
1 File Systems

1.1 Files

• A file is a named collection of related information, usually as a sequence
of bytes, with two views:

– Logical (programmer’s) view, as the users see it.

– Physical (operating system) view, as it actually resides on sec-
ondary storage.

• What is the difference between a file and a data structure in memory?
Basically,

– files are intended to be non-volatile; hence in principle, they are
long lasting,

– files are intended to be moved around (i.e., copied from one place
to another), accessed by different programs and users, and so on.

• File lifetime is independent of process lifetime

• Used to share data between processes

• Input to applications is by means of a file

• File Management; File management system is considered part of the
operating system

– Manages a trusted, shared resource

– Bridges the gap between:

∗ lowlevel disk organization (an array of blocks),

∗ and the user’s views (a stream or collection of records)

– Also includes tools outside the kernel; E.g. formatting, recovery,
defrag, consistency, and backup utilities.

– Objectives for a File Management System;

∗ Provide a convenient naming system for files

∗ Provide uniform I/O support for a variety of storage device
types

∗ Provide a standardized set of I/O interface routines

∗ Guarantee that the data in the file are valid

∗ Optimize performance

1



Figure 1: Some typical file extensions.

∗ Minimize or eliminate the potential for lost or destroyed data

∗ Provide I/O support and access control for multiple users

∗ Support system administration (e.g., backups)

1.1.1 File Naming

• File system must provide a convenient naming scheme

• Textual Names (see Fig. 1)

• May have restrictions

– Only certain characters, E.g. no ‘/’ characters

– Limited length

– Only certain format, E.g DOS, 8 + 3

• Case (in)sensitive

• Names may obey conventions (.c files or C files)

– Interpreted by tools (UNIX)

– Interpreted by operating system (Windows)

1.1.2 File Structure; From OS’s perspective

• Stream of Bytes (see Fig. 2)

– OS considers a file to be unstructured

2



Figure 2: Three kinds of files. (a) byte sequence. (b) record sequence. (c)
tree.

– Simplifies file management for the OS

– Applications can impose their own structure

– Used by UNIX, Windows, most modern OSes

• Records (see Fig. 2)

– Collection of bytes treated as a unit; Example: employee record

– Operations at the level of records (read rec, write rec)

– File is a collection of similar records

– OS can optimize operations on records

• Tree of Records (see Fig. 2)

– Records of variable length

– Each has an associated key

– Record retrieval based on key

1.1.3 File Types

• Regular files

• Directories

• Device Files

3



Figure 3: (a) An executable file (b) An archive.

– Character Devices

– Block Devices

• Some systems distinguish between regular file types; ASCII text files,
binary files

• A common implementation technique (as organizational help with con-
sistent usage) is to include the type as an extension to the file name
(see Fig. 1)

• Files are structured internally to meet the expectations of the pro-
gram(s) that manipulate them.

• All systems recognize their own executable file format; May use a magic
number (see Fig. 3)

1.1.4 File Access

• The information stored in a file can be accessed in a variety of methods:

– Sequential access

∗ in order, one record after another

4



Figure 4: Some possible file attributes.

∗ read all bytes/records from the beginning

∗ cannot jump around, could rewind or back up

∗ convenient when medium was mag tape

– Random (Direct) access

∗ bytes/records read in any order skipping the previous records

∗ essential for data base systems

∗ read can be

· move file pointer (seek), then read or

· each read specifies the file pointer

– Keyed; in any order, but with particular value(s); e.g., hash table
or dictionary. TLB lookup is one example of a keyed search

• Other access methods, such as indexed, can be built on top of the above
basic techniques.

1.1.5 File Attributes(see Fig. 4)

• Information about files kept in directory structure maintained on disk

• Each file is associated with a collection of information, known as at-
tributes:

5



Figure 5: File operations.

– name, owner, creator, only information in human-readable form

– type, (e.g., source, data, binary) needed if system supports differ-
ent types

– location, (e.g., I-node or disk address) pointer to file location on
device

– organization, (e.g., sequential, indexed, random)

– time and date, (creation, modification, and last accessed)

– size, current file size

– protection, who can do reading, writing, executing

– variety of other (e.g., maintenance) information.

1.1.6 File Operations

• There are six basic operations (not all) for file manipulation: create,
write, read, delete, reposition r/w pointer (a.k.a. seek), and truncate
(not very common.) (see Fig. 5)

• Open(Fi) search directory structure on disk for entry Fi, move content
of entry to memory

• Close (Fi) move content of entry Fi in memory to directory structure
on disk

1.1.7 An Example Program Using File System Calls (see Fig. 6)

• copyfile abc xyz ; where argv[0]=”copyfile”, argv[1]=”abc”, argv[2]=”xyz”

6



Figure 6: A simple program to copy a file.

