options for
numeric and graphic output.

See Also. See “Printing and Formatting an M-Book” on page 8-33 for more
information.

Purge Selected Output Cells

Purge Selected Output Cells deletes all output cells from the current
selection.

See Also. For more information, see “Deleting Output Cells with Notebook” on
page 8-32.

8-45

8 Publishing Results

8-46

Toggle Graph Output for Cell

Toggle Graph Output for Cell suppresses or allows graphic output from an
input cell.

If an input or autoinit cell generates figure output that you want to suppress,
place the cursor in the input cell and choose this feature. The string (no graph)
will be placed after the input cell to indicate that graph output for that cell will
be suppressed.

To allow graphic output for that cell, place the cursor inside the input cell and
choose Toggle Graph Output for Cell again. The (no graph) marker will be
removed. This feature overrides the Embed Graphic Output in the M-book
option, if that option is set in the Notebook Options dialog box.

See Also. See “Embedding Graphic Output in the M-Book” on page 8-36 and
“Suppressing Graphic Output for Individual Input Cells in Notebook” on
page 8-37 for more information.

Undefine Cells

Undefine Cells converts the selected cells to text. If no cells are selected but
the cursor is in a cell, Notebook undefines that cell. Notebook removes the cell
markers and reformats the cell according to the Normal style.

If you undefine an input cell, Notebook automatically undefines its output cell.
However, if you undefine an output cell, Notebook does not undefine its input
cell. If you undefine an output cell containing an embedded graphic, the

graphic remains in the M-book but is no longer associated with an input cell.

See Also. For information about the Normal style, see “Modifying Styles in the
M-Book Template” on page 8-33. For information about deleting output cells,
see the description of the “Purge Selected Output Cells” on page 8-45.

Notebook Feature Reference

Ungroup Cells

Ungroup Cells converts the current cell group into a sequence of individual
input cells or autoinit cells. If the cell group is an input cell, Notebook converts
the cell group to input cells. If the cell group is an autoinit cell, Notebook
converts the cell group to autoinit cells. Notebook deletes the output cell for the

cell group.

A cell group is the current cell group if

¢ The cursor is in the cell group.

¢ The cursor is at the end of a line that contains the closing cell marker for the
cell group.

® The cursor is in the output cell for the cell group.

® The cell group is selected.

See Also. For information about creating cell groups, see the description of the
“Defining Cell Groups for Notebook” on page 8-23.

8-47

8 Publishing Results

8-48

Source Control

Source Control Interface on PC
Platforms (p. 9-2)

Source Control Interface on UNIX
Platforms (p. 9-28)

Select and view the source control system, add files, check
files into and out of source control, undo a check-out,
remove files, view file history, compare file versions, and
more.

Select and view the source control system, check files into
and out of source control, and undo a check-out.

9 Source Control

Source Control Interface on PC Platforms

If you use a source control system (SCS) to manage your files, you can perform
source control interface actions on M-files and Simulink and Stateflow® files
within MATLAB, Simulink, and Stateflow. You can interface to your source
control system by using menus from a graphical user interface (GUI), or by
using functions from the MATLAB Command Window.

MATLAB, Simulink, and Stateflow do not perform source control functions,
but only provide an interface to your own source control system. This means,
for example, that you can open a file in the MATLAB Editor and modify it
without checking it out. However, the file will remain read-only so that you
cannot accidentally overwrite the source control version of the file.

The Source Control Interface works with any source control system that

conforms to the Microsoft Common Source Control standard. Several vendors

provide a Microsoft Source Code Control API wrapper for other source control

systems.

¢ “Selecting and Viewing the Source Control System” on page 9-2

¢ “Adding Files to the Source Control System” on page 9-4

® “Checking Files Out of the Source Control System” on page 9-8

¢ “Checking Files Into the Source Control System” on page 9-12

® “Getting the Latest Version of Files from the Source Control System” on
page 9-15

¢ “Undoing the Check-Out” on page 9-18

¢ “Removing Files from the Source Control System” on page 9-19

® “Showing File History” on page 9-20

® “Comparing the Working Copy of a File to the Latest Version in Source
Control” on page 9-21

¢ “Displaying Source Control Properties of a File” on page 9-24
¢ “Starting the Source Control System Client” on page 9-25
¢ “Troubleshooting Source Control Problems” on page 9-26

Selecting and Viewing the Source Control System
To select the source control system to interface, follow these steps:

9-2

Source Control Interface on PC Platforms

1 From the MATLAB desktop, select Preferences from the File menu. You
can also select this from Simulink and Stateflow model and library windows.

The Preferences dialog box opens.
2 Click the + for General and then select Source Control.

The currently selected system is shown. The list box will be populated by the
systems installed in the machine that support the Microsoft Common Source
Control standard. The default selection is None.

+) Preferences

General Source Control Preferences
Source control system: | Mone LI
urrert Directory
Workspace
Array Editar
LIDE
igure Copey Template
Ok Cancel | Apply | Help |

3 Select the system you want to use from the Source control system list.

4 Click OK.

Function Alternative for Viewing the Source Control System

1 To view the currently selected system, type

cmopts

MATLARB displays the current source control system. For example:
ans =
Microsoft Visual SourceSafe

9-3

9 Source Control

94

2 To view all of the source control systems installed on your computer, type

list = verctrl ('all_systems')

MATLAB displays all the source control systems currently installed in your
computer. For example:

list =
'Microsoft Visual SourceSafe'

'dJalindi Igloo'

Adding Files to the Source Control System

You can add a single file or multiple files to the source control system. Note that

the file is first added to the source control system using the Add command, not
the Check In command.

Adding a Single File

To add a file to the source control system:

1 Select Source Control -> Add to Source Control from the File menu in the

MATLAB Editor, Simulink model, or Stateflow model.

The MATLAB Add to source control dialog box opens.

Source Control Interface on PC Platforms

B Add to source control x|
Add to source control:
H:rriyFile (034
Cancel

v Keep checked out

Camments:

2 If you want to add the file to the source control system and keep it checked
out so you can continue making changes, select Keep checked out. This is
selected by default. If you have comments, type them in the Comments area.

Your comments will be submitted whether or not you select Keep checked

out.

3 Click OK.

The file is added to the source control system. If you did not save the file
before adding it to the source control system, you are prompted to save the
files before adding them to your source control system.

If you did not keep the file checked out and you keep the file open, note that

it is a read-only version.

9-5

9 Source Control

Adding Multiple Files

To add multiple files to the source control system:

1 Select the files in the MATLAB Current Directory window.

Current Directory -H\ 2 X]
ok 5| B -
Al Files £ | File Type
[ty MATLAE SAMPLE. . hAT-file ;l
[8 MATLAB_SAMPLE. . MAT-file
[8 MATLAE SAMPLE.. MAT-file
MATLAESAMPLET... #ML File
rfile-repart. hitml HTML File

i rd-file
EXE File
HTML File |

RPT File _|;|
4

Current Directory I WWorkspace I

2 Right-click the selected files.
3 Select Source Control -> Add to Source Control from the pop-up menu.

The MATLAB Add to source control dialog box opens.

Source Control Interface on PC Platforms

=): Add to source control x|

Add to source control:

H: Ynfile-report bt ik
H: Yy File tn
H: v sirtfoemo.exe Cancel

H: Yzitnulink-sumimary bt

v Keep checked out

Camments:

4 Ifyou want to add the files to the source control system and keep them
checked out so you can continue making changes, select Keep checked out.
This is selected by default. If you have comments, type them in the
Comments area.

Your comments will be submitted whether or not you select Keep checked
out.

5 Click OK.
The files are added to the source control system. If you did not save the files
before adding them to the source control system, they are automatically

saved when they are added.

If you did not keep the files checked out and you keep the files open, note
that they are read-only versions.

9-7

9 Source Control

Function Alternative for Adding File to Source Control
Use add as the first argument in the verctrl function to add a file to the source
control system. Keep the following points in mind:

¢ The verctrl function with the add argument returns a logical 1 to the
workspace if the file has changed on disk or a logical 0 to the workspace if the
file has not changed on disk.

® You can add a single file or multiple files.

The verctrl function with the add argument takes this form.

fileChange=verctrl('add',{'H:\myFile.m', 'H:\rsimtfdemo.exe',
'"H:\mfile-report.html', 'H:\simulink-summary.html'}, 0);

Checking Files Out of the Source Control System

You can check out a single file or multiple files.

