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Approximation of Functions

• A second topic, representing a function with a series of
sine and cosine terms.

• A Fourier series, is usually the best way to represent a
periodic function, something that cannot be done with a
polynomial or a Taylor series.

• A Fourier series can even approximate functions with
discontinuities and discontinuous derivatives.

• Fourier Series: These are series of sine and cosine
terms that can be used to approximate a function within a
given interval very closely, even functions with
discontinuities. Fourier series are important in many
areas, particularly in getting an analytical solution to
partial-differential equations.
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Fourier Series I
• Polynomials are not the only functions that can be used to

approximate the known function.
• Another means for representing known functions are

approximations that use sines and cosines, called Fourier
series .

• Any function can be represented by an infinite sum of sine
and cosine terms with the proper coefficients, (possibly with
an infinite number of terms).

• Any function, f (x), is periodic of period P if it has the same
value for any two x-values, that differ by P, or

f (x) = f (x+P) = f (x+2P) = . . . = f (x−P) = f (x−2P) = . . .
• Figure 1 shows such a periodic function. Observe that the

period can be started at any point on the x -axis.

Figure: Plot of a periodic function of period P.
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Fourier Series II

• Sin(x) and cos(x) are periodic of period 2π
• Sin(2x) and cos(2x) are periodic of period π

• Sin(nx) and cos(nx) are periodic of period 2π/n
• We now discuss how to find the As and Bs in a Fourier

series of the form

f (x) ≈
A0

2
+

∞
∑

n=1

[Ancos(nx) + Bnsin(nx)] (1)

• The determination of the coefficients of a Fourier series
(when a given function,f (x), can be so represented) is
based on the property of orthogonality for sines and
cosines.

• For integer values of n,m:
∫ π

−π

sin(nx)dx = 0 (2)

∫ π

−π

cos(nx)dx =

{

0, n 6= 0
2π, n = 0

}

(3)
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Fourier Series III

∫ π

−π

sin(nx)cos(mx)dx = 0 (4)

∫ π

−π

sin(nx)sin(mx)dx =

{

0, n 6= m
π, n = m

}

(5)

∫ π

−π

cos(nx)cos(mx)dx =

{

0, n 6= m
π, n = m

}

(6)

• It is related to the same term used for orthogonal
(perpendicular) vectors whose dot product is zero.

• Many functions, besides sines and cosines, are orthogonal
(such as the Chebyshev polynomials).

• To begin, we assume that f (x) is periodic of period 2π and
can be represented as in Eq. 1.

• We find the values of An and Bn in Eq. 1 in the following
way;

• For A0; multiply both sides of Eq. 1 by cos(0x) = 1, and
integrate term by term between the limits of −π and π.



Approximation of
Functions II

Dr. Cem Özdo ğan
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Fourier Series III

∫

π

−π

f (x)dx =

∫

π

−π

A0

2
dx+

∞
∑

n=1

∫

π

−π

Ancos(nx)dx+
∞
∑

n=1

∫

π

−π

Bnsin(nx)dx

• Because of Eqs. 2 and 3, every term on the right vanishes
except the first, giving

∫ π

−π

f (x)dx =
A0

2
(2π), or A0 =

1
π

∫ π

−π

f (x)dx

Hence, A0 is found and it is equal to twice the average
value of f (x) over one period.

• For An; multiply both sides of Eq. 1 by cos(mx), where m
is any positive integer, and integrate:

∫ π

−π

cos(mx)f (x)dx =

∫ π

−π

A0

2
cos(mx)dx+

∞
∑

n=1

∫ π

−π

Ancos(mx)cos(nx)dx+
∞
∑

n=1

∫ π

−π

Bncos(mx)sin(nx)dx
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Fourier Series IV
• Because of Eqs. 3,4 and 6 the only nonzero term on the

right is when m = n in the first summation, so we get a
formula for the As;

An =
1
π

∫ π

−π

f (x)cos(nx)dx , n = 1, 2, 3, . . .