7



Figure 7: Left: (a) Segmented process before mapping files into its address
space (b) Process after mapping existing file abc into one segment creating
new segment for xyz. Right: Memory mapped files and paging

1.1.8 Memory–Mapped Files (see Fig. 7)

• Avoids translating from on-disk format to in-memory format (and vice
versa)

– Supports complex structures

– No read/write systems calls

– File simply (paged or swapped) to file system

– Unmap when finished

• Problems

– Determining actual file size after modification; Round to nearest
whole page (even if only 1 byte file)

– Care must be taken if file is shared; E.g. one process memo-
rymapped and one process read/write syscalls

– Large files may not fit in the virtual address space

1.1.9 File Organization and Access; Programmer’s Perspective

• One of the key elements of a file system is the way the files are orga-
nized. File organization is the logical structuring as well as the access
method(s) of files.

8



• Given an operating system supporting unstructured files that are stream-
of-bytes, how should one organize the contents of the files?

• Performance considerations:

– File system performance affects overall system performance

– Organization of the file system affects performance

– File organization (data layout) affects performance; depends on
access patterns

• Possible access patterns:

– Read the whole file

– Read individual blocks or records from a file

– Read blocks or records preceding or following the current one

– Retrieve a set of records

– Write a whole file sequentially

– Insert/delete/update records in a file

– Update blocks in a file

• Criteria for File Organization

– Rapid access

∗ Needed when accessing a single record

∗ Not needed for batch mode

– Ease of update; File on CDROM will not be updated, so this is
not a concern

– Economy of storage

∗ Should be minimum redundancy in the data

∗ Redundancy can be used to speed access such as an index

– Simple maintenance

– Reliability

• Fundamental File Organizations; Common file organization schemes
are:

– Pile

– Sequential

9



– Indexed Sequential

– Indexed

– Direct or Hashed

• Pile (see Fig. 8)

– Data are collected in the order they arrive

– Purpose is to accumulate a mass of data and save it

– Records may have different fields

– No structure

– Record access is by exhaustive search

– Update:

∗ Same size record; okay

∗ Variable size; poor

– Retrieval:

∗ Single record; poor

∗ Subset; poor

∗ Exhaustive; okay

• Sequential (see Fig. 8)

– Fixed format used for records

– Records are the same length

– Field names and lengths are attributes of the file

– One field is the key filed

∗ Uniquely identifies the record

∗ Records are stored in key sequence

– New records are placed in a log file or transaction file

– Batch update is performed to merge the log file with the master
file

– Update:

∗ Same size record; good

∗ Variable size; No

– Retrieval:

∗ Single record; poor

10



Figure 8: Fundamental File Organizations; (a) Pile (b) Sequential (c) Indexed
Sequential (d) Indexed.

∗ Subset; poor

∗ Exhaustive; okay

• Indexed Sequential (see Figs. 8,9)

– Index provides a lookup capability to quickly reach the vicinity of
the desired record

∗ Contains key field and a pointer to the main file

∗ Indexed is searched to find highest key value that is equal or
less than the desired key value

∗ Search continues in the main file at the location indicated by
the pointer

– New records are added to an overflow file

– Record in main file that precedes it is updated to contain a pointer
to the new record

– The overflow is merged with the main file during a batch update

– Update:

∗ Same size record; good

∗ Variable size; No

– Retrieval:

∗ Single record; good

∗ Subset; poor

11



Figure 9: IBM indexed-sequential access method (ISAM).

∗ Exhaustive; okay

• Comparison of sequential and indexed sequential lookup

– Example: a file contains 1 million records

– On average 500,00 accesses are required to find a record in a se-
quential file

– If an index contains 1000 entries, it will take on average 500 ac-
cesses to find the key, followed by 500 accesses in the main file.
Now on average it is 1000 accesses

• Indexed File (see Fig. 8)

– Uses multiple indexes for different key fields

– May contain an exhaustive index that contains one entry for every
record in the main file

– May contain a partial index

– Update:

∗ Same size record; good

∗ Variable size; good

– Retrieval:

∗ Single record; good

∗ Subset; good (Assuming the selecting attribute is indexed on)

∗ Exhaustive; okay

• The Direct, or Hashed File

12



Figure 10: (a) Single-Level Directory Systems (b) Two-Level Directory Sys-
tems (c) Hierarchical Directory Systems.

– Key field required for each record

– Key maps directly or via a hash mechanism to an address within
the file

– Directly access a block at a the known address

– Update:

∗ Same size record; good

∗ Variable size; No (Fixed sized records used)

– Retrieval:

∗ Single record; excellent

∗ Subset; poor

∗ Exhaustive; poor

1.2 Directories

• A directory is a symbol table, which can be searched for information
about the files. Also, it is the fundamental way of organizing files.
Usually, a directory is itself a file

• A typical directory entry contains information (attributes, location,
ownership) about a file. Directory entries are added as files are created,
and are removed when files are deleted.

