
1 Using the LU Matrix for Multiple Right-

Hand Sides

• Many physical situations are modelled with a large set of linear equa-
tions.

• The equations will depend on the geometry and certain external factors
that will determine the right-hand sides.

• If we want the solution for many different values of these right-

hand sides,

• it is inefficient to solve the system from the start with each one of the
right-hand-side values.

• Using the LU equivalent of the coefficient matrix is preferred.

• Suppose we have solved the system Ax = b by Gaussian elimination.

• We now know the LU equivalent of A:
A = L ∗ U

• Consider now that we want to solve Ax = b with some new b-vector.

• We can write
Ax = b

LUx = b

Ly = b

• The product of U and x is a vector, call it y.

• Now, we can solve for y from Ly = b.

• This is readily done because L is lower-triangular and we get y by
forward-substitution.

• Call the solution y = b′.

• Going back to the original LUx = b, we see that, from Ux = y = b′,
we can get x from Ux = b′.

• Which is again readily done by back-substitution (U is upper-triangular).
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• i.e., Solve Ax = b, where we already have its L and U matrices:





1 0 0 0
0.66667 1 0 0
0.33333 −0.45454 1 0

0.0 −0.54545 0.32 1



 ∗





6 1 −6 −5
0 −3.6667 4 4.3333
0 0 6.8182 5.6364
0 0 0 1.5600





• Suppose that the b-vector is [6 − 7 − 2 0]T .

• We first get y = Ux from Ly = b by forward substitution:

y = [6 − 11 − 9 − 3.12]T

• and use it to compute x from Ux = y:

x = [−0.5 1 0.3333 − 2]T .

• Now, if we want the solution with a different b-vector;

bb = [1 4 − 3 1]T

• we just do Ly = bb to get

y = [1 3.3333 − 1.8182 3.4]T

• and then use this y in Ux = y to find the new x:

x = [0.0128 − 0.5897 − 2.0684 2.1795]T

2 The Inverse of a Matrix and Matrix Pathol-

ogy

• Division by a matrix is not defined but the equivalent is obtained from
the inverse of the matrix.

• If the product of two square matrices, A ∗ B, equals to the identity

matrix, I, B is said to be the inverse of A (and also A is the inverse of
B).
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• Matrices do not commute (A∗B 6= B∗A) on multiplication but inverses
are an exception: A ∗ A−1 = A−1 ∗ A.

• To find the inverse of matrix A, use an elimination method.

• We augment the A matrix with the identity matrix of the same size
and solve. The solution is A−1. Example;

A =

[
1 −1 2
3 0 1
1 0 2

]

,

[
1 −1 2 1 0 0
3 0 1 0 1 0
1 0 2 0 0 1

]

,

R2 − (3/1)R1 →

R3 − (1/1)R1 →

[
1 −1 2 1 0 0
0 3 −5 −3 1 0
0 1 0 −1 0 1

]

,

[
1 −1 2 1 0 0
0 1 0 −1 0 1
0 3 −5 −3 1 0

]

,

R3 − (3/1)R2 →

• Cont.





1 −1 2 1 0 0
0 1 0 −1 0 1
0 0 −5 0 1 −3



 ,

R3/(−5)
,

R1 − (2/1)R3 →
,
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



1 −1 0 1 2/5 −6/5
0 1 0 −1 0 1
0 0 1 0 −1/5 3/5



 ,

R2 − (1/− 1)R1 → ,





1 0 0 0 2/5 −1/5
0 1 0 −1 0 1
0 0 1 0 −1/5 3/5





• We confirm the fact that we have found the inverse by multiplication:






1 −1 2
3 0 1
1 0 2






︸ ︷︷ ︸

A

∗






0 2/5 −1/5
−1 0 1
0 −1/5 3/5






︸ ︷︷ ︸

A−1

=






1 0 0
0 1 0
0 0 1






︸ ︷︷ ︸

I

• It is more efficient to use Gaussian elimination. We show only the final
triangular matrix; we used pivoting:

[
1 −1 2 1 0 0
3 0 1 0 1 0
1 0 2 0 0 1

]

