
1 OPERATING SYSTEMS LABORATORY

IV - Processes I

1. Examples:

• Compile and run the code.

• Analyze the code and output.

(a) Creating a (child) process; fork - code14.c.

Figure 1: System call; Fork

#include <stdio.h>

main()

{

puts("Begin fork test.");

fork();

puts("End fork test.");

}

You should have the message ”End fork test.” twice. Why?

(b) Parent and child process; getpid - code15.c.

• Execute this code several times. You should observe that the
order for the print messages of the parent and child processes
change. Why?

(c) Fork at the beginning and error analysis; perror - code16.c.

• Find out that the function perror is included by which li-
brary.

– Why the value −1 is checked?

1

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code14.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code15.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code16.c


• Fork is executed at the beginning of the program. So that the
rest of the code will be duplicated, now belong to both parent
and child processes.

• Execute several times and examine the order in the output. Is
there any specific order that which one will be executed first?

• What is the function of the type definition pid t?

(d) Signaling; sleep,getppid - code17.c.

• What is the function of sleep?

• Who is the parent of the PARENT? Find it out by the com-
mand

ps aux | grep ParentPID

• Why CHILD process prints out the PID of its parent as 1 (See
next example)?

(e) Synchronizing; wait - code18.c.

• What is meant by synchronization?

• wait and sleep are system calls. What is the function of
wait?

• Why CHILD process prints out the PID of its parent correctly
now?!

(f) Zombie processes - code19.c.

• When a child process terminates, an association with its par-
ent survives until the parent in turn either terminates nor-
mally or calls wait.

• The child process entry in the process table is therefore not
freed up immediately.

• Although no longer active, the child process is still in the
system because its exit code needs to be stored in case the
parent subsequently calls wait. It becomes what is known as
defunct, or a zombie process.

• Call the ps -ux program in another shell after the child
has finished but before the parent has finished, we’ll see a
< defunct > phrase in the line. (Some systems may say
< zombie > rather than < defunct >.)

• If the parent then terminates abnormally, the child process
automatically gets the process with PID 1 (init) as parent.

• The child process is now a zombie that is no longer run-
ning but has been inherited by init because of the abnormal
termination of the parent process.

2

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code17.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code18.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code19.c


(g) Understanding system - code20.c .

• Try to recognize your “code20” and corresponding PID from
the output.

2. Exercises:

(a) Write a program that creates a zombie and then call system to
execute the ps command to verify that the process is zombie.

(b) Write a program to create 4 processes where first process is the
parent of the second one and the second process is the parent of
the third one and the third process is the parent of the fourth one.
Your program should be capable of;

• checking if the processes is forked with success,

• printing the pid and parent pid of each process,

• printing the parent pid of the first process.

3

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code20.c

	OPERATING SYSTEMS LABORATORY IV - Processes I