Checking Out a Single File

To check out a single file from the source control system

1 Select Source Control -> Check Out from the File menu in the MATLAB
Editor, Simulink model, or Stateflow model.

The MATLAB Check out file(s) dialog box opens.

9-8

Source Control Interface on PC Platforms

B Check out file(s)

Check out files:

x|
H: vrryFile.m o4 I

Cancel

Comments:

2 Click OK.

The file is checked out from the source control system and is available to you
for editing.

Note The Comments text area will not be included in the Check out file(s)
dialog box if the source control system does not support comments on file
check-out.

Checking Out Multiple Files

To check out multiple files from the source control system
1 Select the files in the MATLAB Current Directory window.

2 Right-click the selected files.

9-9

9 Source Control

3 Select Source Control -> Check Out from the pop-up menu.

The MATLAB Check out file(s) dialog box opens.

Current Directory - H:',

s @

AllFiles £ | File Type

[t WMATLAE SAMPLE. . MAT-ile ;I
[MATLAE_SAMPLE. . MAT-file

(8 MATLAE_SAMPLE .. MAT-fle
MATLABSAMPLET... ®ML File
mfile-repart. html HTML File
Tl b-file
EXE File
HTrL File .

RFT File -
3

Current Directory I Wiorkspace I

9-10

Source Control Interface on PC Platforms

« J: Check out file(s)

Check out files:
H: wryFile .t o4
H:rzitntfdemo . exe

H: yifile-report il

H: \itnulink-sumimary it

Cancel

Comments:

4 Click OK.

The files are checked out from the source control system and are available
to you for editing.
Function Alternative for Checking Ovut Files

Use checkout as the first argument in the verctrl function to check a file out
of the source control system. Keep the following points in mind:

® The verctrl function with the checkout argument returns a logical 1 to the

workspace if the file has changed on disk or a logical 0 to the workspace if the
file has not changed on disk.

® You can check out a single file or multiple files.

9-11

9 Source Control

The verctrl function with the checkout argument takes this form.

fileChange=verctrl('checkout',{'H:\myFile.m',
'"H:\rsimtfdemo.exe', 'H:\mfile-report.html',
'"H:\simulink-summary.html'}, 0);

Checking Files Into the Source Control System

You can check in one or more MATLAB M-files, Simulink models, or Stateflow
models.

Checking In a Single File

To check in a single file into the source control system

1 Select Source Control -> Check In from the File menu in the MATLAB
Editor, Simulink model, or Stateflow model:

The MATLAB Check in file(s) dialog box opens.

«J: Check in file(s) x|

Check in files:

H:rriyFile I

Cancel

[~ Weep checked out

Comments:

9-12

Source Control Interface on PC Platforms

2 Ifyou want to check in the file to the source control system and keep it
checked out so you can continue making changes, select Keep checked out.
If you have comments, type them in the Comments area.

Your comments will be submitted whether or not you select Keep checked
out.

3 Click OK.

The file is checked into the source control system. If you did not save the file
before checking it in, it is automatically saved when it is checked in.

If you did not keep the file checked out and you keep the file open, note that
it is a read-only version.

Checking In Multiple Files

To check in multiple files to the source control system,

1 Select the files in the MATLAB Current Directory window.

Current Directory - H:,

B eS| B

All Files £ | File Type
[WATLAE SAMPLE... MAT-ile ;|

[t MATLAE SAMPLE... MAT-file
[MATLAE SAMPLE... MAT-ile
MATLABSAMPLET. .. XML File
mfile-repart. htrml HTML File
- ryFile.rm h-filee
rsimtfdemo. exe EXE File
Csummary. . SRR

FFT File -
3

Currert Directory I Workspace I

9-13

9 Source Control

2 Right-click the selected files.

3 Select Source Control -> Check In from the pop-up menu.

The MATLAB Check in file(s) dialog box opens.

=): Check in file{s)

Check in files:
H: vy File QK
H: wsimtfdemo . exe

H: rnfile-report bitml

H: 'sitmulink-sumimary bl

Cancel

[Keep checked out

Comments:

If you want to check in the files to the source control system and keep them
checked out so you can continue making changes, select Keep checked out.
If you have comments, type them in the Comments area.

Your comments will be submitted whether or not you select Keep checked
out.

9-14

Source Control Interface on PC Platforms

5 Click OK.

The files are checked into the source control system. If you did not save the
files before checking them in, they are automatically saved when they are
checked in.

If you did not keep the files checked out and you keep the files open, note
that they are read-only versions.

Function Alternative for Checking In Files

Use checkin as the first argument in the verctrl function to check files into
the source control system. Keep the following points in mind:

® The verctrl function returns a logical 1 to the workspace if the file has
changed on disk or a logical 0 to the workspace if the file has not changed on
disk.

® You can check in a single file or multiple files.

¢ The files can be open or closed when you use checkin.

The verctrl function with the checkin argument takes this form.

fileChange = verctrl('checkin', {'H:\myFile.m',
'"H:\rsimtfdemo.exe', 'H:\mfile-report.html',
'"H:\simulink-summary.html'}, 0);

Getting the Latest Version of Files from the Source
Control System

You can get the latest version of a file from the source control system for
viewing and compiling, but not editing. You can get a single file, a single
directory, multiple files, or multiple directories. The file or files will be tagged
read-only. The list of files should contain either files or directories but not both.

Getting the Latest Version of a Single File
To get the latest version of a single file:

1 Select Source Control -> Get Latest Version from the File menu in the
MATLAB editor, Simulink model, or Stateflow model.

The MATLAB Get latest version dialog box opens.

9-15

9 Source Control

9-16

=) Gek latest version

Get latest version of files:

H: 'y File Ok

Cancel

2 Click OK.

Getting the Latest Versions of Multiple Files
To get the latest versions of multiple files:

1 Select the files in the MATLAB Current Directory window.

Source Control Interface on PC Platforms

Current Directory - H:',

ok w5 | @B -
AllFiles £ | File Type
[t MATLAR SAMPLE. . MAT-ile ;l
[8 MATLAB_SAMPLE . MAT-file
[8 MATLAB SAMPLE. .. MAT-file
MATLABSAMPLET... XML File
mfile-repart. html HTHL File
h-file
EXE File
HTML File |
RPT File _ILI
3

Currert Directory I Workspace I

2 Right-click the selected files.

The MATLAB Get latest version dialog box opens.

«): Get latest version

et latest version of files:

3 Select Source Control -> Get Latest Version from the pop-up menu.

H:rriyFile
H:rzimtfdemo . exe
H:rrifile-report il
H:aimulink-zurmmary bl

k.

Cancel

4 Click OK.

9-17

9 Source Control

Function Alternative for Getting Latest Version

Use get as the first argument in the verctrl function to get a file from the
source control system. Keep the following points in mind:

® Note that the verctrl function with the get argument returns a logical 1 to
the workspace if the file has changed on disk or a logical 0 to the workspace
if the file has not changed on disk.

® You can get a single file or multiple files.
The verctrl function with the get argument takes this form.

fileChange=verctrl('get',{'H:\myFile.m', 'H:\rsimtfdemo.exe',
'"H:\mfile-report.html', 'H:\simulink-summary.html'}, 0);

Undoing the Check-Out

You can undo the check-out for a file. The file remains checked in, without any
of the changes you made since you checked it out. You can undo the check-out
of a single file or multiple files.

Note You will lose the changes you have made since you checked out the file.
To save these changes when undoing the check-out, use the Save As item from
the File menu.

1 Select Source Control -> Undo Check-Out from the File menu in the
MATLAB Editor, Simulink model, or Stateflow model.

The MATLAB Undo check out dialog box opens.

«): Undo check out x|

Uncheck out files:

H: iy File.m 034

Cancel

9-18

Source Control Interface on PC Platforms

2 Click OK.

Function Alternative for Undoing a Check-Out

Use the uncheckout as the first argument in the verctrl function to undo a
check-out. Note that the verctrl function with the uncheckout argument
returns a logical 1 to the workspace if the file has changed on disk or a logical
0 to the workspace if the file has not changed on disk.

