
MOSS File System Simulator
Installation on Unix/Linux/Solaris/HP-UX Systems

Purpose

This document provides instructions for the installation of the MOSS File System Simulator on Unix operating
systems. This procedure should be the same or similar on Unix, Linux, Solaris, HP-UX and other Unix-compatible
systems.

The MOSS software is designed for use with Andrew S. Tanenbaum, Modern Operating Systems, 2nd Edition
(Prentice Hall, 2001). The File System Simulator and documentation were written by Ray Ontko (rayo@ontko.com).

Requirements

The following software components are required to install and use the MOSS File System Simulator.

● Java Development Kit (JDK) 1.0 or greater
● Text program editor (e.g., notepad)

Installation

Installation of the software can be accomplished with these simple steps:

1. Create a directory in which you wish to install the simulator (e.g., "moss/filesys").

cd
mkdir moss
cd moss
mkdir filesys
cd filesys

2. Download the compressed tar archive (filesys.tgz) into the directory.

3. Expand the compressed tar archive.

$ tar -xzf filesys.tgz

or

$ gunzip filesys.tgz
$ tar xf filesys.tar

Files

The directory should now contain the following files:

Files Description

filesys.tgz Compressed tar archive which contains all the other files.

BitBlock.java
Block.java
DirectoryEntry.java
FileDescriptor.java
FileSystem.java
IndexNode.java
Kernel.java
ProcessContext.java
Stat.java
SuperBlock.java
cat.java
cp.java
dump.java
ls.java
mkdir.java
mkfs.java
tee.java

Java source files (*.java)

BitBlock.class
Block.class
DirectoryEntry.class
FileDescriptor.class
FileSystem.class
IndexNode.class
Kernel.class
ProcessContext.class
Stat.class
SuperBlock.class
cat.class
cp.class
dump.class
ls.class
mkdir.class
mkfs.class
tee.class

Compiled Java class files (*.class)

install_unix.html
install_windows.html
user_guide.html

Documentation

javadoc Directory containing documentation on java classes (generated by the javadoc utility).

copying.txt Gnu General Public License: Terms and Conditions for Copying, Distribution, and Modification

Compilation

The distribution includes compiled class files as well as the source java files. You should not need to recompile unless
you decide to change the code. If you wish to compile the code, the following commands should work if you're using a
Java compiler that accepts the normal "javac" command line.

To determine which shell you're using:

$ echo $SHELL

If you're using sh, ksh, bash:

$ CLASSPATH=.
$ export CLASSPATH
$ javac *.java

If you're using csh, tcsh:

% set CLASSPATH=.

% javac *.java

Test

To test the program, enter the following sequence of commands.

$ java mkfs filesys.dat 256 16
$ java mkdir /root
$ java ls /
$ ls *.java | java tee /root/t.lis
$ java ls /root
$ java cat /root/t.lis

If things are working correctly, the program will produce output that looks something like this:

$ java mkfs filesys.dat 256 16
block_size: 256
blocks: 16
super_blocks: 1
free_list_blocks: 1
inode_blocks: 3
data_blocks: 11
block_total: 16

$ java mkdir /root

$ java ls /

/:
 0 48 .
 0 48 ..
 1 32 root
total files: 3

$ ls *.java | java tee /root/t.lis
BitBlock.java
Block.java
DirectoryEntry.java
FileDescriptor.java
FileSystem.java
IndexNode.java
Kernel.java
ProcessContext.java
Stat.java
SuperBlock.java
cat.java
cp.java
dump.java
ls.java
mkdir.java
mkfs.java
tee.java

$ java ls /root

/root:
 1 48 .
 0 48 ..
 2 219 t.lis
total files: 3

$ java cat /root/t.lis
BitBlock.java
Block.java
DirectoryEntry.java
FileDescriptor.java
FileSystem.java
IndexNode.java
Kernel.java
ProcessContext.java
Stat.java
SuperBlock.java
cat.java
cp.java
dump.java
ls.java
mkdir.java
mkfs.java
tee.java

MOSS File System Simulator
User Guide

Purpose

This document is a user guide for the MOSS File System Simulator. It explains how to use the simulator and
describes the programs and the various input files used by and output files produced by the simulator. The MOSS
software is designed for use with Andrew S. Tanenbaum, Modern Operating Systems, 2nd Edition (Prentice Hall,
2001). The File System Simulator and documentation were written by Ray Ontko (rayo@ontko.com).