• For Bn; multiply both sides of Eq. 1 by sin(mx), where m is
any positive integer, and integrate:

∫ π

−π

sin(mx)f (x)dx =

∫ π

−π

A0

2
sin(mx)dx+

∞
∑

n=1

∫ π

−π

Ansin(mx)cos(nx)dx+
∞
∑

n=1

∫ π

−π

Bnsin(mx)sin(nx)dx

• Because of Eqs. 2, 4 and 5, the only nonzero term on the
right is when m = n in the second summation, so we get a
formula for the Bs;

Bn =
1
π

∫ π

−π

f (x)sin(nx)dx , n = 1, 2, 3, . . .

• It is obvious that getting the coefficients of Fourier series
involves many integrations.
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Fourier Series for Periods Other Than 2π I

• What if the period of f (x) is not 2π?

• We just make a change of variable.

• If f (x) is periodic of period P, the function can be
considered to have one period between −P/2 and P/2.

• The functions sin(2πx/P) and cos(2πx/P) are periodic
between −P/2 and P/2.

• The formulae become, for f (x) periodic of period P;

An =
1

P/2

∫ P/2

−P/2
f (x)cos

(

π

P/2
nx

)

dx , n = 0, 1, 2, . . .

(7)

Bn =
1

P/2

∫ P/2

−P/2
f (x)sin

(

π

P/2
nx

)

dx , n = 1, 2, 3, . . . (8)

• Because a function that is periodic with period P between
−P/2 and P/2 is also periodic with period P between A
and A + P, the limits of integration in Eqs. 7 and 8 can be
from 0 to P.
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Fourier Series
Fourier Series for Periods
Other Than 2π

Fourier Series for
Nonperiodic Functions and
Half-Range Expansions

Summary

11.10

Fourier Series for Periods Other Than 2π II

Figure: Upper: Plot of f (x) = x , periodic of period 2π,Lower: Plot of
the Fourier series expansion for N = 2, 4,8.
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Fourier Series for Periods Other Than 2π III
Examples:

1 Let f (x) = x be periodic between −π and π. (See Figure
2upper). Find the As and Bs of its Fourier expansion.

• For A0;

A0 =
1
π

∫

π

−π

f (x)dx =
1
π

∫

π

−π

xdx =

[

x2

2π

]π

−π

= 0

• For the other As;

An =
1
π

∫

π

−π

xcos(nx)dx = 0

• For the other Bs;

Bn =
1
π

∫

π

−π

xsin(nx)dx =
2(−1)n+1

n
, n = 1, 2, 3, . . .

• We then have

x ≈ 2
∞
∑

n=1

(−1)n+1

n
sin(nx), −π < x < π

Figure 2lower shows how the series approximates to the
function when only two, four, or eight terms are used.
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Fourier Series for Periods Other Than 2π IV

2 Find the Fourier coefficients for f (x) = |x | on −π to π;
•

A0 =
1
π

∫ 0

−π

−xdx +
1
π

∫

π

0
xdx = π

•

An =
1
π

∫ 0

−π

(−x)cos(nx)dx +
1
π

∫

π

0
(x)cos(nx)dx =

{

0, n = 2, 4, 6, . . .
−4

(n2
π)
, n = 1, 3, 5, . . .

}

•

Bn =
1
π

∫ 0

−π

(−x)sin(nx)dx +
1
π

∫

π

0
(x)sin(nx)dx = 0

Because the definite integrals are nonzero only for odd values
of n, it simplifies to change the index of the summation. The
Fourier series is then

|x | ≈
π

2
−

4
π

∞
∑

n=1

cos(2n − 1)x
(2n − 1)2
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Fourier Series for Periods Other Than 2π V

Figure 3 shows how the series approximates the function when
two, four, or eight terms are used.

Figure: Plot of Fourier series for |x | for N = 2, 4,8.