The verctrl function with the uncheckout argument takes this form.

fileChange=verctrl('uncheckout',{'H:\myFile.m"',
'"H:\rsimtfdemo.exe', 'H:\mfile-report.html',
'"H:\simulink-summary.html'}, 0);

Removing Files from the Source Control System

You can remove a single file or multiple files from the source control system.
To remove a file from the source control system:

1 Select Source Control -> Remove from Source Control from the File
menu in the MATLAB Editor, Simulink model, or Stateflow model.

The MATLAB Remove from source control dialog box opens.

«) Remove from source control x|
Remowve from source corntrol:
H: wryFile .t o4
Cancel
2 Click OK.

Function Alternative for Removing File from Source Control

Use remove as the first argument in the verctrl function to remove a file or
group of files from source control system. Note that the verctrl function with
the remove argument does not return anything.

9-19

9 Source Control

The verctrl function with the remove argument takes this form.

verctrl('remove',{'H:\myFile.m', 'H:\rsimtfdemo.exe',
'"H:\mfile-report.html', 'H:\simulink-summary.html'}, 0);

Showing File History

You can show the history of a single file or multiple files in the source control
system. To show the history of a file

1 Select Source Control -> Show History from the File menu in the
MATLAB Editor, Simulink model, or Stateflow model.

The dialog boxes returned are specific to the source control system being
used. For example, if Microsoft Visual SourceSafe is the currently selected
source control system, then the History Options dialog box is returned.

History Options x|

Cancel |
From: I Help |
Lo I FEroject... |

2 Enter the appropriate label, date, and user information and click OK.

The Microsoft Visual SourceSafe History dialog box opens.

9-20

Source Control Interface on PC Platforms

i
Ix

i History of $/myFile.m | |

Histany: 1 items Close

Wersion EE Date Action
Wigm

Dgolden 3/09/04 223 Created

4l

Detailz

ol
o

Check Dt

Iy
Follback

Repart

LB

Help

Function Alternative for Showing File History

Use history as the first argument in the verctrl function to show the history
of the file in the source control system. Note that the verctrl function with the
history argument returns a logical 1 to the workspace if the file has changed
on disk or a logical 0 to the workspace if the file has not changed on disk.

The verctrl function with the history argument takes this form.

fileChange=verctrl('history',{'D:\filet.ext','D:\file2.ext'},
0);

Comparing the Working Copy of a File to the Latest
Version in Source Control

You can use the Differences option to compare the current working copy of a
file on disk with the latest checked-in version of the file in the source control
system. Note that you can only show differences on one file at a time, not
multiple files.

9-21

9 Source Control

Comparing M-Files

To show differences of an M-file:

1 Select Source Control -> Differences from the File menu in the MATLAB
Editor.

A dialog box from the currently selected source control system opens. For

example, if Microsoft Visual SourceSafe is the currently selected source
control system, then the Difference Options dialog box opens.

Difference Dptions

x|
EDmpare:IWm_l,lFile.m Browse.. W | (]S I
To:lH:\myFiIe.m Browse... » | Cancel |
Farmat Repart |
% \isual
" SourceSafe &l
" Ignore white space [lgnore case
Advanced »> |
2 Click OK.

The Microsoft Visual SourceSafe Differences dialog box opens. This

compares the working copy of the file to the latest checked-in version of the
file.

9-22

Source Control Interface on PC Platforms

i Differences for & /myFile.m 10l =l
aa| &% %% % 2|9 2|
$ImyFile.m H: iy File.
»b = 4 + 4; 1C =4+ 4:
4] | | K1 _'I
|De|eted lires |Changed lires |Inserted lires |Ln 1, Coll |

Function Alternative for Showing File Differences

Use isdiff as the first argument in the verctrl function to return a Boolean
value to the window, which indicates whether or not there are any differences
between the current file on disk and the latest checked-in version of the file.

The verctrl function with the isdiff argument takes this form.
fileChange = verctrl('isdiff', 'H:\myFile.m', 0)

This will return the following in the Command Window if the two copies of the
file are different:

fileChange =

1

Use showdiff as the first argument in the verctrl function to show the
differences between the disk copy of a file and the latest checked-in version in
the source control system. Note that the verctrl function with the showdiff
argument does not return anything.

The verctrl function with the showdiff argument takes this form.

verctrl('showdiff', 'D:\file.ext', 0);

9-23

9 Source Control

Displaying Source Control Properties of a File

You can display the properties of a single file from the source control system.
Note that you cannot display the properties of multiple files. To display the
properties of a file,

1 Select Source Control -> Show Properties from the File menu in the
MATLAB Editor, Simulink model, or Stateflow model.

A dialog box from the source control system being used opens. Below is a
Microsoft Visual SourceSafe properties dialog box.

%/ myFile.m x|
General | Check Out Status | Links | Paths |

Mame: $/myFile.m

Tvpe: ITe:-:t vI

Size: 10 bytes [lines

™| Store only |atest version

Latest;

Yergion: 1
Drate: 09404 222p

Comment;

Cloze I Beport | Help |

9-24

Source Control Interface on PC Platforms

Function Alternative for Displaying File Properties

Use properties as the first argument in the verctrl function to display the
properties of a file. Note that the verctrl function with the properties
argument returns a logical 1 to the workspace if the file has changed on disk or
a logical 0 to the workspace if the file has not changed on disk.

The verctrl function with the properties argument takes this form.

fileChange=verctrl('properties','D:\file.ext');

Starting the Source Control System Client

To access your source control system, select Source Control -> Start Source
Control from the File menu in the MATLAB Editor, Simulink model, or
Stateflow model. The dialog box from the currently selected source control
system opens. Below is the Microsoft Visual SourceSafe Explorer dialog box.

[® visual SourceSafe Explorer - Microsoft Yisual Studis o] [
File Edit Wiew SourceSafe Tools Web Help

| o[Bl | e o= | | R | | | [3 2|

Al projects: Contents of $f |Wor|<ing Folder: H:Y,
a3 [
z [golden
_EblmyFiIe.m 3/09/04 Z07p
@rsimtfdemo.eue Digolden 3/09/04 232p
@simulink-summary.html [golden 30904 232p
| | 1
< | i
Ready |dgoldzn [4

Function Alternative for Starting the Source Control Client

Use runscc as the first argument in the verctrl function to start the currently
selected source control system. The verctrl function with the runscc
argument takes this form.

verctrl('runscc', 0);

9-25

9 Source Control

Troubleshooting Source Control Problems
Here are possible solutions to some common source control problems.

Source Control Error: Provider Not Present or Not Installed Properly

In some cases, MATLAB recognizes your source control system but you cannot
use source control features for MATLAB. Specifically, when you select File ->
Preferences -> General -> Source Control, or run cmopts, MATLAB lists your
source control system, but you cannot perform any source control actions. Only
the File -> Source Control -> Start Source Control System menu item is
available, and when you select it, MATLAB displays this error:

Source control provider is not present or not installed properly.

Often, this error occurs because a registry key that MATLAB requires from the
source control application is not present. Make sure this registry key is
present:

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\
InstalledSCCProviders

The registry key refers to another registry key that is similar to
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SourceSafe\SccServerPath

This registry key has a path to a DLL-file in the file system. Make sure the
DLL-file exists in that location. If you are not familiar with registry keys, ask
your system administrator for help.

If this does not solve the problem and you use Microsoft Source Safe, try
running a client setup for your source control application. When SourceSafe is
installed on a server for a group to use, each machine client can run a setup but
is not required to do so. However, some applications that interface with
SourceSafe, including MATLAB, require you to run client setup. Run the client
setup, which should resolve the problem.

If the problem persists, access source control outside of MATLAB.

Restriction Against @ Character with Perforce

Perforce source control systems reserve the @ character as a revision specifier.
Therefore, Perforce cannot be used with MATLAB files and directories that
include the @ character in the directory or file name.

9-26

Source Control Interface on PC Platforms

Add to Source Control Only Action Available

To use source control features in MATLAB for a file, the file’s source control
project must be registered with MATLAB. In some cases, this happens
automatically.

In other cases, you need to register the project (folder). When a file’s source
control project is not registered with MATLAB, all source control menu items
are disabled except Add to Source Control. Select Add to Source Control,
which registers the project with MATLAB. You can then perform source control
actions for all files in that project (folder).

More Solutions for Source Control Problems

The latest solutions for problems interfacing MATLAB with source control
system appear on the MathWorks Web page for support at
http://www.mathworks.com/support/. Search Solutions and Technical Notes
for “source control”.

