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Introduction
Analysis vs Numerical
Analysis

An Illustrative Example

Some disasters attributable
to bad numerical computing

Kinds of Errors in Numerical
Procedures

Absolute vs Relative Error
& Convergence

Floating-Point Arithmetic

Round-off Error vs
Truncation Error

Well-posed and
well-conditioned problems

Forward and Backward
Error Analysis

Computer Number
Representation

2.3

How a computer can be used

1 to solve problems that may not be solvable by hand

2 to solve problems (that you may have solved before) in a
different way

• Many of these simplified examples can be solved
analytically (by hand)

x3 − x2 − 3x + 3 = 0,with solution
√

3

• But most of the examples can not be simplified and can
not be solved analytically

• mathematical relationships =⇒ simulate some real word
situations
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2.4

Five Basic Operations

• In mathematics, solve a problem through equations;
algebra, calculus, differential equations (DE), Partial
DE, . . .

• In numerical analysis; four operations (add, subtract,
multiply, division) and Comparison.

• These operations are exactly those that computers can do
∫

π

0

√

1 + cos2xdx

• length of one arch of the curve y-sinx; no solution with “a
substitution’ or “integration by parts”

• numerical analysis can compute the length of this curve by
standardised methods that apply to essentially any integrand

• Another difference between a numerical results and
analytical answer is that the former is always an
approximation

• this can usually be as accurate as needed (level of
accuracy)

• Numerical Methods require repetitive arithmetic operations
⇒ a computer to carry out

• Also, a human would make so many mistakes
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2.5

Illustrative Example I

Figure: An illustrating example: The ladder in the mine.

What is the longest ladder (L1 + L2)? (see the Fig. 1)

L1 =
w1

Sinb
, L2 =

w2

Sinc
, b = π − a− c

L = L1 + L2 =
w1

sin(π − a− c)
+

w2

sinc

The maximum length of the ladder⇒ dL
dc ⌋c=C = 0⇒ calculus

way



Preliminaries

Dr. Cem Özdo ğan
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2.6

Illustrative Example II

Figure: An illustrating example: The ladder in the mine. Solution with
MATLAB

MATLAB way is as the following: (see the Fig. 2)
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2.7

Some disasters attributable to bad numerical computing

Have you been paying attention in your numerical analysis or
scientific computation courses? If not, it could be a costly
mistake. Here are some real life examples of what can happen
when numerical algorithms are not correctly applied.

• The Patriot Missile failure, in Dharan, Saudi Arabia, on
February 25, 1991 which resulted in 28 deaths, is
ultimately attributable to poor handling of rounding errors.

• The explosion of the Ariane 5 rocket just after lift-off on its
maiden voyage off French Guiana, on June 4, 1996, was
ultimately the consequence of a simple overflow.

• The sinking of the Sleipner A offshore platform in
Gandsfjorden near Stavanger, Norway, on August 23,
1991, resulted in a loss of nearly one billion dollars. It was
found to be the result of inaccurate finite element analysis.
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2.8

Kinds of Errors in Numerical Procedures I

Computers use only a fixed number of digits
to represent a number.

• As a result, the numerical values stored in a computer are
said to have finite precision.

• Limiting precision has the desirable effects of increasing
the speed of numerical calculations and reducing memory
required to store numbers.

• But, what are the undesirable effects?

Kinds of Errors:

i Error in Original Data

ii Blunders (an embarrassing mistake): Sometimes a test
run with known results is worthwhile, but is no guarantee
of freedom from foolish error.
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2.9

Kinds of Errors in Numerical Procedures II
Kinds of Errors:

iii Truncation Error : i.e., approximate ex by the cubic power

P3(x) = 1 +
x
1!

+
x2

2!
+

x3

3!
; ex = P3(x) +

∞∑

n=4

xn

n!

• Approximating ex with the cubic gives an inexact answer.
The error is due to truncating the series,

• When to cut series expansion =⇒ be satisfied with an
approximation to the exact analytical answer.

• Unlike roundoff, which is controlled by the hardware and the
computer language being used, truncation error is under
control of the programmer or user.

• Truncation error can be reduced by selecting more accurate
discrete approximations. But, it can not be eliminated
entirely.

Evaluating the Series for sin(x)

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ . . .



Preliminaries

Dr. Cem Özdo ğan
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2.10

Kinds of Errors in Numerical Procedures III
• Cont: Evaluating the series for sin(x) (Example m-file:

sinser.m)
• An efficient implementation of the series uses recursion to

avoid overflow in the evaluation of individual terms. If Tk is
the k th term (k = 1, 3, 5, . . .) then

Tk =
x2

k(k − 1)
Tk−2

>> sinser(pi/6)
• Study the effect of the parameters tol and nmax by

changing their values (Default values are 5e-9 and 15,
respectively).