Approximation of
Functions II

Dr. Cem Özdo ğan
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Fourier Series for Periods Other Than 2π VI

3 Find the Fourier coefficients for f (x) = x(2 − x) = 2x − x2

over the interval [-2, 2] if it is periodic of period 4. Equations
7 and 8 apply.

•

A0 =
2
4

∫ 2

−2
(2x − x2)dx =

−8
3

•

An =
2
4

∫ 2

−2
(2x−x2)cos

(nπx
2

)

dx =
16(−1)n+1

n2π2
, n = 1,2, 3, . . .

•

Bn =
2
4

∫ 2

−2
(2x−x2)sin

(nπx
2

)

dx =
8(−1)n+1

nπ
, n = 1, 2, 3, . . .

x(2 − x) ≈
−4
3

+
16
π2

∞
∑

n=1

(−1)n+1

n2
cos

(nπx
2

)

+

8
π

∞
∑

n=1

(−1)n+1

n
sin

(nπx
2

)
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Fourier Series for Periods Other Than 2π VII

• Figure 4 shows how the series approximates to the
function when 40 terms are used.

Figure: Plot of Fourier series for x(2 − x) for N = 40.

• With MATLAB,
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Fourier Series for Nonperiodic Functions and Half-Range
Expansions I

Figure: A function, f (x), of interest on [0,3].
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Fourier Series
Fourier Series for Periods
Other Than 2π

Fourier Series for
Nonperiodic Functions and
Half-Range Expansions

Summary

11.17

Fourier Series for Nonperiodic Functions and Half-Range
Expansions II

Figure: Left: Plot of a function reflected about the y-axis, an even
function,Right: Plot of a function reflected about the origin, an odd
function.

• The development until now has been for a periodic
function. What if f (x) is not periodic?

• Can we approximate it by a trigonometric series?
• We assume that we are interested in approximating the

function only over a limited interval
• and we do not care whether the approximation holds

outside of that interval.
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Fourier Series for Nonperiodic Functions and Half-Range
Expansions III

• Suppose we have a function defined for all x -values, but
we are only interested in representing it over (0, L). Figure
5 is typical.

• Because we will ignore the behavior of the function outside
of (0, L),

• we can redefine the behavior outside that interval as we
wish Figs. 6left and -right show two possible redefinitions.

• In the first redefinition, we have reflected the portion of f (x)
about the y -axis and have extended it as a periodic function
of period 2L. This creates an even periodic function.

f (x) is even if f (−x) = f (x)

• If we reflect it about the origin and extend it periodically, we
create an odd periodic function of period 2L.

f (x) is odd if f (−x) = −f (x)

• It is easy to see that cos(Cx) is an even function and that
sin(Cx) is an odd function for any real value of C.
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Fourier Series for Nonperiodic Functions and Half-Range
Expansions IV

• There are two important relationships for integrals of even
and odd functions.

if f (x) is even,
∫ L
−L f (x)dx = 2

∫ L
0 f (x)dx

if f (x) is odd ,
∫ L
−L f (x)dx = 0

• the product of two even functions is even;
if f (x) is even, f (x)cos(nx) is even

• the product of two odd functions is even;
if f (x) is odd, f (x)sin(nx) is even

• the product of an even and an odd function is odd;
if f (x) is even, f (x)sin(nx) is odd
if f (x) is odd, f (x)cos(nx) is odd

• The Fourier series expansion of an even function will
contain only cosine terms (all the B-coefficients are zero).

• The Fourier series expansion of an odd function will
contain only sine terms (all the A-coefficients are zero).
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Fourier Series for Nonperiodic Functions and Half-Range
Expansions V

• If we want to represent f (x) between 0 and L as a Fourier
series and are interested only in approximating it on the
interval (0, L),

• we can redefine f within the interval (−L, L) in two
importantly different ways;

1 We can redefine the portion from −L to 0 by reflecting
about the y -axis. We then generate an even function.

2 We can reflect the portion between 0 and L about the origin
to generate an odd function.

• Figure 7 shows these two possibilities.

