
Ceng 3 2 8 Opera ting Sy stems L ecture N o tes

Cem Ö z d o ğ a n

2 5 th M a y 2 0 0 4

2

Contents

1 In tro d u c tio n 13

1.1 W ha t is O p e ra tin g S yste m ? 14
1.1.1 Fu n c tio n a litie s in O S : 15

1.2 H isto ry o f o p e ra tin g S yste m s 15
1.2.1 M a in fra m e S yste m s . 16
1.2.2 B a tch a n d M u ltip ro g ra m m e d S yste m s 16
1.2.3 Tim e S ha rin g . 18
1.2.4 Perso n n e l C o m p u te rs 20
1.2.5 Pa ra lle l Pro c e ssin g S yste m s 20
1.2.6 D istribu te d S yste m s 22
1.2.7 C lu ste re d S yste m s . 23
1.2.8 R e a l– Tim e . 23
1.2.9 E m bed d e d , S m a rt-C a rd a n d H a n d held 24

1.3 C o m p u te r H a rd w a re R e v ie w 25
1.3.1 Pro c e sso r . 25
1.3.2 M a in M e m o ry . 27
1.3.3 I/ O M o d u le s a n d S tru c tu re 29
1.3.4 S yste m bu s . 30
1.3.5 S to ra g e S tru c tu re a n d H ie ra rchy 30
1.3.6 Pro te c tio n . 31

1.4 In te rru p ts a n d Tra p s . 34
1.4 .1 A c c e ssin g O S S e rv ic e s 37

1.5 O p e ra tin g S yste m C o m p o n e n ts 38
1.6 B o o tstra p p in g . 39
1.7 S yste m S tru c tu re . 4 0
1.8 W hy S tu d y O p e ra tin g S yste m s? 4 1

1.8 .1 Pro ble m s in bu ild in g O S 4 2

2 P ro c e sse s a n d T h re a d s 4 5

2.1 Pro c e sse s . 4 5
2.1.1 The Pro c e ss M o d e l . 4 6

3

4 CONTENTS

2.1.2 Contex t Switch . 48

2.1.3 Dispatcher . 50

2.1.4 Process Creation . 51

2.1.5 Process Termination 53

2.1.6 Process States . 54

2.2 Threads . 54

2.2.1 The Thread Model . 58

2.2.2 Implementing Threads in U ser Space 58

2.2.3 Implementing Threads in the K ernel 59

2.3 Interprocess Communication 59

2.3.1 Race Conditions . 61

2.3.2 Critical Regions . 61

2.3.3 Mutual Ex clusion with Busy Waiting (Software approach) 62

2.3.4 Sleep and wakeup . 64

2.3.5 Semaphores . 68

2.3.6 Monitors . 71

2.4 Classical IPC Problems . 74

2.4.1 The Dining Philosophers Problem (see Fig. 2.17) . . . 74

2.4.2 The Readers and Writers Problem (see Fig. 2.19) . . . 76

2.4.3 The Sleeping Barber Problem (see Fig. 2.20) 77

2.5 Scheduling . 79

2.6 Introduction to Scheduling . 79

2.7 Scheduling in Batch Systems 82

2.8 Scheduling in Interactive Systems 84

2.9 Policy versus Mechanism . 88

3 D eadlock 8 9

3.1 Resources . 90

3.2 Introduction to Deadlocks . 90

3.2.1 Conditions for Deadlock (See Fig. 3.1) 90

3.2.2 Deadlock Modeling (See Fig. 3.2) 92

3.3 The Ostrich Algorithm . 93

3.4 Deadlock Detection and Recovery 93

3.5 Deadlock Avoidance . 96

3.5.1 Resource Trajectories (See Fig. 3.4) 96

3.5.2 Safe and U nsafe States (See Fig. 3.5) 97

3.5.3 The Banker’s Algorithm for Deadlock Avoidance 98

3.6 Deadlock Prevention . 100

3.7 Summary of Deadlock strategies 102

CONTENTS 5

4 M em ory M anag em ent 10 3
4.1 Basic Memory Management 105

4.1.1 Monoprogramming without Swapping or Paging (see the Fig. 4.3)106
4.1.2 Multiprogramming with Fixed Partitions (see the Fig. 4.4)107
4.1.3 Relocation and Protection (see the Fig. 4.5) 107

