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Approximation of Functions

To get the value of sin(2.113) or 3.
Does NOT look up in tables and interpolate!

The computer approximates every function from some polynomial
that is customized to give the values very accurately.

We want the approximation to be efficient in that it obtains the val-
ues with the smallest error in the least number of arithmetic
operations.

Another way to approximate a function is with a series of sine and
cosine terms, Fourier series (represents periodic functions).

Chebyshev Polynomials and Chebyshev Series: Chebyshev poly-
nomials are orthogonal polynomsials that are the basis for fitting
nonalgebraic functions with maximum efficiency.

They can be used to modify a Taylor series so that there is greater
efficiency.

A series of such polynomials converges more rapidly than a Taylor
series.

Fourier Series: These are series of sine and cosine terms that can
be used to approximate a function within a given interval very closely,
even functions with discontinuities.

Fourier series are important in many areas, particularly in getting an
analytical solution to partial-differential equations.

If we want to represent a known function as a polynomial, one way to
do it is with a Taylor series.

Given a function, f(z), we write
P.(z) = ap+ai(x —a) +as(v —a)* +az(x —a)*+.. . +a(x—a)"+...

Where _
 f9)
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e Then, rewriting this Taylor series expansion as

f'(a) ["(a) ["(a)

P.(x) = f(a) + T (r—a)+ o (x—a)2+T(:p—a)3+...
+fnT<ﬁ>(x—a)"+...

Unless f(x) is itself a polynomial, the series may have an infinite
number of terms.

Terminating the series incurs an error, truncation error.

The error after the (x — a)” term,

Error = (z = o)™ frU€), where € in [a, z]

(n+1)!

A problem with using the Taylor series to get polynomial approxima-
tions to a transcendental function is that the error grows rapidly as
x-values depart from v = a.

For f(z) = e, the Taylor series is easy to write because the derivatives
are so simple: f"(a) = e for all orders (n),

For a = 0, we have, (which is then called a Maclaurin series)

e ~1+1(z—0)+1/2(x —0)* +1/6(z — 0)*

if we use only terms through 2?; the error term shows that the error of
this will grow about proportional to 2* as x-values depart from zero.

There is a way to deal with this rapid growth of the errors,

That is to write the polynomial approximation to f(z) in terms of
Chebyshev polynomials.
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Figure 1: Plot of the first four polynomials of the Chebyshev polynomials.

1.1 Chebyshev Polynomials and Chebyshev Series
1.1.1 Chebyshev Polynomials

e A Maclaurin series can be thought of as representing f(x) as a weighted
sum of polynomials.

e The kind of polynomials that are used are just the successive powers

of v 1,z 2% 23, ...

e Chebyshev polynomials are not as simple; the first 11 of these are

To(z) =1

T\(z) =2

To(x) =222 — 1

T3(x) = 4a® — 3z

Ty(r) = 8x* — 822 + 1

Ts(x) = 1690 — 202° + bz (1)
To(v) = 322° — 482* 4+ 1822 — 1

Ty (z) = 6427 — 1122° + 5623 — Tz

Ty(x) = 1282% — 2562° + 1602 — 3222 + 1

Ty(z) = 25627 — 57627 + 4322° — 1202 + 9z

Tio(z) = 512210 — 12802° + 112025 — 400z* + 5022 — 1

e Note that the coefficient of 2™ in T, (z) is always 2"~ 1.

e In Fig. 1, we plot the first four polynomials of Eqn.1.

e The members of this series of polynomials can be generated from the
two-term recursion formula

Toi1(x) = 22T, (z) — T -1 ()
To(z)=1 & Ti(x)=



e They form an orthogonal set,

0 n#m
LT ()T, ’
n(7) m(x)da:: s n=m=20

-1 vl-a? /2, n=m#0

e The Chebyshev polynomials are also terms of a Fourier series, because
T, (z) = cos(nh)
where 0 = arc(cosz). Observe that

n = 0; cos0=1— Tho=1
n=1; cosh = cos(arc(cosz)) =x— T} ==x

e Because of the relation T, (z) = cos(n#), the Chebyshev polynomials
will have a succession of maxima and minima of alternating signs, as
Figure 1 shows.

e MATLAB has no commands for these polynomials but this M-file will
compute them:

functicon T=Tch (n)
if ne==0

di=p("1*]
mlzmif ne==]1
di=p[*x")
=l=sm
tO=r173
El="2x"g
for i=Zin
T=symop (" 24x® " +° ,£1, =", 0},
to=t1y
t1=T;
=nd
=nd
=»Techi5)

*»rcollect lans)
ans= lH+x"5-Z04x"324+5+x

if symop does not exist, download.

e All polynomials of degree n that have a coefficient of one on z", the

polynomial
1

FTn(ﬂf)

has a smaller upper bound to its magnitude in the interval [-1, 1].
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http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter4/symop.m

This is important because we will be able to write power function ap-
proximations to functions whose maximum errors are given in terms of
this upper bound.

Example m-file: Comparison of Lagrangian interpolation polynomi-
als for equidistant and non-equidistant (Chebyshev) sample points for

the function f(z) = -1 (lagrange_chebyshev.m )

1.1.2 Economizing a Power Series

We begin a search for better power series representations of functions
by using Chebyshev polynomials to economize a Maclaurin series.

This will give a modification of the Maclaurin series that produces a
fifth-degree polynomial

whose errors are only slightly greater than those of a sixth-degree
Maclaurin series.

We start with a Maclaurin series for e*:

2 l‘3 $‘4 l‘5 {L‘G

T _ 1 rorr T T oL
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If we would like to use a truncated series to approximate e® on the
interval [0, 1] with a precision of 0.001,

We will have to retain terms through that in 2, because the error after
the term in 2° will be more than

1/720 = 0.00139 (and 1/120 = 0.0084)

() (5)

This will exactly cancel the 2 term from Eqn. 1

Suppose we subtract

from the truncated series.

and at the same time make adjustments in other coefficients of the
Maclaurin series.