Introduction

The file system simulator shows the inner workings of a UNIX V7 file system. The simulator reads or creates a file
which represents the disk image, and keeps track of allocated and free blocks using a bit map. A typical exercise
might be for students to write a program (in Java) which invokes various simulated operating system calls against a
well-known disk image provided by the instructor. Students may also be asked to implement indirect blocks, list-based
free block managment, or write a utility (like fsck) to check and repair the file system.

Overview

The MOSS File System Simulator is a collection of Java classes which simulate the file system calls available in a
typical Unix-like operating system. The "Kernel" class contains methods (functions) like "creat()", "open()", "read()",
"write()", "close()", etc., which read and write blocks in an underlying file in much the same way that a real file system
would read and write blocks on an underlying disk device.

In addition to the "Kernel" class, there are a number of underlying classes to support the implementation of the kernel.
The classes FileSystem, IndexNode, DirectoryEntry, SuperBlock, Block, BitBlock, FileDescriptor, and Stat contain all
data structures and algorithms which implement the simulated file system.

Also included are a number of sample programs which can be used to operate on a simulated file system. The Java
programs "ls", "cat", "mkdir", "mkfs", etc., perform file system operations to list directories, display files, create
directories, and create (initialize) file systems. These programs illustrate the various file system calls and allow the
user to carry out various read and write operations on the simulated file system.

As mentioned above, there is a backing file for our simulated file system. A "dump" program is included with the
distribution so that you can examine this file, byte-by-byte. Any dump program may be used (e.g., the "od" program in
Unix); we include this one which is simple to use and understand, and can be used with any operating system.

There are a number of ways you can use the simulator to get a better understanding of file systems. You can

● use the provided utility programs (mkfs, mkdir, ls, cat, etc.) to perform operations on the simulated file system
and use the dump program to examine the underlying file and observe any changes,

● examine the sample utility programs to see how they use the system call interface to perform file operations,
● enhance the sample utility programs to provide additional functionality,
● write your own utility programs to extend the functionality of the simulated file system, and
● modify the underlying Kernel and other implementation classes to extend the functionality of the

In the sections which follow, you will learn what you need to know to perform each of these activities.

Using File System Simulator Programs

Using mkfs

The mkfs program creates a file system backing file. It does this by creating a file whose size is specified by the block
size and number of blocks given. It writes the superblock, the free list blocks, the inode blocks, and the data blocks for
a new file system. Note that it will overwrite any existing file of the name specified, so be careful when you use this
program.

This program is similar to the "mkfs" program found in Unix-like operating systems.

The general format for the mkfs command is

java mkfs file-name block-size blocks

where

file-name
is the name of the backing file to create (e.g., filesys.dat). Note that this is the name of a real file, not a file in
simulator. This is the file that the simulator uses to simulate the disk device for the simulated file system. This
may be any valid file name in your operating system environment.

block-size
is the block size to be used for the file system (e.g., 256). This should be a multiple of the index node (i-node)
size (usually 64) and the directory entry size (usually 16). Modern operating systems usually use a size of 1024,
or 512 bytes. We use 128 or 256 byte block sizes in many of our examples so that you can quickly see what
happens when directories grow beyond one block. This should be a decimal number not less than 64, but less
than 32768.

blocks
is the number of blocks to create in the file system(e.g., 40). This number includes any blocks that may be used
for the superblock, free list management, inodes, and data blocks. We use a relatively small number here so that
you can quickly see what happens if you run out of disk space. This can be any decimal number greater than 3,

but not greater than 224 - 1 (the maximum number of blocks), although you may not have sufficient space to
create a very large file.

For example, the command

java mkfs filesys.dat 256 40

will create (or overwrite) a file "filesys.dat" so that it contains 40 256-byte blocks for a total of 10240 bytes.

The output from the command should look something like this:

block_size: 256
blocks: 40
super_blocks: 1
free_list_blocks: 1
inode_blocks: 8
data_blocks: 30
block_total: 40

From the output you can see that one block is needed for the superblock, one for free list management, eight for
index nodes, and the remaining 30 are available for data blocks.

Why is there 1 block for free list management? Note that 30 blocks require 30 bits in the free list bitmap. Since 256
bytes/block * 8 bits/byte = 2048 bits/block, clearly one bitmap block is sufficient to track block allocation for this file
system.

Why are there 8 blocks for index nodes? Note that 30 blocks could result in 30 inodes if many one-block files or
directories are created. Since each inode requires 64 bytes, only 4 will fit in a block. Therefore, 8 blocks are set aside
for up to 32 inodes.