4.2 Swapping . 108
4.2.1 Memory Management cont. 111

4.3 V irtual Memory . 113
4.3.1 Paging (see the Fig. 4.8) 113
4.3.2 Page Tables (see Fig. 4.12) 118
4.3.3 Inverted Page Tables 120
4.3.4 Basic policies . 120
4.3.5 Page Replacement Algorithms 122
4.3.6 Page Replacement Cont. 123

4.4 Segmentation . 126
4.4.1 Segmentation with Paging 128
4.4.2 Segmentation with Paging: MUL TICS 130
4.4.3 Segmentation with Paging: The Intel Pentium (see Fig. 4.18)131

5 IN PU T/ O U TPU T 133
5.1 Principles of I/O Hardware . 133

5.1.1 Device Controllers (see Fig. 5.1) 134
5.1.2 I/O Devices . 134
5.1.3 Characteristics (see Table 5.2) and Diff erences in I/O Devices136
5.1.4 Evolution of the I/O Function (see Fig. 5.2) 137
5.1.5 Memory-Mapped I/O (see Fig. 5.3) 138
5.1.6 Direct Memory Access (DMA) 139
5.1.7 Interrupts Revisited (see Fig. 5.6) 141

5.2 Principles of I/O Software . 141
5.2.1 Programmed I/O (see Fig. 5.7a) 141
5.2.2 Interrupt-Driven I/O (see Fig. 5.7b) 142
5.2.3 Direct Memory Access (see Fig. 5.7c) 142

5.3 Operating System Design Issues 143
5.4 I/O Software L ayers (see Fig. 5.8) 143

5.4.1 Interrupt Handlers . 143
5.4.2 Device Drivers (see Fig. 5.9) 145
5.4.3 Device Independent I/O Software(see Fig. 5.10) 146
5.4.4 User L evel Software . 149

5.5 Disks (see Fig. 5.13) . 150
5.5.1 Disk Hardware . 151
5.5.2 Disk Formatting . 154

6 CONTENTS

5.5.3 Disk Arm Scheduling Algorithms (see Fig. 5.18) 155
5.5.4 Error–Handling . 156

6 F ile S ystems 159
6.1 Files . 159

6.1.1 File N aming . 160
6.1.2 File Structure; From OS’s perspective 161
6.1.3 File Types . 161
6.1.4 File Access . 162
6.1.5 File Attributes(see Fig. 6.4) 163
6.1.6 File Operations . 164
6.1.7 An Example Program Using File System Calls (see Fig. 6.6) 165
6.1.8 Memory–Mapped Files (see Fig. 6.7) 165
6.1.9 File Organization and Access; Programmer’s Perspective165

6.2 Directories . 171
6.2.1 Path N ames . 173
6.2.2 File Sharing . 174

6.3 File System Implementation 176
6.3.1 File System Layout . 176
6.3.2 Implementing Files (see Fig. 6.13) 176
6.3.3 Implementing Directories 181
6.3.4 Shared Files (see Fig. 6.17) 182
6.3.5 Disk Space Management (Free space management) . . 182
6.3.6 Other fi le system implementation issues 184

6.4 UN IX File Management . 186
6.5 vita . 193

List of Tab les

2.1 Race Condition . 61

3.1 Summary of Deadlock strategies 102

4.1 Page replacement algorithms 123

5.1 Device I/O Port Locations on PCs (Partial). 134
5.2 Characteristics of I/O Devices 136

7

8 LIST OF TA B LES

List of F ig u res

1.1 Abstract view . 14
1.2 J ob Interleaving . 18
1.3 Memory Layout; Simple Batch, Multi Programming 19
1.4 SMP architecture, Client-Server 22
1.5 Fetch and Execute . 27
1.6 Cache Memory . 28
1.7 Top-level Components, Pentium System 30
1.8 G oing down the hierarchy . 30
1.9 Interrupt . 34
1.10 Interrupt Cycle . 36
1.11 Interrupt Picture . 37
1.12 System Call . 38
1.13 OS Architecture . 39
1.14 UNIN System initilization . 41
1.15 OS Structures, MS-DOS, Unix, IBM VM/370, Chorus 42