Kinds of Errors:
iv Propagated Error :

• more subtle (difficult to analyse)
• by propagated we mean an error in the succeeding steps of

a process due to an occurrence of an earlier error
• of critical importance
• stable numerical methods; errors made at early points

die out as the method continues
• unstable numerical method; does not die out

http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter0/sinser.m
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2.11

Kinds of Errors in Numerical Procedures IV

Kinds of Errors:

v Round-off Error :

To see the effects of roundoff in a simple calculation, one
need only to force the computer to store the intermediate
results.

• All computing devices represents numbers, except for
integers and some fractions, with some imprecision

• Floating-point numbers of fixed word length; the true values
are usually not expressed exactly by such representations

• If the number are rounded when stored as floating-point
numbers, the round-off error is less than if the trailing digits
were simply chopped off
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2.12

Kinds of Errors in Numerical Procedures V

• The test is true only if x and y are exactly equal in
bit pattern.

• Although x and y are equal in exact arithmetic, their
values differ by a small, but nonzero, amount.

• When working with floating-point values the question “are
x and y equal?” is replaced by “are x and y close?” or,
equivalently, “is x − y small enough?”
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2.13

Absolute vs Relative Error & Convergence I

• Accuracy (how close to the true value) −→ great
importance,

• absolute error = |true value − approximate error |
A given size of error is usually more serious when the
magnitude of the true value is small,

• relative error = absolute error
|true value|

Convergence of Iterative Sequences :

• Iteration is a common component of numerical algorithms.
In the most abstract form, an iteration generates a
sequence of scalar values xk , k = 1, 2, 3, . . .. The
sequence converges to a limit ξ if

|xk − ξ| < δ, for all k > N

where δ is a small number called the convergence
tolerance. We say that the sequence has converged to
within the tolerance δ after N iterations.
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2.14

Absolute vs Relative Error & Convergence II

• Iterative computation of the square root (Example m-file:
testSqrt.m, newtsqrtBlank.m)

• The goal of this example is to explore the use of different
expressions to replace the ”NOT_CONVERGED“ string in
the while statement (see newtsqrtBlank.m, then save as
newtsqrt.m). Some suggestions are given as:
r ∼= rold
(r − rold) > delta
abs(r − rold) > delta
abs((r − rold)/rold) > delta

• Study each case (>> testSqrt), and which one should be
used?

Floating-Point Arithmetic :
• Performing an arithmetic operation⇒ no exact answers

unless only integers or exact powers of 2 are involved,
• Floating-point (real numbers)→ not integers,
• Resembles scientific notation,
• IEEE standard→ storing floating-point numbers (see the

Table 1).

http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter0/testSqrt.m
http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter0/newtsqrtBlank.m
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2.15

Floating-Point Arithmetic I

Table: Floating→ Normalised.

floating normalised (shifting the decimal point)
13.524 .13524 ∗ 102 (.13524E2)
-0.0442 −.442E − 1

• the sign ±
• the fraction part (called the mantissa)

• the exponent part

There are three levels of precision (see the Fig. 3)

Figure: Level of precision.
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2.16

Floating-Point Arithmetic II

• What about the sign of the exponent? Rather than use
one of the bits for the sign of the exponent, exponents are
biased.

• For single precision (we have 8 bits reserved for the
exponent):

• 28=256
• 0−→00000000 = 0
• 255−→11111111=255
• 0 (255)=⇒ -127 (128). An exponent of -127 (128) stored as

0 (255).
• So biased−→ 2128

= 3.40282E + 38, mantissa gets 1 as
maximum

• Largest: 3.40282E+38; Smallest: 2.93873E-39
• For double and extended precision the bias values are

1023 and 16383, respectively.
•

0
0 , 0 ∗∞,

√
−1 =⇒ NaN : Undefined.
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2.17

Floating-Point Arithmetic II
When a calculation results in a value smaller than realmin ,
there are two types of outcomes.

1 If the result is slightly smaller than realmin , the number is
stored as a denormal (they have fewer significant digits
than normal floating point numbers).

2 Otherwise, It is stored as 0.

• Interval Halving to Oblivion (the state of being disregarded
or forgotten) (Example m-file: halfDiff.m)
x1 = . . ., x2 = . . .
for k=1,2,. . .
δ = (x1 − x2)/2
if δ = 0, stop
x2 = x1 + δ
end

• As the floating-point numbers become closer in value, the
computation of their difference relies on digits with
decreasing significance.