9-27

9 Source Control

Source Control Interface on UNIX Platforms

If you use a source control system (SCS) to manage your files, you can check
M-files and Simulink and Stateflow files into and out of the source control
system from within MATLAB, Simulink, and Stateflow.

MATLAB, Simulink, and Stateflow do not perform source control functions,
but only provide an interface to your own source control system. This means,
for example, that you can open a file in the MATLAB Editor and modify it
without checking it out. However, the file will remain read-only so that you
cannot accidentally overwrite the source control version of the file.

The Source Control Interface supports four popular source control systems, as
well as a custom option:

¢ ClearCase from Rational Software

¢ CVS (Concurrent Version System)

e PVCS Version Manager from Merant

¢ Revision Control System (RCS)

¢ Custom option — Allows you to build your own interface if you use a different

source control system. For details, see the reference page for customverctrl.

You can interface to your source control system by using menus from a
graphical user interface (GUI), or by using functions from the Command
Window. There are some options you can perform using the MATLAB functions
that are not available with the GUIs — these are noted in the instructions.

® “Selecting and Viewing the Source Control System” on page 9-28

¢ “Checking Files Into the Source Control System” on page 9-30

¢ “Checking Out Files from the Source Control System” on page 9-32

¢ “Undoing the Check-Out” on page 9-34

Selecting and Viewing the Source Control System
Specify the source control system using these steps:

1 Select Preferences from the File menu in the MATLAB Editor, Simulink
model, or Stateflow model.

The Preferences dialog box opens.

9-28

Source Control Interface on UNIX Platforms

2 Click the + for General and then select Source Control.

The currently selected system is shown. The default selection is None.

= General

|:Font & Colors
Source Control

Command Window

— Command History
Editor/Debugger

#Help

— Current Directory

—Workspace

—Array Editor

— GUIDE

—Figure Copy Template
#-Simulink

3 Select the system you want to use from the Source control system list.

Function Alternative for Viewing the Source Control System

To view the currently selected system, type cmopts in the Command Window.
MATLAB displays the current source control system. For example

ans =

PVCS Source Control

9-29

9 Source Control

Setting a View and Checking Out a Directory — For ClearCase on UNIX
Only

If you use ClearCase on a UNIX platform, do the following using ClearCase:
1 Set a view.

2 Check out the directory that you want to save files in, check files into, or
check files out of.

You can now use the MATLAB, Simulink, or Stateflow interfaces to ClearCase
to check files into and out of the directory that you checked out in step 2.

Checking Files Into the Source Control System

After creating or editing a file in the MATLAB Editor, Simulink, or Stateflow,
save it, and then check in the file by following these steps:

1 Select Source Control -> Check In from the File menu in the MATLAB
Editor, Simulink model, or Stateflow model. The Check In dialog box opens.

9-30

Source Control Interface on UNIX Platforms

Comments:

|| Keep checked out

DK | Cancell

2 If you want to check in the file but keep it checked out so you can continue
making changes, select Keep checked out. If you have comments, type
them in the Comments area.

Your comments will be submitted whether or not you select Keep checked
out.

3 Click OK.

The file is checked into the source control system. If you did not save the file
before checking it in, it is automatically saved when it is checked in.

If you did not keep the file checked out and you keep the file open, note that it
is a read-only version.

9-31

9 Source Control

9-32

Function Alternative for Checking In Files

Use checkin to check files into the source control system. The files can be open
or closed when you use checkin. The checkin function takes this form.

checkin({'D:\filel.ext','D:\file2.ext'}, 'comments’', 'string',...
'option', 'value')
For file, use the complete path. You must supply the comments argument and
a comments string with checkin.
Use the option argument to

¢ Check in a file and keep it checked out — set the lock option to on.

¢ Check in a file even though it has not changed since the previous check in —
set the force option to on.

The comments argument and the lock and force options apply to all files
checked in.

After checking in the file, if you did not keep it checked out and have it open,
note that it is a read-only version.

Example —Check In a File with Comments
To check in the file clock.m with a comment Adjustment for Y2K, type

checkin('\matlabri2\mymfiles\clock.m', 'comments', 'Adjustment ...
for Y2K')

For other examples, see the reference page for checkin.

Checking Out Files from the Source Control System

To check out files from the source control system using MATLAB, follow these
steps:

1 Open the M-file, Simulink file, or Stateflow file you want to check out.
The file opens and the title bar indicates it is read-only.

2 Select Source Control -> Check Out from the File menu in the MATLAB
Editor, Simulink model, or Stateflow model. The Check Out dialog box
opens.

Source Control Interface on UNIX Platforms

Check Out

'® Latest version [Lock latest version

' Version number:

oK Cancel

3 To check out the version that was most recently checked in, select the Latest
version option. To check out a specific version of the file, select the Version
number option and type the version number in the field.

To prevent others from checking out the file while you have it checked out,
select Lock latest version. To check out a read-only version of the file, clear
Lock latest version.

4 Click OK.

The file is checked out from the source control system and is available to you
for editing.

9-33

9 Source Control

Function Alternative for Checking Out Files

Use checkout to check a file out of the source control system. You can check out
multiple files at once and specify check-out options. The checkout function
takes this form.

checkout({'D:\filel.ext','D:\file2.ext'}, 'option’', 'value')
For file, use the complete path.
Use the option argument to

® Check out a read-only version of the file — set the lock option to off.

® Check out the file even if you already have it checked out — set the force
option to on.

¢ Check out a specific version of the file — use the revision option, and assign
the version number to the value argument.

The options apply to all files checked out. The file can be open or closed when
you use checkout.

Example — Check Out a Specific Version of a File
To check out the 1.1 version of the file clock.m, type

checkout('\matlab\mymfiles\clock.m', 'revision','1.1")

For other examples, see the reference page for checkout.

Undoing the Check-Out

You can undo the check-out for a file. The files remain checked in, without any
of the changes you made since you checked them out. Select Source Control ->
Undo Check-Out. from the File menu in the MATLAB Editor, Simulink
model, or Stateflow model. There is no return dialog.

If you want to keep a local copy of your changes, use the Save As item from the

File menu.

Function Alternative for Undoing a Check-Out
The undocheckout function takes this form.

undocheckout({'D:\filel.ext','D:\file2.ext'})

9-34

Source Control Interface on UNIX Platforms

Use the complete path for file. For example, to undo the check-out for the files
clock.m and calendar.m, type

undocheckout ({'\matlab\mymfiles\clock.m',...
"\matlab\mymfiles\calendar.m'})

9-35

9 Source Control

9-36

Symbols
! function 3-6
comment symbol 6-14
create comment 6-15
%% 6-66
, after functions 3-20
... in statements 3-12
; after functions 3-20
>> prompt in Command Window 3-2
{% block comment symbol 6-15

A
accelerators, keyboard 2-35

add 9-8
adding file to source control system on PC
platforms 9-4
addpath 5-25
Array Editor 5-10
preferences 5-18
arrays
editing 5-10
workspace 5-2
arrow keys
Command Window usage 3-18
Editor 6-22
ASCII files
viewing contents of 5-40
asv 6-31
autocode 6-2
autoinit cells
converting input cells to 8-41
converting to input cells 8-42
defining 8-25
Autolnit style
definition of 8-34

automatic code generation 6-2

automatic completion of statement 3-14

automation startup option (automation server)
1-5

autosave 6-31

B
backup

Editor autosave 6-31
bang (!) function 3-6
base workspace 5-8
batch mode for starting MATLAB 1-6
batch mode for starting MATLAB (UNIX) 1-10
beep

Command Window preferences 3-32
blank spaces in MATLAB commands 3-9
block comments 6-15

extending 6-16
blue breakpoint icon 6-61
bookmarks

in files in Editor 6-23

in Help browser 4-19
Boolean searching in Help browser 4-16
breaking long lines 3-12
breakpoints

anonymous functions 6-61

blue icon 6-61

clearing (removing) 6-53

clearing, automatically 6-54

conditional 6-59

disabling and enabling 6-53

multiple per line 6-61

running file 6-44

setting 6-41, 6-42

types 6-41

Index-1

Index

Bring MATLAB to Front 8-41
browser
Web, in MATLAB 2-29
bugs, reporting to The MathWorks 4-39
built-in editor 6-4