→

[
3 0 1 0 1 0

(0.333) −1 1.667 1 −0.333 0
(0.333) (0) 1.667 0 −0.333 1

]

• After doing the back-substitutions, we get





3 0 1 0 0.4 −0.2
(0.333) −1 1.667 −1 0 1
(0.333) (0) 1.667 0 −0.2 0.6





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• If we have the inverse of a matrix, we can use it to solve a set of equa-

tions, Ax = b,

• because multiplying by A−1 gives the answer (x):

A−1Ax = A−1b
x = A−1b

2.1 Pathological Systems

• When a real physical situation is modelled by a set of linear equations,
we can anticipate that the set of equations will have a solution that
matches the values of the quantities in the physical problem (the equa-

tions should truly do represent it).

• Because of round-off errors, the solution vector that is calculated may
imperfectly predict the physical quantity, but there is assurance that a
solution exists.

• Here is an example of a matrix that has no inverse:

A =





1 −2 3
2 4 −1

−1 −14 11





Element A(3,3) cannot be used as a divisor in the back-substitution.

That means that we cannot solve.

• The definition of a singular matrix is a matrix that does not have an

inverse.

2.2 Redundant Systems

• Even though a matrix is singular, it may still have a solution. Consider
again the same singular matrix:

A =





1 −2 3
2 4 −1

−1 −14 11




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• Suppose we solve the system Ax = b where the right-hand side is
b = [5, 7, 1]T .

• The back-substitution cannot be done.

– The output suggests that x3 can have any value.

– Suppose we set it equal to 0. We can solve the first two equations
with that substitution, that gives [17/4,−3/8, 0]T .

– Suppose we set x3 to 1 and repeat. This gives [3, 1/2, 1]T , and this
is another solution.

– We have found a solution, actually, an infinity of them. The rea-
son for this is that the system is redundant.

• What we have here is not truly three linear equations but only two
independent ones.

• The system is called redundant.

• See Table 1 for the comparison of singular and nonsingular matrices.

3 Ill-Conditioned Systems

• A system whose coefficient matrix is singular has no unique solution.

• What if the matrix is almost singular?

A =






3.02 −1.05 2.53
4.33 0.56 −1.78

−0.83 −0.54 1.47






• The LU equivalent has a very small element in (3, 3),

LU =






4.33 0.56 −1.78
(0.6975) −1.4406 3.7715

(−0.1917) (0.3003) −0.0039




 ,
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Table 1: A comparison of singular and nonsingular matrices

For Singular matrix A: For Nonsingular Matrix A:
It has no inverse, A−1 It has an inverse, A−1

Its determinant is zero The determinant is nonzero
There is no unique solution There is a unique solution
to the system Ax = b to the system Ax = b
Gaussian elimination cannot avoid Gaussian elimination does not
a zero on the diagonal encounter a zero on the diagonal
The rank is less than n The rank equals n
Rows are linearly dependent Rows are linearly independent
Columns are linearly dependent Columns are linearly independent

• Inverse has elements very large in comparison to A:

inv(A) =






5.6611 −7.2732 −18.5503
200.5046 −268.2570 −66669.9143
76.8511 −102.6500 −255.8846






• Matrix is nonsingular but is almost singular.

• Suppose we solve the system Ax = b, with b equal to [−1.61, 7.23,−3.38]T .

– The solution is x = [1.0000, 2.0000,−1.0000]T .

• Now suppose that we make a small change in just the first element
of the b-vector : [−1.60, 7.23,−3.38]T .

– We get x = [1.0566, 4.0051,−0.2315]T

• if b = [−1.61, 7.22,−3.38]T , the solution now is x = [1.07271, 4.6826, 0.0265]T

which also differs.

• A system whose coefficient matrix is nearly singular is called ill-conditioned.

• When a system is ill-conditioned, the solution is very sensitive

– to small changes in the right-hand vector,

– to small changes in the coefficients.

• A(1, 1) is changed from 3.02 to 3.00, original b-vector, a large change
in the solution x = [1.1277, 6.5221, 0.7333]T ].

• This means that it is also very sensitive to round-off error.
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3.1 Norms

• Norm, a measure of the magnitude of the matrix.