• When the difference is smaller than the least significant
digit in their mantissa, the value of δ becomes zero.

http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter0/halfDiff.m
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2.18

Round-off Error vs Truncation Error I

EPS: short for epsilon−→used for represent the smallest
machine value that can be added to 1.0 that gives a result
distinguishable from 1.0. In MATLAB:
» eps
ans=2.2204E-016

• eps −→ ε =⇒ (1 + ε) + ε = 1 but 1 + (ε+ ε) > 1

• Two numbers that are very close together on the real
number line can not be distinguished on the floating-point
number line if their difference is less than the least
significant bit of their mantissas.

Round-off Error vs Truncation Error:
• Round-off occurs, even when the procedure is exact, due

to the imperfect precision of the computer,

• Analytically df
dx ⇒ f

′

(x) = limh→0
f (x+h)−f (x)
(x+h)−x : Procedure

• Approximate value for f
′

(x) with a small value for h,

• h −→ smaller , the result is closer to the true
value−→truncation error is reduced,
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2.19

Round-off Error vs Truncation Error II

• But at some point (depending of the precision of the
computer) round-off errors will dominate−→less
exact=⇒There is a point where the computational
error is least.

• Roundoff and Truncation errors in the series for ex

(Example m-file: expSeriesPlot.m)
• Let Tk be the k th term in the series and Sk be the value of

the sum after k terms:

Tk =
xk

k !
,Sk = 1 +

k∑

j=1

Tk

If the sum on the right-hand side is truncated after k
terms, the absolute error in the series approximation is

Eabs,k = |Sk − ex |

» expSeriesPlot(-10,5e-12,60)
• as k increases, Eabs,k decreases, due to a decrease in the

truncation error.

http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter0/expSeriesPlot.m
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2.20

Round-off Error vs Truncation Error III

• Eventually, roundoff prevents any change in Sk . As
Tk+1 → 0, the statement

ssum = ssum + term

produces no change in ssum.

• For x = −10 this occurs at k ∼ 48. At this point, the
truncation error, |Sk − ex | is not zero.

• Rather, |Tk+1/Sk | < εm. This is an example of the
independence of truncation error and roundoff error.

• For k < 48, the error in evaluating the series is controlled
by truncation error.

• For k > 48, roundoff error prevents any reduction in
truncation error.
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2.21

Well-posed and well-conditioned problems

The accuracy depends not only on the computer’s accuracy
• A problem is well-posed if a solution; exists, unique,

depends on varying parameters
• A nonlinear problem−→linear problem
• infinite−→large but finite
• complicated−→simplified

• A well-conditioned problem is not sensitive to changes in
the values of the parameters (small changes to input do
not cause to large changes in the output)

• Modelling and simulation; the model may be not a really
good one

• if the problem is well-conditioned, the model still gives
useful results in spite of small inaccuracies in the
parameters
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2.22

Forward and Backward Error Analysis

• y = f (x)

• ycalc = f (xcalc) : computed value

• Efwd = ycalc − yexact where yexact is the value we would get
if the computational error were absent

• Ebackwd = xcalc − x , ycalc = f (xcalc)

• Example: y = x2, x = 2.37 used only two digits

• ycalc = 5.6 while yexact = 5.6169

• Efwd = −0.0169, relative error→0.3%

•
√

5.6 = 2.3664⇒ Ebackw = −0.0036, relative error
→0.15%
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2.23

Computer Number Representation I
Examples of Computer Numbers : Say we have six bit
representation (not single, double) (see the Fig. 4)

• 1 bit → sign
• 3(+1) bits → mantissa
• 2 bits → exponent

Figure: Computer numbers with six bit representation.

• For positive range 9
32 ←→ 15

4

• For negative range −15
4 ←→ −9

32 ; even discontinuity at point
zero since it is not in the ranges.
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2.24

Computer Number Representation II

Figure: Upper: number line in the hypothetical system, Lower: IEEE
standard.
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2.25

Computer Number Representation III

• Very simple computer arithmetic system⇒ the gaps
between stored values are very apparent.

• Many values can not be stored exactly. i.e., 0.601, it will be
stored as if it were 0.6250 because it is closer to 10

16 , an
error of 4%

• In IEEE system, gaps are much smaller but they are still
present. (see the Fig. 5)

Anomalies with Floating-Point Arithmetic :
For some combinations of values, these statements are not
true

• (x + y) + z = x + (y + z)
(x ∗ y) ∗ z = x ∗ (y ∗ z)
x ∗ (y + z) = (x ∗ y) + (x ∗ z)

• adding 0.0001 one thousand times should equal 1.0
exactly but this is not true with single precision

• z = (x+y)2−2xy−y2

x2 , problem with single precision
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