C
C/C++

editing files in Editor 6-12
caching

M-files 6-31

search path 5-27
calc zones

defining 8-25

ensuring workspace consistency in M-books

8-22
evaluating 8-30
output from 8-30
callbacks
in shortcuts 2-21
calling from MATLAB 3-6
capitalization in MATLAB 3-9
case sensitivity in MATLAB 3-9
cell arrays
editing 5-12
cell groups
converting to input cells 8-47
creating 8-24
definition of 8-23
evaluating 8-28
output from 8-28
cell markers
defined 8-23
hiding 8-45
printing 8-33
cell mode 6-65

Index-2

cell scripts 6-65
cells

beep 6-72

defining in M-files 6-66

evaluating 6-71

removing 6-70
cells in M-File Editor 6-65
character set

preference for MAT-files 2-57
checkin

on PC platforms 9-15

on UNIX platforms 9-32
checking in files

on PC platforms 9-12

on UNIX platforms 9-30
checking out files

on PC platforms 9-8

on UNIX platforms 9-32

undoing on PC platforms 9-18

undoing on UNIX platforms 9-34
checkout

on PC platforms 9-11

on UNIX platforms 9-34
clc 3-22
clear 5-7
ClearCase source control system

configuring on UNIX platforms 9-30
clearing

Command Window 3-22
clicking on multiple items 2-38
clipboard 2-39
closing

desktop tools 2-6

MATLAB 1-13

M-files 6-33

Index

cmopts
on UNIX platforms 9-29
on Windows platforms 9-3
code examples 6-2
code iteration 6-65
code resources 6-2
code samples
sample code 6-2
Collatz problem 6-37
color
general preferences 2-53
indicators for syntax 3-10
modes for printing M-books 8-38
printing M-book 8-33
colors
in M-files 6-19
preferences in MATLAB 2-51
column numbers 6-20
COM
entries for MATLAB 1-6
startup options for MATLAB 1-6
command flags 1-4
Command History
about 3-33
deleting entries in 3-38
file 3-34
preferences 3-40
printing 3-38
running functions from 3-35
command line
defined 3-2
editing 3-11
command name
automatic completion 3-14
command switches 1-4

Command Window
bringing to front in Notebook 8-41
clearing 3-22
editing in 3-11
help 4-3
paging of output in 3-20
preferences 3-29
printing contents of 3-22
prompt 3-2
width 3-30
Command Window scroll buffer 3-30
commands
executing a group of 2-21
on multiple lines 3-12
to operating system 3-6
comments
adding/removing with any text editor 6-15
adding/removing with Editor 6-14
block 6-15
color indicators 2-53
creating in Editor 6-14
multiline statements 6-17
purpose 6-14
using ... (ellipsis) 6-17
within a line 6-17
comp.soft-sys.matlab 4-40
comparing working copy to source control version
on PC platforms 9-21
completing statements automatically 3-14
compression
MAT-files and Fig-Files 2-57
conditional breakpoints 6-59
configuration management
See source control system interface on PC
platforms or source control system
interface on UNIX platforms
configuration, desktop 2-5

Index-3

Index

configuring Notebook 8-39
console mode 3-30
content of M-files, searching 5-42
Contents in Help browser
synchronizing preference 4-29
Contents tab in Help browser
description 4-8
synchronizing with display 4-10
context menus 2-31
continuing long statements 3-12
control keys
editing commands 3-18
Editor 6-22
conversion
Word document to M-book 8-21
cropping graphics
in M-books 8-38
cssm 4-40
current directory
at startup for MATLAB 1-3
changing 5-34
contents of 5-34
field in toolbar 5-32
relevance to MATLAB 5-31
tool 5-32
Current Directory browser 5-32
preferences 5-45

D

data consistency
calc zones in M-books 8-22
evaluating M-books 8-22
in M-book 8-22

datatips 6-32
example 6-48

dbclear 6-54

Index-4

dbstop

example 6-44
Debugger 6-1
debugger

option for UNIX 1-7
debugging

ending 6-52

example 6-37

features 6-40

M-files 6-34

options 6-4

Notebook 8-22

prompt 6-45

stepping 6-46

techniques 6-34

with unsaved changes 6-58
decimal places in output 3-21
defaults

preferences for MATLAB 2-45

setting in startup file for MATLAB 1-4
Define Autoinit Cell 8-41
Define Calc Zone 8-42
Define Input Cell 8-42
delete 5-37
delete function

preference for recycling 2-56
deleting

files 5-37
deleting files 2-56
delimiter matching

Command Window preferences 3-32

Index

desktop
color preferences 2-51
configuration 2-5
description 2-2
font preferences for 2-45
starting without 1-9

tools
closing 2-6
opening 2-4
windows
closing 2-6
opening 2-4
development environment for MATLAB 2-2
diary 3-23
dir 5-34
directories

copying 5-38

creating 5-36

deleting 5-37

MATLAB

caching 6-31

renaming 5-37

searching contents of 5-32

See also current directory, search path
disabling

breakpoints 6-53
display pane in Help browser 4-20
displaying

output 3-20

displaying source control properties of a file 9-24

dividers for cells 6-66
documentation
printing 4-31
problems, reporting 4-41
viewing 4-20
dots (...) 3-12

downloading
M-files 4-39
dragging in the desktop 2-39

E
edit
creating new M-file in Editor 6-8
editing
in Command Window 3-11
M-files 6-1
outside of MATLAB 6-4
without running MATLAB 6-10
Editor
arranging documents 6-10
closing files 6-33
go to
bookmark 6-23
function 6-24
line number 6-23
modifying values 6-71
navigation keys 6-22
opening files 6-8
other text files 6-12
rule displayed 6-21
status bar
function 6-21
viewing values 6-32
editor
built-in 6-4
Editor, stand-alone (Windows) 6-10
Editor/Debugger 6-1
closing 6-12
description 6-6
example 6-37
indenting 6-6
preferences 6-11

Index-5

Index

EDU>> prompt in Command Window 3-2
ellipses (...) in statements 3-12
Emacs key bindings in Editor 6-22
Embed Figures in M-book 8-36
embedding graphics
in M-book 8-36
encoding
preference when saving 2-57
ending MATLAB 1-13
environment settings at startup 1-4
error breakpoints
stop for errors 6-62
error message identifiers 6-64
error messages
in Command Window 3-4
error style
definition 8-34
errors
color indicators 2-53
finding in M-files 6-34
run-time 6-34
source control 9-26
syntax 6-34
Evaluate Calc Zone 8-43
Evaluate Cell 8-43
Evaluate Loop 8-44
Evaluate Loop dialog box 8-31
Evaluate M-Book 8-44
evaluating
M-books, ensuring data consistency 8-22
selection in Command History 3-35
selection in Command Window 3-7
evaluating sections of M-file 6-71
example code 6-2
examples
in documentation, index of 4-9
running from Help browser 4-23

Index-6

exe 3-6
executables
running from MATLAB 3-6
executing
group of statements 2-21
M-files in Editor 6-32
existing code 6-2
exit
confirmation 1-13
exiting MATLAB 1-13
ext startup option 1-7

F
f button 6-24
F Inc Search field 6-26
favorites in Help browser 4-19
feedback to The MathWorks 4-41
Fig-files
compatibility 2-57
save options 2-57
file exchange
for M-files 4-39
file management system
See source control system interface on PC
platforms or source control system
interface on UNIX platforms
filebrowser 5-32

Index

files
contents, viewing 5-40
copying 5-38
creating in the Current Directory browser
5-36
deleting 5-37
editing M-files 6-6
log 1-5
MATLAB related, listing 5-34
naming 5-21
opening 5-39
operations in MATLAB 5-31
renaming 5-37
running 5-41
source control on PC platforms 9-2
source control on UNIX platforms 9-28
viewing contents of 5-40
Find Files dialog box 5-42
finding
files using Current Directory browser 5-42
M-files 5-42
string in M-files 5-42
text in Command History 3-37
text in Command Window 3-24
text in current file 6-24
text in M-files 6-25
text in page of Help browser 4-22
finish.m file running when quitting 1-13
firewall 2-31
flags
for startup 1-4
folders. See directories
font
Help browser 4-30
Help browser display pane 4-30
Help Navigator 4-30
preferences in MATLAB 2-45

format
controlling numeric format in M-book 8-35
preferences 3-30
format 3-21
in M-book 8-35
function name
automatic completion 3-14
function workspace 5-8
functions
color indicators 2-53
executing a group of 2-21
help for 4-33
reference page 4-2
long (on multiple lines) 3-12
multiple in one line 3-12
naming 5-21