Figure: Left: Plot of the function reflected about the y-axis,
Right: Plot of the function reflected about the origin.
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Fourier Series for Nonperiodic Functions and Half-Range
Expansions VI

• Thus two different Fourier series expansions of f (x) on
(0, L) are possible,

1 one that has only cosine terms
2 one that has only sine terms.

• We get the As for the even extension of f (x) on (0, L) from

An =
2
L

∫ L

0
f (x)cos

(nπx
L

)

dx , n = 0, 1, 2, . . .

• We get the Bs for the odd extension of f (x) on (0, L) from

Bn =
2
L

∫ L

0
f (x)sin

(nπx
L

)

dx , n = 1, 2, 3, . . .
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Fourier Series for Nonperiodic Functions and Half-Range
Expansions VII

Examples:
1 Find the Fourier cosine series expansion of f (x), given

that

f (x) =
{

0, 0 < x < 1
1, 1 < x < 2

}

• Figure 7left shows the even extension of the function.
• Because we are dealing with an even function on (−2, 2)

we know that the Fourier series will have
only cosine terms.

• We get the As with

A0 =
2
2

∫ 2

1
(1)dx = 1

An =
2
2

∫ 2

1
(1)cos

(nπx
2

)

=

{

0, n even
2(−1)(n+1)/2

nπ , n odd

}

• Then the Fourier cosine series is

f (x) ≈
1
2
+

2
π

∞
∑

n=1

(
(−1)ncos ((2n − 1)πx/2)

(2n − 1)
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Fourier Series for Nonperiodic Functions and Half-Range
Expansions VIII

2 Find the Fourier sine series expansion for the same function.
Figure 7right shows the odd extension of the function.

• We know that all of the A-coefficients will be zero, so we need
to compute only the Bs;

Bn =
2
2

∫ 2

1
(1)sin(

nπx
2

)dx =
2

nπ

[

−cos(nπ) + cos(
nπ
2

)
]

n = 1,2, 3, . . .

•

f (x) =
2
π

∞
∑

n=1

[cos(nπ/2)− cos(nπ)]
n

sin(
nπx

2
)
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Summary I

• A function that is periodic of period P and meets certain
criteria (see below) can be represented by Eq. 9;

f (x) =
A0

2
+

∞
∑

n=1

Ancos
(

nπx
P/2

)

+

∞
∑

n=1

Bnsin
(

nπx
P/2

)

(9)

The coefficients can be computed with

An =
2
P

∫ P/2

−P/2
f (x)cos

(

nπx
P/2

)

dx , n = 0, 1, 2, . . .

Bn =
2
P

∫ P/2

−P/2
f (x)sin

(

nπx
P/2

)

dx , n = 1, 2, 3, . . .

(The limits of the integrals can be from a to a + P)

• If f (x) is an even function, only the As will be nonzero.

• Similarly, if f (x) is odd, only the Bs will be nonzero.

• If f (x) is neither even nor odd, its Fourier series will
contain both cosine and sine terms.
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Summary II
• Even if f (x) is not periodic, it can be represented on just

the interval (0, L) by redefining the function over (−L, 0) by
reflecting f (x) about the y -axis or, alternative1y, about the
origin.

• The first creates an even function, the second an odd
function.

• The Fourier series of the redefined function will actually
represent a periodic function of period 2L that is defined
for (−L, L).

• When L is the half-period, the Fourier series of an even
function contains only cosine terms and is called a Fourier
cosine series. The As can be computed by

An =
2
L

∫ L

0
f (x)cos

(nπx
L

)

dx , n = 0, 1, 2, . . .

The Fourier series of an odd function contain Ls only sine
terms and is called a Fourier sine series. The Bs can be
computed by

Bn =
2
L

∫ L

0
f (x)sin

(nπx
L

)

dx , n = 1, 2, 3, . . .
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