2.1 System Calls . 46
2.2 A UNIX Process Context . 47
2.3 Process Control Block (PCB), Processes from main memory to registers. 49
2.4 CPU Switch From Process to Process 50
2.5 Diagram of Process State . 55
2.6 Single and Multithreaded Processes 56
2.7 Threads and Processes . 57
2.8 A word processor with three threads, a multithreaded web server 57
2.9 Thread Models; Many-to-One, One-to-One, Many-to-Many . . 59
2.10 Mutual exclusion using critical regions 63
2.11 A proposed solution to the CR problem. (a) Process 0, (b) Process 1 64
2.12 Peterson’ solution for achieving mutual exclusion 65
2.13 The producer-consumer problem with a fatal race problem . . 67
2.14 The producer-consumer problem using semaphore 70
2.15 A monitor . 72

9

10 LIST OF FIG U R ES

2.16 The producer-consumer problem with a monitor. 73
2.17 Lunch time in the Philosophy Department. 74
2.18 A solution to the dining philosophers problem. 75
2.19 A solution to the readers and writers problem. 76
2.20 A solution to the sleeping barber problem. 78
2.21 Some goals of the scheduling algorithm under different circumstances. 81
2.22 An example to First-Come First Served. 83
2.23 An example to Shortest Job First. 83
2.24 Example of non-preemptive SJF and example of preemptive SJF. 84
2.25 An example to Round Robin. 85
2.26 An example to Priority-based Scheduling. 86
2.27 Multi-level q ueue and Multi-level feedback q ueue (lower). . . . 87

3.1 An example to Deadlock. 91
3.2 Resource Allocation Graphs, in the right one, either P2 or P4 could relinq uish a resource
3.3 An example of how deadlock occurs and how it can be avoided. 94
3.4 Two process resource trajectories. 97
3.5 Demonstration that the state in is safe (upper), and in is not safe (lower). 98

4.1 Allocating Memory. 104
4.2 From source to executable code. 105
4.3 Three simple ways of organizing memory with an operating system and one user pro
4.4 (a) Fixed memory partitions with separate input q ueues for each partition. (b) Fixed
4.5 Address Translation. 109
4.6 Swapping. 109
4.7 (a) A part of memory with five processes and three holes. The tick marks show the
4.8 The relation between virtual address and physical memory addresses is given by a page
4.9 The position and function of the MMU. 115
4.10 Page fault handling by picture. 117
4.11 Memory Caching. 118
4.12 The internal operation of the MMU with 16 4-KB pages. . . . 119
4.13 Page Replacement. 122
4.14 Trashing. 124
4.15 Logical View of Segmentation (left) , User’s View of a Program (right).126
4.16 Example of Segmentation . 127
4.17 Sharing of Segmentation . 128
4.18 Intel 386 Address Translation 131

5.1 A kernel I/O structure. 135
5.2 Evolution of the I/O Function 137
5.3 a) Separate I/O and memory space. b) Memory-mapped I/O. c) Hybrid.138

LIST OF FIGURES 11

5.4 a) A single-bus architecture. b) A dual-bus memory architecture.139
5.5 The Process to Perform DMA Transfer. 140
5.6 How interrupts happen. The connections between devices and interrupt controller actually use
5.7 a) Programmed I/O. b) Interrupt-Driven I/O. c) Direct Memory Access.142
5.8 Layers of the I/O Software System. 144
5.9 Logical positioning of device drivers. In reality all communications between drivers and device
5.10 (a) Without a standard driver interface (b) With a standard driver interface.146
5.11 (a) Unbuffered input (b) Buffering in user space (c) Single bu ff ering in the kernel followed b
5.12 Networking may involve many copies. 149
5.13 Disk Structure. 151
5.14 Left: (a) Physical geometry of a disk with two zones (b) A possible virtual geometry for this
5.15 Disk Performance. 152
5.16 Left: Low-level Disk Formatting; A disk sector, Right: An illustration of cylinder skew.154
5.17 a) No interleaving b) Single interleaving c) Double interleaving.155
5.18 From left to right: First-in, First-out (FIFO); Shortest Seek Time First; Elevator Algorithm
5.19 a) A disk track with a bad sector b) Substituting a spare for the bad sector c) Shifting all the