G
get 9-18
get latest version of file on PC platforms 9-15
graphical debugger 6-1
graphics
controlling output in M-book 8-37
embedding in M-book 8-36
in M-books 8-35
graphing
variables from the Workspace browser 5-8
gray breakpoint icons 6-43
Group Cells 8-44

H

help
functions 4-33
in Command Window 4-35
M-file 4-3

Index-7

Index

help 4-35 incremental searching
Help browser in Editor 6-26
contents listing 4-8 indenting
copying information from 4-22 in Command Window 3-10
display pane 4-20 in Editor 6-20
font preferences 4-30 nested functions 6-20
index 4-11 index
navigating 4-21 examples in documentation 4-9
printing help 4-31 Help browser 4-11
running examples from 4-23 results 4-12
searching 4-13 tips 4-12
Help Navigator 4-6 initiation (init) file for MATLAB 1-4
helpbrowser 4-5 input
Hide Cell Markers 8-45 to MATLAB in Command Window 3-2
highlighted search terms 4-14 input cells
history controlling evaluation 8-30
automatic log file 1-5 controlling graphic output 8-37
source control on PC platforms 9-20 converting autoinit cell to 8-42
history 9-21 converting text to 8-42
history of statements 3-33 converting to autoinit cell 8-41
history.m file 3-34 converting to cell groups 8-47
home 3-22 converting to text 8-26
HTML defining in M-books 8-23
editing files in Editor 6-12 evaluating 8-27
source, viewing in Help browser 4-23 evaluating cell groups 8-28
HTML viewer in MATLAB 2-29 evaluating in loop 8-31

maintaining consistency 8-22
timing out during evaluation 8-44
| use of Word Normal style 8-26

Image of hyperlink in Command Window. The Input style
hyperlink text is Generate magic square. definition of 8-34
Visual cues it is a hyperlink are the text Internet proxy server 2-31
is a blue color and is underlined. 3-8 interrupting a running program 3-5
import invalid breakpoints 6-43
files for use with MATLAB 5-20 isdiff 9-23
include iterative programming 6-65

files with MATLAB 5-20

Index-8

Index

J

Java

editing files in Editor 6-12
Java VM

starting without 1-9

K
K>>
prompt in Command Window 3-2
K>> prompt
debugging mode 6-45
keyboard statement 6-36
keyboard 6-36
keyboard shortcuts and accelerators 2-35
keys
editing in Command Window 3-18
Editor 6-22
keyword
color indicator 2-54
keywords
color indicators 2-53
in documentation 4-11

L
license information 4-41
line
in Editor 6-21
line breaks
adding for long statements 3-12
line numbers 6-20
going to 6-23
line wrapping 3-30
links
in Help browser 4-22
load 5-6

locking files 9-33
log
automatic 1-5
file 1-5
session 3-23
statements 3-33
logfile startup option 1-5
long lines 3-12
lookfor 5-44
looping
to evaluate input cells 8-31
lowercase usage in MATLAB 3-9

M

matched delimiters

Command Window preferences 3-32
MAT-files

compatibility 2-57

compression options 2-57

creating 5-4

defined 5-4

loading 5-6

preferences 2-57

view without loading 5-41
Mathtools.net 4-40
MATLAB

commands, executing in a Word document

8-27

files, listing 5-34

path 5-20

quitting 1-13
matlab.mat 5-6
matlabrc.m, startup file 1-4
matrices

editing 5-10

Index-9

Index

M-books
creating 8-18
data consistency 8-22
data integrity 8-22
entering text and commands 8-21
evaluating all input cells 8-30
modifying style template 8-33
opening 8-20
printing 8-33
sizing graphic output 8-37
styles 8-33
measuring performance of M-files 7-35
meditor, stand-alone MATLAB editor 6-10
membership Web page 2-43
message identifiers 6-64
M-file
navigating 6-22
M-file help 4-3
viewing in Current Directory browser 5-42
M-files
appearance 6-19
automatic saving 6-31
colors in 6-19
content, viewing 5-40
creating 6-4
from Command History 3-36
in MATLAB directory 5-27
creating new file 6-7
debugging 6-1, 6-34
options 6-4
editing 6-1
options 6-4
editing without running MATLAB 6-10
file association (Windows) 6-10
finding 5-42
naming 5-21
opening 6-8

Index-10

pausing 6-36
performance of 7-35
printing 6-33
profiling 7-35
replacing content 6-25
running
at startup 1-6
at startup (UNIX) 1-10
from Command Window 3-5
from Current Directory browser 5-41
running with unsaved changes 6-58
saving 6-30
search path 5-20
searching contents of 5-42
source control on PC platforms 9-2
source control on UNIX platforms 9-28
user-contributed 4-39
viewing description 5-46
Microsoft Word
converting document to M-book 8-21
specifying version and location 8-40
minimize
Windows startup option 1-5
mkdir 5-37
M-Lint
suppressing messages 7-27
model files
source control on PC platforms 9-2
source control on UNIX platforms 9-28
more 3-20
mouse, right-clicking 2-31
multidimensional arrays
editing 5-12
multiple item selection 2-38
multiple lines for statements 3-12
multiprocessing 3-5

Index

N

naming functions and variables 5-21
navigating
M-File 6-22
nested comments 6-16
nested functions
indenting 6-20
newsgroup 4-40
newsletters 4-40
nodesktop startup option 1-9
nojvm startup option 1-9
Normal style (Microsoft Word)
default style in M-book 8-33
defaults 8-34
used in undefined input cells 8-26
nosplash startup option 1-10
Notebook
configuring 8-39
debugging 8-22
options 8-45
overview 8-18
platforms supported 8-18
notebook
basics 8-18
configuring 8-39
Notebook menu
Word menu bar 8-18
numbering lines 6-20
numeric format
controlling in M-book 8-35
output 3-21
preferences 3-30

o
open 5-40
opening files
Current Directory browser 5-39
openvar 5-11
operating system commands 3-6
optimizing performance of M-files 7-35
options
shutdown 1-13
startup 1-4
output
display
format 3-21
hidden 3-20
hiding 3-20
in Command Window 3-2
paging 3-20
spaces per tab 3-31
spacing of 3-30
suppressing 3-20
output cells
converting to text 8-32
purging 8-32
Output style
definition 8-34

P
paging in the Command Window 3-20
parentheses matching

Command Window preferences 3-32

Index-11

Index

path
adding directories to 5-34
changing 5-24
description 5-20
order of directories 5-21
problems and recovering 5-29
saving changes 5-27
saving for future sessions 5-27
viewing 5-24
PATH environment variable 3-6
pathdef.m 5-22
location 5-27
pathtool 5-22
pausing execution of M-file 6-41
pcode
error checking 6-35
PDF
printing documentation files 4-31
reader, preference for Help browser 4-29
performance
improving for M-files 7-35
periods (...) 3-12
pop-up menus 2-31
precision
output display 3-21
preferences
MATLAB, general 2-55
printing
Command History 3-38
Command Window contents 3-22
documentation 4-31
help 4-31
M-files 6-33

Index-12

printing an M-book
cell markers 8-33
color 8-33
color modes 8-38
defaults 8-33
problems, reporting to The MathWorks 4-39
product filter in Help browser
preference 4-28
product version 2-44
profile 7-51
example 7-53
Profiler
time described 7-40
profiling 7-35
programs
running from MATLAB 3-6
stopping while running 3-5
prompt
in Command Window 3-2
when debugging 6-45
properties
source control on PC platforms 9-24
tab completion 3-16
properties 9-25
publishing
cells
platforms supported 8-15
Purge Output Cells 8-45
purging output cells 8-32

Q
quitting
confirmation 1-13
saving workspace 1-13
quitting MATLAB 1-13

Index

R
R Inc Search field 6-26

rapid development 6-65
recall previous lines 3-13
recover deleted files 2-56
recycle function
preference 2-56
red breakpoint icons 6-43
redo
in desktop 2-39
reference pages 4-2
regserver startup option 1-6
remove 9-19
removing files from source control system 9-19
requirements
MATLAB 1-2
results in MATLAB, displaying 5-11
revision control system
See source control system interface on PC
platforms or source control system
interface on UNIX platforms
right-hand text limit 6-21
roadmap for documentation 4-9
rule
in Editor 6-21
running
M-files 5-41
M-files in Editor 6-32
runscc 9-25
run-time errors 6-34