Using mkdir

The mkdir program can be used to create new directories in our simulated file system. It does this by creating the file
specified as a directory file, and then writing the directory entries for "." and ".." to the newly created file. Note that all
directories leading to the new directory must already exist.

This program is similar to the "mkdir" command in Unix-like and MS-DOS-related operating systems.

The general format for the mkdir command is

java mkdir directory-path

where

directory-path
is the path of the directory to be created (e.g., "/root", or "temp", or "../home/rayo/moss/filesys"). If directory-path
does not begin with a "/", then it is appended to the path name for working directory for the default process.

For example, the command

java mkdir /home

creates a directory called "home" as a subdirectory of the root directory of the file system.

Similarly, the command

java mkdir /home/rayo

creates a directory called "rayo" as a subdirectory of the "home" directory, which is presumed to already exist as a
subdirectory of the root directory of the file system.

Using ls

The ls program is used to list information about files and directories in our simulated file system. For each file or
directory name given it displays information about the files named, or in the case of directories, for each file in the
directories named.

This program is similar to the "ls" command in Unix-like operating systems, or the "dir" command in DOS-related
operating systems.

The general format for the ls command is

java ls path-name ...

where

path-name ...
is a space-separated list of one or more file or directory path names.

For example, the command

java ls /home

lists the contents of the "/home" directory. For each file in the directory, a line is printed showing the name of the file
or subdirectory, and other pertinent information such as size.

The output from the command should look something like this:

/home:
 1 48 .
 0 48 ..
 2 32 rayo
total files: 3

In this case we see that the "/home" directory contains entries for ".", "..", and "rayo".

Using tee

The tee program reads from standard input and writes whatever is read to both standard output and the named file.
You can use this program to create files in our simulated file system with content created in the operating system
environment.

This program is similar to the "tee" command found in many Unix-like operating systems.

The general format for the tee command is

java tee file-path

where

file-path
is the name of a file to be created in the simulated file system. If the named file already exists, it will be
overwritten.

For example,

echo "howdy, podner" | java tee /home/rayo/hello.txt

causes the single line "howdy, podner" to be written to the file "/home/rayo/hello.txt".

The output from the command is

howdy, podner

which you should note was the same as the input sent to the tee program by the "echo" command.

Note that the "|" (pipe) is almost always used with the tee program. Users of Unix-like operating systems will find the
"echo", and "cat" commands useful to produce input for the pipe to tee. Users of MS-DOS-related operating systems
will find the "echo" and "type" commands to be useful in this regard.

If you wish to simply enter text directly to a file, then you may use tee directly (i.e., without the pipe). Users of Unix-like
operating systems will need to use CTRL-D to signal the end of input. Users of MS-DOS-related operating systems
will need to use CTRL-Z to signal the end of input.

Using cp

The cp program allows you to copy the contents from one file to another in our simulated file system. If the destination
file already exists, it will be overwritten.

This program is similar to the "cp" command in Unix-like operating systems, and the "copy" command in MS-DOS-
related operating systems.

The general format of the "cp" command is

java cp input-file-name output-file-name

where

input-file-name
is the path-name for the file to be copied (i.e., the source file, and

output-file-name
is the path-name for the file to be created (i.e., the target file.

For example,

java cp /home/rayo/hello.txt /home/rayo/greeting.txt

creates a new file "/home/rayo/greeting.txt" by copying to it the contents of file "/home/rayo/hello.txt".

Using cat

The cat program reads the contents of a named file and writes it to standard output. The cat program is generally
used to display the contents of a file.

This program is similar to the "cat" command in Unix-like operating systems, or the "type" command in MS-DOS-
related operating systems.

The general format of the cat command line is

java cat file-name

where

file-name
is the name of the file from which data are to be read for writing to standard output.

For example,

java cat /home/rayo/greeting.txt

causes the file "/home/rayo/greeting.txt" to be read, the contents of which are written to standard output.

In this case, the output from the program might look something like this

howdy, podner

Dumping the File System

While you are working with the file system simulator, you may wish to dump the contents of the backing file to see if it
contains what you think it contains. The dump program shows the contents of a file in the operating environment, one
byte at a time, in various formats (hexadecimal, decimal, ASCII).

Note that dump dumps the contents of a real file, not a file in our simulated file system.

The general format of the dump command line is

java dump file-name

where

file-name
is the name of the file to be dumped. This should generally be the name of the backing file for the file system
simulator (e.g., "filesys.dat").