• Provides mapping between file names and the files themselves

• Goals in Organization of Directory

– Efficiency; locate file quickly

– Naming; convenient to users,

13



Figure 11: Example to (a) Single-Level Directory Systems (b) Two-Level
Directory Systems (c) Hierarchical Directory Systems.

∗ 2 users can use same name for different files

∗ Same file can have several different names

– Grouping; logical grouping of files by attributes, (e.g., all Java
programs, all games, . . . )

• Single–Level Directory Systems (see Figs. 10,11)

– List of entries, one for each file

– Sequential file with the name of the file serving as the key

– Provides no help in organizing the files

– Forces user to be careful not to use the same name for two different
files

• Two–Level Directory Systems (see Figs. 10,11)

– One directory for each user and a master directory

– Master directory contains entry for each user; Provides access con-
trol information

– Each user directory is a simple list of files for that user

– Still provides no help in structuring collections of files

14



• Hierarchical, or Tree-Structured Directory Systems (see Figs. 10,11)

– Files can be located by following a path from the root, or master,
directory down various branches; This is the absolute pathname
for the file

– Can have several files with the same file name as long as they have
unique path names

1.2.1 Path Names

• Always specifying the absolute pathname for a file is tedious!

• Introduce the idea of a working directory; Files are referenced relative
to the working directory

• Example: cwd = /home/dizin, profile = /home/dizin/.profile

• Absolute pathname; A path specified from the root of the file system
to the file

• A Relative pathname; A pathname specified from the cwd

• Note: ‘.’ (dot) and ‘..’ (dotdot) refer to current and parent directory

– Example: cwd = /home/dizin

– ../../etc/passwd

– /etc/passwd

– ../dizin/../.././etc/passwd

– Are all the same file

1.2.2 File Sharing

• In multiuser system, allow files to be shared among users

• Two issues

– Access rights. Allowing users to share files raises a major issue:
protection. A general approach is to provide controlled access to
files through a set of operations such as read, write, delete, list,
and append. Then permit users to perform one or more opera-
tions. One popular protection mechanism is a condensed version
of access list, where the system recognizes three classifications of
users with each file and directory: user, group, other

15



– Management of simultaneous access

• Access Rights

– None

∗ User may not know of the existence of the file

∗ User is not allowed to read the user directory that includes
the file

– Knowledge; User can only determine that the file exists and who
its owner is

– Execution; The user can load and execute a program but cannot
copy it

– Reading; The user can read the file for any purpose, including
copying and execution

– Appending; The user can add data to the file but cannot modify
or delete any of the file’s contents

– Updating; The user can modify, deleted, and add to the file’s data.
This includes creating the file, rewriting it, and removing all or
part of the data

– Changing protection; User can change access rights granted to
other users

– Deletion; User can delete the file

– Owners

∗ Has all rights previously listed

∗ May grant rights to others using the following classes of users;
Specific user, User groups, All for public files

total 1704

drwxr-x--- 3 user group 4096 Oct 14 08:13 .

drwxr-x--- 3 user group 4096 Oct 14 08:14 ..

drwxr-x--- 2 user group 4096 Oct 14 08:12 backup

-rw-r----- 1 user group 141133 Oct 14 08:13 eniac3.jpg

-rw-r----- 1 user group 1580544 Oct 14 08:13 wk11.ppt

– First letter: file type

∗ d for directories

∗ - for regular files

– Three user categories; user, group, and other

16



– Three access rights per category; read, write, and execute

– drwxrwx rwx; user group other

– Execute permission for directory? Permission to access files in the
directory

– To list a directory requires read permissions

– What about drwxr-x–x ?

– Problematic example

∗ A owns file foo.bar

∗ A wishes to keep his file private

∗ Inaccessible to the general public

∗ A wishes to give B read and write access

∗ A wishes to give C readonly access

∗ ???????

• Management of Simultaneous Access

– Most Oses provide mechanisms for users to manage concurrent
access to files; Example: lockf(), flock() system calls

– Typically

∗ User may lock entire file when it is to be updated

∗ User may lock the individual records during the update

– Mutual exclusion and deadlock are issues for shared access

17


	File Systems
	Files
	File Naming
	File Structure; From OS's perspective
	File Types
	File Access
	File Attributes(see Fig. 4) 
	File Operations
	An Example Program Using File System Calls (see Fig. 6) 
	Memory--Mapped Files (see Fig. 7) 
	File Organization and Access; Programmer's Perspective

	Directories
	Path Names
	File Sharing