S

save 5-6
saving
automatically in Editor 6-31
MAT-files
preferences 2-57
M-files 6-30
workspace upon quitting 1-13
script for startup 1-4
scroll buffer for Command Window 3-30
scrolling in Command Window 3-20
SCS
See source control system interface on PC
platforms or source control system
interface on UNIX platforms
search path 5-20
problems and recovering 5-29
saving for future sessions 5-27
searching
for M-files 5-42
Help browser 4-13
Boolean 4-16
results 4-13
text in page 4-22
M-file content
across files 5-42
text
Command History 3-37
Command Window 3-24
text in current file 6-24
text in M-files 6-25
text, incrementally 6-26
section breaks
in calc zones 8-42
selecting multiple items 2-38

Index-13

Index

semicolon (;)

after functions 3-20

between functions 3-12
separator in functions 3-12
session

automatic log file 1-5
session log

Command History 3-33

diary 3-23
setting breakpoints 6-41
shadowed functions 5-21
shell escape 3-6
shortcut

for MATLAB in Windows 1-2

keys in MATLAB 2-35
shortcut keys

Command Window editing 3-18

Editor 6-22
shortcuts

categories 2-28

creating

Command History 3-36

defined 2-21

deleting 2-28

editing 2-28

Editor 6-22

file 2-24

labels, hiding 2-28

moving 2-28

organizing 2-28

toolbar 2-25
shortcuts.xml 2-24
Show Cell Markers 8-45
show file history on PC platforms 9-20
showdiff 9-23

Index-14

shutdown
MATLAB 1-13
options 1-13
Simulink
interfacing files with source control systems on
PC platforms 9-2
interfacing files with source control systems on
UNIX platforms 9-28
smart recall 3-13
snapshot 7-8
source control
troubleshooting 9-26
source control system interface on PC platforms
adding file 9-4
checking in files 9-12
checking out files 9-8
comparing working copy to source control
version 9-21
displaying file properties 9-24
get latest version of file 9-15
preferences 9-3
removing files 9-19
selecting current system 9-3
showing file history 9-20
specifying 9-3
starting source control system 9-25
undoing file check-out 9-18

Index

source control system interface on UNIX
platforms
checking in files 9-30
checking out files 9-32
configuring ClearCase source control system
9-30
preferences 9-28
selecting current system 9-28
specifying 9-28
supported systems 9-28
undoing file check-out 9-34
spaces in MATLAB commands 3-9
spacing
output in Command Window 3-30
tabs in Command Window 3-31
splash screen
UNIX startup option 1-10
Windows startup option 1-6
stack
in Editor 6-45
viewing 5-8
stand-alone Editor 6-10
Start button 2-19
adding toolboxes 2-21
starting MATLAB
DOS 1-2
UNIX 1-2
Windows 1-2
starting source control system
on PC platforms 9-25
startup
directory for MATLAB 1-3
files for MATLAB 1-4
options for MATLAB 1-4
script 1-4

startup.m

location 1-4

startup file 1-4
Stateflow files

source control on PC platforms 9-2

source control on UNIX platforms 9-28
statements

defined 3-3

executing a group of 2-21

long (on multiple lines) 3-12
stepping through M-file 6-46
stopping a running program 3-5
stops

in M-files 6-41
stops (...) 3-12
strings

across multiple lines 3-12

color indicators 2-53

saving as Unicode 2-57
structures

editing 5-12

tab completion 3-16
style preferences for text 2-45
styles in M-book

modifying 8-33
subfunction

displayed in Editor status bar 6-21
subfunctions

going to in M-file 6-24
suggestions to The MathWorks 4-41
support

technical 4-39
suppressing M-Lint messages 7-27
suppressing output 3-20
switches

for startup 1-4

Index-15

Index

syntax
color indicators 2-53
color preferences in MATLAB 2-51
coloring and indenting 3-10
errors 6-34
highlighting 6-19
system path for UNIX 3-6
system requirements
MATLAB 1-2

T
tab

indenting in Editor 6-20
spacing in Command Window 3-31
tab completion 3-14
table of contents for help 4-8
Technical Support
contacting 4-39
Web page 2-43
templates
M-book 8-33
temporary directory
for deleted files 2-56
terminating a running program 3-5
text
converting to input cells 8-42
finding in page in Help browser 4-22
preferences in MATLAB 2-45
styles in M-book 8-33
text editors for M-files 6-4
text files
editing in Editor 6-12
opening in Editor 6-8
time
measured for M-files 7-35

Index-16

time-out message

while evaluating multiple input cells in an

M-book 8-44
tmp/MATLAB_Files directory 2-56
Toggle Graph Output for Cell 8-46
token matching

Command Window preferences 3-32
toolbars
desktop 2-32
shortcuts 2-25
toolbox path cache
preferences 1-11
tools in desktop
description 2-2
tooltips 2-32
tooltips for data 6-48
Trash Can 2-56
troubleshooting
source control problems 9-26
type ahead feature 3-13
Command History 3-36

U
UNC pathname 7-12

uncheckout 9-19
uncomment 6-14
Undefine Cells 8-46
undo
in desktop 2-39
undo in Editor 6-19
undoing file check-out
on PC platforms 9-18
on UNIX platforms 9-34
Ungroup Cells 8-47
Unicode
preference when saving 2-57

Index

UNIX

system path 3-6
unregserver startup option 1-6
updates 2-44
updates to products 2-43
uppercase usage in MATLAB 3-9
Use 16-Color Figures 8-38
utilities

running from MATLAB 3-6

\'

values
examining 6-47
viewing in Editor 6-32
variables
clearing 5-7
displaying values of 5-11
editing values 5-10
graphing from the Workspace browser 5-8
naming 5-21
saving 5-4
viewing during execution 6-47
workspace 5-2
version 2-44
information for MathWorks products 4-41
startup option for UNIX 1-7
version control system
See source control system interface on PC
platforms or source control system
interface on UNIX platforms
viewing desktop tools 2-6
Visible figure property
embedding graphics in M-book 8-36

w

warning breakpoints 6-62
warning message identifiers 6-64
Web
accessing from MATLAB 2-43
site for The MathWorks 2-43
Web browser
font 2-31
in MATLAB 2-29
proxy server 2-31
what 5-34
who 5-4
whos 5-4
width of Command Window 3-30
windows in desktop
about 2-2
arrangement 2-5
closing 2-6
opening 2-6
winword.exe 8-40
Word documents
converting to M-book 8-21
work directory 1-3
working directory 5-32

Index-17

Index

workspace
base 5-8
clearing 5-7
defined 5-2
functions 5-8
initializing in M-book 8-25
loading 5-6
M-book contamination 8-22
opening 5-6
protecting integrity 8-22
saving 5-4
tool 5-2
viewing 5-3
viewing during execution 6-47
Workspace browser
description 5-2
preferences 5-9
wrapping lines 3-30
wrapping long lines 3-12

X
Xserver option for UNIX 1-7

Y
yellow highlighting in M-file 6-67

Index-18

	Startup and Shutdown
	Starting MATLAB
	Starting MATLAB on Windows Platforms
	Starting MATLAB on UNIX Platforms
	Startup Directory for MATLAB
	Startup Options
	Toolbox Path Caching in MATLAB

	Quitting MATLAB
	Running a Script When Quitting MATLAB

	Desktop
	Overview of the Desktop
	Example of Desktop—Default Layout
	Summary of Desktop Tools

	Arranging the Desktop—Overview
	Opening and Arranging Tools
	Opening and Arranging Documents
	Examples of Desktop Arrangements
	Saving Desktop Layouts

	Common Desktop Features
	Start Button for Accessing Tools
	Shortcuts for MATLAB—Easily Run a Group of Statements
	Web Browser
	Menus and Context Menus
	Toolbars
	Status Bar
	Sizing, Arranging, and Sorting Columns in Tools
	Keyboard Shortcuts (Accelerators) and Mnemonics
	Selecting Multiple Items
	Cut, Copy, and Paste
	Page Setup Options for Printing
	Accessing The MathWorks on the Web

	Fonts, Colors, and Other Preferences
	Fonts Preferences for Desktop Tools
	Colors Preferences for Desktop Tools
	General Preferences for MATLAB
	About Preferences