The general format of the dump output is

addr hex dec asc

where

addr
is the decimal address of the byte,

hex
is the hexadecimal value of the byte,

dec
is the decimal value of the byte, and

asc
is the corresponding ASCII character if the value is between 33 and 127 (decimal).

Each line of dump output corresponds to a single byte in the file. To keep the listing brief, dump only displays non-
zero bytes from the input file.

For example

java dump filesys.dat | more

causes the contents of the file "filesys.dat" to be displayed, one line per byte. The "| more" causes you to be prompted
for each page of the output.

The first page of the output should look something like this:

0 1 1
5 28 40 (
9 1 1
13 2 2
17 a 10
256 1f 31
512 40 64 @
515 3 3
523 30 48 0
527 ff 255
528 ff 255
529 ff 255
530 ff 255
531 ff 255
532 ff 255
533 ff 255
534 ff 255
535 ff 255
536 ff 255
537 ff 255
538 ff 255
539 ff 255
540 ff 255
541 ff 255

You should notice, for example, that the first block (the super block) contains a few numeric values corresponding to
the block size (the 1 in the 0 byte means 256), number of blocks, etc. The second block (starting at byte 256) contains
a few bits that are set, indicating that the first few blocks are allocated. The third block (starting at 512) contains a few
index nodes; the FF/255 values indicate that a direct block is unallocated. A little further down you will see ".", and ".."
for the directory entries for the root file system, and other data blocks.

Simulator Configuration File

Each file system simulator program must call Kernel.initialize() before calling any of the other Kernel methods. The
initialize() method reads a configuration file ("filesys.conf" is the default), opens the backing file for the file system
("filesys.dat" is the default), and performs other initializations. This section of the user guide describes the various
options which may be set in the configuration file.

Configuration File Options

Name Description
Default
Value

filesystem.root.filename The name of the file containing the root file system for the simulation. filesys.dat

filesystem.root.mode The mode to use when opening the root file system backing file. The mode
should either be "rw" for reading and writing, or "r" for read-only access.

rw

process.uid The numeric user id (uid) to use for the default process context. This should be
a number between 0 and 32767.

1

process.gid The numeric group id (gid) to use for the default process context. This should be
a number between 0 and 32767.

1

process.umask The umask to use for the default process context. This should be an octal
number between 000 and 777.

022

process.dir The working directory in the simulated file system to be used for the default
process context. This should be a string that starts with "/".

/root

process.max_open_file
s

The maximum number of files that may be open at a time by a process. When a
process context is created, this many slots are created for possible open files.

10

kernel.max_open_files The maximum number of files that may be open at one time by all processes in
the simulation. When the simulator starts, this many slots are created for
possible open files.

20

A Sample Configuration File

In addition to the standard configuration file, "filesys.conf", the distribution also includes a smaller sample
configuration file, "sample.conf". This is shown below to illustrate a typical configuration file.

!
! my personal filesys configuration file
!
filesystem.root.filename = rayo.dat
filesystem.root.mode = r
process.uid = 1000
process.gid = 1000
process.umask = 002
process.dir = /home/rayo

In this particular example, the file system is contained in the backing file "rayo.dat", which is here being opened for
read-only access. The working directory for the default process context is "/home/rayo", with the uid, gid, and umask
shown.

Specifying an Alternate Configuration File

The default configuration file is named "filesys.conf" and is included in the application distribution. You may modify
this file directly to set various options, or you may create your own configuration file and specify the name of this new
file when you launch your simulator programs.

If you choose to create your own configuration file, you will need to define a system property "filesys.conf" which
contains the name of file. For example, suppose you wanted to run the "ls" program using "my_filesys.conf" as the
configuration file. Your java command would look something like this:

java -Dfilesys.conf=my_filesys.conf ls /home

If there is no value set for the "filesys.conf" system property, then the name "filesys.conf" is used as the default
configuration filename.

Writing File System Simulator Programs

Writing programs that use the File System Simulator requires the use of the Kernel class, and may involve the use of
the classes Stat and DirectoryEntry. If you're writing ordinary programs that use the standard file system calls, you
should not need to reference any other classes.

These three classes are described briefly here. For more information, follow the link for the class to the javadoc for
that class.

Kernel
sets up the simulator environment and defines all the system calls. This class defines: the method initialize(),
which is used to initialize the file system simulator; the creat(), open(), read(), write(), close(), and other methods
which simulate the work of a file system; and constants like EBADF, S_IFDIR, and O_RDONLY which are used
to represent parameter or return values for the system calls. All the methods and fields of Kernel are static; you
do not instantiate a Kernel object. For examples, see any of the sample programs (i.e., cat.java, cp.java, ls.java,
etc.)