Because the maximum value of Ty on the interval [0, 1] is unity,


http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter4/lagrange_chebyshev.m

Maclaurin of degree Economized of degree

% e* 6 5 4 5 4
0.0 1.00000 1.00000 1.00000 1.00000 1.00004
0.2 1.22140 1.22140 1.22140 1.22140 122142
0.4 1.49182 1.49182 1.49182 1.49173 1.49178
0.6 1.82212 1.82212 1.82205 1.82140 1.82208
0.8 2.22554 2.22549 232513 2.22240 2.22553
1.0 2.71828 2.71806 2.71667 2.70833 2.71801
Maximum error 0.00023 0.00162 0.00995 0.00027

Table 1: Comparison of economized series with Maclaurin series.

e this will change the sum of the truncated series by only

1 1

which is small with respect to our required precision of 0.001.

e Performing the calculations, we have

Maclaurin
v S e e 20
1 L2y st
R I S Y T R 5Ty

Q

L [(322° — 482* + 1827 — 1)
~ () 32

Chebyshev Ts(z)/32

e* & 1.000043 + x + 0.49921927 + £ + 0.0437502* 4 L

The resulting fifth-degree polynomial approximates e® on [0, 1] nearly
as well as the sixth-degree Maclaurin series.

its maximum error (at x = 1) is 0.000270, compared to 0.000226 for
the Maclaurin polynomial (see Table 1).

We economize in that we get about the same precision with a lower-
degree polynomial.

By subtracting ﬁf—g we can economize further, getting a fourth-degree
polynomial that is almost as good as the economized fifth-degree one.
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So that we have found a fourth-degree power series that meets an error
criterion that requires us to use two additional terms of the original
Maclaurin series.

Because of the relative ease with which they can be developed, such
economized power series are frequently used for approximations to func-
tions.

Much more efficient than power series of the same degree obtained by
truncating a Taylor or Maclaurin series.

Observe that even the economized polynomial of degree-4 is more ac-
curate than a fifth-degree Maclaurin series.

Also notice that near # = 0, the economized polynomials are less accu-
rate.

We can get the economized series with MATLAB by employing our
M-file for the Chebyshev series.

We must start with z as a symbolic variable, then get the Maclaurin
series and subtract the proper multiple of the Chebyshev series:

VM= X

>> tz=taylor(expi=), 7]

l+x+1l/2ex"2+1 /6o 341 /296" 44+1 /1204”541 /77204 ="5

x>x =Tl (6] g

2» mpmtpg—cEfFactorial (6] F2°5
=c=23041,/230404+=+6323 1 280+x"2+1 /6 x"3+T7/1E60¢x"44+1/1204x"5
2 ovpalez, 7]

>> coll=ct {ans)



1.1.3 Chebyshev Series

e By rearranging the Chebyshev polynomials,

e we can express powers of x in terms of them:

I
=S

(To + T3)

(37, + T3)

(3Ty + 4Ty + ) 2
(107} + 5Ty + Ty)

(10T} + 15T, + 6Ty + Ts)

(35T, + 21T} + 7Ts + T5)

(35T} + 56T + 28T + 8Tj + T)

(126} + 84T; + 36T + 9T% + T)
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e By substituting these identities into an infinite Taylor series

e and collecting terms in 7;(x), we create a Chebyshev series.

e For example, we can get the first four terms of a Chebyshev series
e’ =1.26617, + 1.130277 + 0.2715T5 + 0.0443T5%

by starting with the Maclaurin expansion for e*.

e Such a series converges more rapidly than does a Taylor series on

2 {L‘3 {L‘4

T =1 e
=1tz okt

e Replacing terms by Eqn. 2, but omitting polynomials beyond T3(z)
because we want only four terms, we have;

e’ =1.2661Ty + 1.130277 + 0.271575 + 0.044375 + . ..

e The number of terms that are employed determines the accuracy of the
computed values.

e To compare the Chebyshev expansion with the Maclaurin series, we
convert back to powers of z, using Eqn. 1:

e” = 0.9946 + 0.9973z + 0.54302% + 0.17722% + . .. (3)



X e* Chebyshev Error Maclaurin Error

~1.0 0.3679 0.3631 0.0048 0.3333 0.0346
-0.8 0.4493 0.4536 —0.0042 0.4346 0.0147
—0.6 0.5488 0.5534 —0.0046 0.5440 0.0048
—04 0.6703 0.6712 —0.0009 0.6693 0.0010
=02 0.8187 0.8154 0.0033 0.8187 0.0001
0 1.0000 0.9946 0.0054 1.0000 0.0000
0.2 1.2214 1.2172 0.0042 1.2213 0.0001
0.4 1.4918 1.4917 0.0001 1.4907 0.0012
0.6 1.8221 1.8267 —0.0046 1.8160 0.0061
0.8 22255 2.2307 —0.0051 2.2054 0.0202
1.0 27183 2.7121 0.0062 2.6667 0.0516

Table 2: Comparison of Chebyshev series for e* with Maclaurin series.
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Figure 2: Comparison of the error of Chebyshev series for ¢* with the error
of Maclaurin series.

e Table 2 and Figure 2 compare the error of the Chebyshev expansion
(0.9946 + 0.9973z + 0.543022 + 0.17722%) with the Maclaurin series
(1+x+0.52% + 0.1667z3).

— Chebyshev expansion, the errors can be considered to be dis-
tributed more or less uniformly throughout the interval.

— Maclaurin expansion, which gives very small errors near the origin,
allows the error to bunch up at the ends of the interval.
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