• The magnitude of a single number is just its distance from zero:
| − 4.2| = 4.2.

• For vectors in two- or three space, norm is called the Euclidean norm,

and is computed by
√

x2
1 + x2

2 + x2
3.

• We compute the Euclidean norm of vectors with more than three com-
ponents by

||x||e =
√

x2
1 + x2

2 + . . .+ x2
n =

(
n∑

i=1

x2
i

)1/2
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• Defining the p-norm as

||x||p =

(
n∑

i=1

|xi|
p

)1/p

• Using ||A|| to represent the norm of matrix A, some properties

1. ||A|| ≥ 0 and ||A|| = 0 if and only if A = 0

2. ||kA|| = ||k||||A||

3. ||A+B|| ≤ ||A||+ ||B||

4. ||AB|| ≤ ||A||||B||

• 1-, 2-, and ∞-norms;

||x||1 =
∑n

i=1 |xi| = sum of magnitudes

||x||2 = (
∑n

i=1 |xi|
2)

1/2
= Euclidean norm

||x||∞ = max1≤i≤n|xi| = maximum −magnitude norm

• i.e., Compute the 1-, 2-, and∞-norms of the vector x = (1.25, 0.02,−5.15, 0)

||x||1 = |1.25|+ |0.02|+ | − 5.15|+ |0| = 6.42
||x||2 = 5.2996
||x||∞ = 5.15

3.1.1 Matrix Norms

• The norms of a matrix are similar to the norms of a vector.

||A||1 = max1≤j≤n
∑n

i=1 |aij| = maximum column sum
||A||∞ = max1≤i≤n

∑n
j=1 |aij | = maximum row sum

• For an m× n matrix, the Frobenius norm is defined as

||A||f =





m∑

i=1

n∑

j=1

a2ij





1/2

The Frobenius norm is a good measure of the magnitude of a matrix.

• Suppose r is the largest eigenvalue of AT ∗ A. Then ||A||2 = r1/2.

• This is called the spectral norm of A, and ||A||2 is always less than (or
equal to) ||A||1 and ||A||∞.
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• The spectral norm is usually the most expensive.

• Which norm is best? In most instances, we want the norm that puts
the smallest upper bound on the magnitude of the matrix.

• In this sense, the spectral norm is usually the ”best”.

A =

5 -5 -7

-4 2 -4

-7 -4 5

>> norm(A,’fro’)

ans =

15

>> norm(A,inf)

ans =

17

>> norm(A,1)

ans=

16

>> norm(A)

ans =

12.0301

>> norm (A,2)

ans =

12.0301

we observe that the 2-norm, the spectral norm, is the norm we get if we
just ask for the norm. The smallest norm of the matrix is the spectral norm,
it is the tightest measure.

4 Iterative Methods

• Gaussian elimination and its variants are called direct methods.

• An entirely different way to solve many systems is through iteration.

• In this way, we start with an initial estimate of the solution vector and
proceed to refine this estimate.

• The two methods for solving Ax = b are

1. the Jacobi Method ,
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2. the Gauss-Seidel Method.

• An n× n matrix A is diagonally dominant if and only if;

|aii| >
n∑

j=1,j 6=i

|aij|, i = 1, 2, . . . , n

• Although this may seem like a very restrictive condition, it turns out
that there are very many applied problems that have this property.

• i.e.,
6x1 − 2x2 + x3 = 11
x1 + 2x2 − 5x3 = −1
−2x1 + 7x2 + 2x3 = 5

• The solution is x1 = 2, x2 = 1, x3 = 1.

• However, before we begin our iterative scheme we must first reorder the
equations so that the coefficient matrix is diagonally dominant.

4.1 Jacobi Method

• After reordering;
6x1 − 2x2 + x3 = 11
−2x1 + 7x2 + 2x3 = 5
x1 + 2x2 − 5x3 = −1

Is the solution same? Check it out as an exercise.