Stat
is a data structure that represents information about a file or directory. This intends to faithfully represent the
Unix stat struct. You may reference fields within a stat object directly (e.g., stat.st_ino), or using JavaBean-style
accessor/mutator methods (e.g., stat.getIno() or stat.setIno(). Stat objects are updated by the methods
Kernel.stat() and Kernel.fstat(). For examples, see mkdir.java.

DirectoryEntry
is a data structure that represents a single record in a directory file. This intends to faithfully represent a Unix
dirent struct. It contains an index node number and a file name. You may reference the fields directly (e.g.,
dirent.d_ino), or using JavaBean-style accessor/mutator methods (e.g., dirent.getIno() or dirent.setIno()).
However, Java programmers my find it more convenient to use the getName() and setName() (which use String)
instead of the field d_name (which is byte[]). DirectoryEntry objects are updated by the method Kernel.readdir().
For examples, see mkdir.java and ls.java.

For more information about Unix system calls and the stat and dirent structs, refer to a Unix system manual. Users of
Unix-like systems may find the commands "man -S 2 creat", "man -S 2 open", etc. to be helpful.

All programs that use the File System Simulator should adhere to the following guidelines:

● Invoke the method Kernel.initialize() before any other File System Simulator calls.
● Use Kernel.exit() when you wish to terminate processing in your program.
● Check for errors after each system call (e.g., creat(), open(), read(), write(), etc.). Nearly all the system calls

return -1 if an error occurs.
● Use Kernel.perror() to print the message associated with an error.
● Use Kernel.getErrno() to determine which error occurred, if needed. Note that in standard Unix programs you

would reference the static process variable "errno".

For examples, take a look at the following sample programs in the distribution:

● cat.java
● cp.java
● ls.java
● mkdir.java
● tee.java

Collectively, these sample programs invoke all of the core methods (system calls) of the file system simulator.

Enhancing the File System Simulator

Adding new features to the File System Simulator is an excellent way to probe your understanding of file system
operation, and to investigate new features. Enhancements will almost certainly require changes to the class Kernel,
and may necessitate changes to the sample programs described above. This section describes the other classes that
implement the functionality of the simulator so that you may understand the intended organization of these
components when making a proposed enhancement.

The following are the internal classes for the file system simulator:

BitBlock
is a data structure that views a device block as a sequence of bits. The methods setBit(), resetBit(), and isBitSet
() are used to set, reset, or check a bit in the block. This structure is used to implement bitmaps, and is used by
the file system simulator to track allocated and free data blocks in the file system. BitBlock extends Block.

Block
is a data structure that views a device block as a sequence of bytes. The field bytes is an array of byte, and is
directly accessible. Included are methods to read() and write() the block to a java.io.RandomAccessFile, which
simulate the action of reading or writing a device block.

FileDescriptor
is a structure and collection of methods that represent an open file. It includes a number of get and set methods
for various tidbits of information about the open file, and provides readBlock and writeBlock() methods for
reading and writing the blocks of the file.

FileSystem
is a structure and collection of methods that represent an open (mounted) file system. It includes a few get and
set methods for various fields about the file system, but more importantly, includes methods to open() the file
behind the file system, to read() and write() blocks of the device, to manage blocks (allocateBlock() and
freeBlock()) and to manage inodes (allocateIndexNode()). In general, Kernel methods should call FileSystem
methods when they want to read or write data in the file system.

IndexNode
is a structure and collection of methods for representing an index node. This is meant to reflect the exact
structure on disk for an index node. It includes get and set methods for each of the fields in the index node. Also
included are read() and write() methods which are used to copy data to and from byte arrays (not disk files).

ProcessContext
is a structure and collection of methods to represent a process. This is where the simulator stores the uid, gid,
umask, dir, and other information for the current process. It includes get and set methods for each of the fields in
a process.

SuperBlock
is a structure and collection of methods for representing the superblock on the disk. In our implementation, the
superblock contains information about the block size, number of blocks, offsets to the first block of the free list,
inode block, and data block areas of the device. It includes get and set methods for each of the fields in the
superblock. Also included are methods to read() and write() the superblock.

Of course, you should look at the code and plan your enhancements carefully.

© Copyright 2001, Prentice-Hall, Inc. This program is free software; it is distributed under the terms of the Gnu
General Public License. See copying.txt, included with this distribution.

Please send suggestions, corrections, and comments to Ray Ontko (rayo@ontko.com).

Last updated: September 29, 2001