	Running Functions— Command Window and History
	Opening the Command Window
	Running Functions and Programs, and Entering Variables
	Running Statements at the Command Line Prompt
	Running External Programs
	Evaluating or Opening a Selection
	Hyperlinks for Running Functions

	Controlling Input
	Case and Space Sensitivity
	Syntax Highlighting
	Cut, Copy, Paste, and Undo Features
	Enter Multiple Lines Without Running Them
	Entering Multiple Functions in a Line
	Entering Long Statements
	Recalling Previous Lines
	Tab Completion
	Keyboard Shortcuts in the Command Window
	Navigating Above the Command Line

	Controlling Output
	Suppressing Output
	Paging of Output in the Command Window
	Formatting and Spacing Numeric Output
	Clearing the Command Window
	Printing Command Window Contents
	Keeping a Session Log

	Searching in the Command Window
	Find Dialog Box
	Incremental Search

	Preferences for the Command Window
	Format, Display, and Accessibility Preferences
	Keyboard and Indenting Preferences for the Command Window

	Command History
	Viewing Statements in the Command History Window
	Using Statements from the Command History
	Searching in the Command History
	Printing the Command History
	Deleting Entries in the Command History Window

	Preferences for Command History
	Settings
	Saving

	Help for Using MATLAB
	Types of Documentation
	Accessing Documentation on the Web
	Documentation in Other Languages

	Help Browser
	Resizing the Help Browser
	Adding Your Own Help Files to the Help Browser

	Find Information with the Help Browser
	Contents Listing in the Help Browser
	Index for the Help Browser
	Search Documentation with the Help Browser
	Favorites

	View Documentation in the Help Browser
	Browse to Other Pages
	Links
	Find Text in Displayed Pages
	Copy Information
	Evaluate a Selection
	View the Page Source (HTML)

	Demos in the Help Browser
	Using Demos
	Adding Your Own Demos

	Preferences for the Help Browser
	Product Filter
	PDF Reader—Specifying Its Location
	General—Keep Contents Synchronized
	Help Fonts Preferences—Specifying Font Name, Style, and Size

	Printed Documentation
	Printing a Page from the Help Browser
	Printing the PDF Version of Documentation

	Help Functions
	View Function Reference Pages—the doc Function
	Getting Help in the Command Window—the help Function

	Other Forms of Help
	Documentation for Other Products
	Product-Specific Help Features
	User-Contributed M-Files
	Technical Support
	Newsgroup for MathWorks Products
	Other Resources for MATLAB Information
	Version and License Information
	Provide Feedback

	Workspace, Search Path, and File Operations
	MATLAB Workspace
	Opening the Workspace Browser
	Viewing and Editing Values in the Current Workspace
	Saving the Current Workspace
	Loading a Saved Workspace and Importing Data
	Changing and Copying Variable Names
	Clearing Workspace Variables
	Viewing Base and Function Workspaces Using the Stack
	Creating Graphics from the Workspace Browser
	Opening Variables and Objects for Viewing and Editing
	Preferences for the Workspace Browser

	Viewing and Editing Workspace Variables with the Array Editor
	Opening the Array Editor
	Viewing and Editing Cell Arrays, Structures, and Multidimensional Arrays
	Navigating and Editing Shortcut Keys for the Array Editor
	Changing Array Size, Content, and Format of Elements in the Array Editor
	Cut, Copy, Paste, and Delete in the Array Editor
	Exchanging Data with the Command Window
	Exchanging Data with Excel
	Creating Graphs and Variables from the Current Selection
	Preferences for the Array Editor

	Search Path
	About the Search Path
	How the Search Path Determines Which Function to Use
	How MATLAB Finds the Search Path, pathdef.m
	Viewing and Setting the Search Path
	Using the Path in Future Sessions
	Recovering from Problems with the Search Path

	File Management Operations
	Current Directory Field
	Current Directory Browser
	Viewing and Making Changes to Directories
	Creating, Renaming, Copying, and Removing Directories and Files
	Opening, Running, and Viewing Information About Files
	Finding Files and Content Within Files
	Accessing Source Control Features
	Preferences for the Current Directory Browser

	Editing and Debugging M-Files
	Begin with Existing Code
	Create M-Files from Command Window and History
	Use Existing M-Files and Examples

	Ways to Edit and Debug M-Files
	Starting, Customizing, and Closing the Editor/Debugger
	Creating a New File in the Editor/Debugger
	Opening Existing Files in the Editor/Debugger
	Opening the Editor Without Starting MATLAB
	Arranging Editor/Debugger Documents
	Preferences for the Editor/Debugger
	Creating and Editing Other Text File Types
	Closing the Editor/Debugger

	Creating, Editing, and Running Files
	Entering Statements
	Appearance of an M-File
	Navigating in an M-File
	Finding Text in Files
	Opening a Selection in an M-File
	Saving M-Files
	Running M-Files from the Editor/Debugger
	Printing M-Files
	Closing M-Files

	Debugging M-Files
	Finding Errors in M-Files
	Debugging Example—The Collatz Problem
	Debugging Process and Features
	Preparing for Debugging
	Setting Breakpoints
	Running an M-File with Breakpoints
	Stepping Through an M-File
	Examining Values
	Correcting Problems and Ending Debugging
	Conditional Breakpoints
	Breakpoints in Anonymous Functions
	Error Breakpoints

	Rapid Code Iteration Using Cells
	Defining Cells
	Navigating and Evaluating with Cells
	Using Cells in Function M-Files

	Tuning and Managing M-Files
	Visual Directory in Current Directory Browser
	Navigate Directory Hierarchy
	View and Edit Files
	Sort by Contents.m
	Run, Make Thumbnail, Delete File (Show Actions)
	Show File Sizes
	Show Function or Script

	Directory Reports in Current Directory Browser
	Accessing and Using Directory Reports
	TODO/FIXME Report
	Help Report
	Contents Report
	Dependency Report
	File Comparison Report
	Coverage Report

	M-Lint Code Check Report
	Accessing M-Lint
	M-Lint Graphical User Interface (GUI)
	Making Changes Based on M-Lint Messages

	Profiling for Improving Performance
	What Is Profiling?
	The Profiling Process—Guidelines
	The Profiler
	Profile Summary Report
	Profile Detail Report
	The profile Function

	Publishing Results
	Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells
	Overview of Publishing
	Example of Publishing Without Text Markup
	Example of Publishing with Text Markup

	Marking Up Text in Cells for Publishing
	Publishing M-Files Using Cells
	How to Publish an M-File
	About Published M-Files
	Modifying Published Output Via Preferences

	Notebook for Publishing to Word
	Creating an M-Book
	Entering MATLAB Commands in an M-Book
	Protecting the Integrity of Your Workspace in M-Books
	Ensuring Data Consistency in M-Books
	Debugging and Notebook

	Defining MATLAB Commands as Input Cells for Notebook
	Defining Cell Groups for Notebook
	Defining Autoinit Input Cells for Notebook
	Defining Calc Zones for Notebook
	Converting an Input Cell to Text with Notebook

	Evaluating MATLAB Commands with Notebook
	Evaluating Cell Groups with Notebook
	Evaluating a Range of Input Cells with Notebook
	Evaluating a Calc Zone with Notebook
	Evaluating an Entire M-Book
	Using a Loop to Evaluate Input Cells Repeatedly with Notebook
	Converting Output Cells to Text with Notebook
	Deleting Output Cells with Notebook

	Printing and Formatting an M-Book
	Printing an M-Book
	Modifying Styles in the M-Book Template
	Choosing Loose or Compact Format for Notebook
	Controlling Numeric Output Format for Notebook
	Controlling Graphic Output for Notebook

	Configuring Notebook��
	Notebook Feature Reference

	Source Control
	Source Control Interface on PC Platforms
	Selecting and Viewing the Source Control System
	Adding Files to the Source Control System
	Checking Files Out of the Source Control System
	Checking Files Into the Source Control System
	Getting the Latest Version of Files from the Source Control System
	Undoing the Check-Out
	Removing Files from the Source Control System
	Showing File History
	Comparing the Working Copy of a File to the Latest Version in Source Control
	Displaying Source Control Properties of a File
	Starting the Source Control System Client
	Troubleshooting Source Control Problems

	Source Control Interface on UNIX Platforms
	Selecting and Viewing the Source Control System
	Checking Files Into the Source Control System
	Checking Out Files from the Source Control System
	Undoing the Check-Out

	Index

