1 OPERATING SYSTEMS LABORATORY
V1 Additional - Synchronization and Crit-
ical Section, InterProcessCommunications

I

Examples&Exercises:

1. Shared Memory; code35.c

One of the simplest interprocess communication methods is using
shared memory.

Shared memory allows two or more processes to access the same
memory as if they all called malloc and were returned pointers
to the same actual memory.

When one process changes the memory, all the other processes see
the modification.

Shared memory is the fastest form of interprocess communication
because all processes share the same piece of memory and it does
not require a system call or entry to the kernel.

Because the kernel does not synchronize accesses to shared mem-
ory, you must provide your own synchronization. For example, a
process should not read from the memory until after data is writ-
ten there, and two processes must not write to the same memory
location at the same time.

Analyze the code.

2. Semaphore, Shared Memory; code36.c
Shared memory example to find the sum of the first 1000 numbers in
parallel using two processes, one to add even numbered elements and
one to add odd numbered elements;

Compile the following codes and link them to code36.
code37.c, code38.c, code39.c

Execute several times and observe that how the output changes.

3. Race Conditions; complete the following program. code30.c

Suppose that your program has a series of queued jobs that are
processed by several concurrent threads.


http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code35.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code36.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code37.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code38.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code39.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code30.c

e After each thread finishes an operation, it checks the queue to see
if an additional job is available.

e [f job_queue is non-null, the thread removes the head of the linked
list and sets job_queue to the next job on the list.

e Now suppose that two threads happen to finish a job at about the
same time, but only one job remains in the queue.

— The first thread checks whether job_queue is null; finding that
it isn’t, the thread enters the loop and stores the pointer to
the job object in next_job.

— At this point, Linux happens to interrupt the first thread
and schedules the second. The second thread also checks
job_queue and finding it non-null, also assigns the same job
pointer to next_job.

— By unfortunate coincidence, we now have two threads execut-
ing the same job.

— To make matters worse, one thread will unlink the job object
from the queue, leaving job_queue containing null. When the
other thread evaluates job_queue— > next, a segmentation
fault will result.

e This is an example of a race condition. Under ”lucky” circum-
stances, this particular schedule of the two threads may never
occur, and the race condition may never exhibit itself.

4. Critical Sections; complete the following program. code3l.c

e A thread may disable cancellation of itself altogether with the
pthread_setcancelstate function.

e The first argument is PTHREAD _CANCEL _DISABLE to dis-
able cancellation, or PTHREAD_CANCEL_ENABLE to reen-
able cancellation.

e The second argument, if not null, points to a variable that will
receive the previous cancellation state.

e Using pthread _setcancelstate enables you to implement critical
sections.

e In the following program, the transfer with a function, such as
process_transaction, disables thread cancellation to start a crit-
ical section before it modifies either account balance.


http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code31.c

Note that it’s important to restore the old cancel state at the end
of the critical section.Your function will leave the cancel state the
same way it found it.

Even assigning a value to a global variable can be dangerous be-
cause the assignment may actually be carried out in two or more
machine instructions, and a second signal may occur between
them, leaving the variable in a corrupted state!!

5. Condition Variable (Spin loop); code33.c

Suppose that you write a thread function that executes a loop
infinitely, performing some work on each iteration.

The thread loop, however, needs to be controlled by a flag:

— the loop runs only when the flag is set;

— when the flag is not set, the loop pauses.
Because the flag is accessed by multiple threads, it is protected
by a mutex. This implementation may be correct, but it is not
efficient. The thread function will spend lots of CPU whenever
the flag is not set, checking and rechecking the flag, each time
locking and unlocking the mutex.

Complete the program by writing a main function and do_work
function.

Create two threads having to access to thread flag.

Is there any possible race conditions? Explain.


http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code33.c

	OPERATING SYSTEMS LABORATORY VI Additional - Synchronization and Critical Section, InterProcessCommunications I