• The iterative methods depend on the rearrangement of the equations
in this manner:

xi =
bi
aii

−
n∑

j=1,j 6=i

aij
aii

xj , i = l, 2, . . . , n, 7→ x1 =
11

6
−

(
−2

6
x2 +

1

6
x3

)

• Each equation now solved for the variables in succession:

x1 = 1.8333 + 0.3333x2 − 0.1667x3

x2 = 0.7143 + 0.2857x1 − 0.2857x3

x3 = 0.2000 + 0.2000x1 + 0.4000x2

(1)

• We begin with some initial approximation to the value of the variables.

• Say initial values are; x1 = 0, x2 = 0, x3 = 0.
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• Each component might be taken equal to zero if no better initial esti-

mates are at hand.

• Note that this method is exactly the same as the method of fixed-point
iteration for a single equation that was discussed in Section ??.

• But it is now applied to a set of equations; we see this if we write Eqn.
1 in the form of

x(n+1) = G(x(n)) = b′ − Bxn

which is identical to xn+1 = g(xn) as used in Section ??.

• The new values are substituted in the right-hand sides to generate a
second approximation,

• and the process is repeated until successive values of each of the vari-
ables are sufficiently alike.

• Now, general form

x
(n+1)
1 = 1.8333 + 0.3333x

(n)
2 − 0.1667x

(n)
3

x
(n+1)
2 = 0.7143 + 0.2857x

(n)
1 − 0.2857x

(n)
3

x
(n+1)
3 = 0.2000 + 0.2000x

(n)
1 + 0.4000x

(n)
2

(2)

• Starting with an initial vector of x(0) = (0, 0, 0, ), we obtain Table 2

First Second Third Fourth Fifth Sixth . . . Ninth
x1 0 1.833 2.038 2.085 2.004 1.994 . . . 2.000
x2 0 0.714 1.181 1.053 1.001 0.990 . . . 1.000
x3 0 0.200 0.852 1.080 1.038 1.001 . . . 1.000

Table 2: Successive estimates of solution (Jacobi method)

• In the present context, x(n) and x(n+1) refer to the nth and (n + 1)st

iterates of a vector rather than a simple variable, and g is a linear
transformation rather than a nonlinear function.

• Rewrite in matrix notation; let A = L+D + U ,

Ax = b,






6 −2 1
−2 7 2
1 2 −5











x1

x2

x3




 =






11
5

−1





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L =






0 0 0
−2 0 0
1 2 0




 , D =






6 0 0
0 7 0
0 0 −5




 , U =






0 −2 1
0 0 2
0 0 0






Ax = (L+D + U)x = b
Dx = −(L+ U)x + b
x = −D−1(L+ U)x+D−1b

• From this we have, identifying x on the left as the new iterate,

x(n+1) = −D−1(L+ U)x(n) +D−1b

In Eqn. 2,

b′ = D−1b =






1.8333
0.7143
0.2000






D−1(L+ U) =






0 −0.3333 0.1667
−0.2857 0 0.2857
−0.2000 −0.4000 0






• This procedure is known as the Jacobi method, also called ”the method

of simultaneous displacements”,

• because each of the equations is simultaneously changed by using the
most recent set of x-values (see Table 2).

4.2 Gauss-Seidel Iteration

• Even though we have newx1 available, we do not use it to compute
newx2.

• In nearly all cases the new values are better than the old and ought to
be used instead.

• When this done, the procedure known as Gauss-Seidel iteration.

• We proceed to improve each x-value in turn, using always the most
recent approximations of the other variables.

• These values were computed by using this iterative scheme:

x
(n+1)
1 = 1.8333 + 0.3333x

(n)
2 − 0.1667x

(n)
3

x
(n+1)
2 = 0.7143 + 0.2857x

(n+1)
1 − 0.2857x

(n)
3

x
(n+1)
3 = 0.2000 + 0.2000x

(n+1)
1 + 0.4000x

(n+1)
2

beginning with x(1) = (0, 0, 0)T
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First Second Third Fourth Fifth Sixth
x1 0 1.833 2.069 1.998 1.999 2.000
x2 0 1.238 1.002 0.995 1.000 1.000
x3 0 1.062 1.015 0.998 1.000 1.000

Table 3: Successive estimates of solution (Gauss-Seidel method)

• The rate of convergence is more rapid than for the Jacobi method (see
Table 3).
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