6.1 Some typical file extensions. 160
6.2 Three kinds of files. (a) byte sequence. (b) record sequence. (c) tree.162
6.3 (a) An executable file (b) An archive. 163
6.4 Some possible file attributes. 164
6.5 File operations. 165
6.6 A simple program to copy a file. 166
6.7 Left: (a) Segmented process before mapping files into its address space (b) Process after mapping
6.8 Fundamental File Organizations; (a) Pile (b) Sequential (c) Indexed Sequential (d) Indexed.
6.9 IBM indexed-sequential access method (ISAM). 170
6.10 (a) Single-Level Directory Systems (b) Two-Level Directory Systems (c) Hierarchical Directory
6.11 Example to (a) Single-Level Directory Systems (b) Two-Level Directory Systems (c) Hierarc
6.12 The solid curve (left hand scale) gives data rate of a disk. The dashed curve (right hand scale)
6.13 Left: A possible file system layout. Right: File Allocation Table.177
6.14 (a) Contiguous allocation (b) Contiguous allocation with compaction (c) Storing a file as a link
6.15 (a) Indexed allocation with block partitions (b) Indexed allocation with variable–length partitions
6.16 Left: (a) A simple directory containing fixed–sized entries with the disk addresses and attributes
6.17 Left: File system containing a shared file. Right: (a) Situation prior to linking (b) After the
6.18 (a) Storing the free list on a linked list (b) A bit map. 184
6.19 Inode contents. 189
6.20 Left: Direct Block. Right: Single Indirect Block 190
6.21 Upper: System V Disk Layout (s5fs). Middle: Layout of an Ext2 Partition. Lower: Layout

12 LIST OF FIGURES

Chap ter 1

Introd uction

Computer systems have two major components:

• hard w are–electronic,mechanical, optical devices

• so ftw are–programs.

Without support software, a computer is of little use. With its so ftw are,
however, a computer can store, manipulate, and retrieve information, and can
engage in many other activities. Software can be grouped into the following
categories:

• sy stem s so ftw are (operating system & utilities)

• ap p licatio ns so ftw are (user programs)

Summary,

• Hardware provides basic computing resources (CPU, memory, I/O de-
vices).

• Operating system controls and coordinates the use of the hardware
among the various application programs for the various users.

• Application programs define the ways in which the system resources are
used to solve the computing problems of the users (compilers, database
systems, video games, business programs).

• Users (people, machines, other computers).

13

14 CHAPTER 1 . INTROD UCTION

1.1 W h a t is O p e ra tin g S y ste m ?

A program that acts as an intermediary between a user of a computer and
the computer hardware.

• An operating system (OS) is everything in system that isn’t an appli-
cation or hardware

• An OS provides orderly and controlled allocation and use (i.e., shar-

ing, optimization of resource utilization) of the resources (Processor,
Memory, I/O devices) by the users (jobs) that compete for them.

• Support programs (typically called daemons) running in the machine
that handle higher level services such as mail transport (networking),
off-line file system checking (system robustness), web serving (server
work), etc.

• Protection and Security

• Provides an abstraction layer over the concrete hardware. Use the
computer hardware in an effi cient manner (converting hardware into
useful form;) “ hide” the complexity of the underlying hardware and give
the user a better view (an abstraction) of the computer for applications
by providing:

– Standard library

∗ allow applications to reuse common facilities

∗ make different devices look the same

∗ provide higher-level abstractions

Figure 1.1: Abstract view

1.2. HISTORY OF OPERATING SYSTEM S 15

∗ What are the right abstractions Challenge.

– Resource manager, Resource - “Something valuable” e.g. CPU,
memory (RAM), I/O devices (disk). Each program gets time
with the resource and each program gets sp ace on the resource

∗ Multiple users/applications can share, why share: (1) devices
are expensive, and (2) there is need to share data as well as
communicate

∗ Protect applications from one another

∗ Provide fair and efficient access to resources

∗ OS cannot please all the people all the time, but it should
please most of the people most of the time, so: What mech-
anisms? What policies? (e.g.,. which user/process should
get priority for printing on a common shared printer?); Chal-

lenges

1.1.1 Fu n c tio n a litie s in O S :

Desired functionalities of OS depend on outside factors like users’ & applica-
tion’s “Expectations” and “Technology changes” in Computer Architecture
(hardware).
O S must adapt:

• Change abstractions provided to users

• Change algorithms to change these abstractions

• Change low-level implementation to deal with hardware

The current operating systems are driven by such evolutions.

1.2 H isto ry o f o perating Systems

The earliest computers, developed in the 1940s, were programmed in machine

language and they used front panel switches for input. The programmer was
also the operator interacting with the computer directly from the system
console (control panel).

• programmers needed to sign-up in advance to use the computer one at
a time

• executing a single program (often called a job) required substantial
time to setup the computer.

16 CHAPTER 1. INTRODUCTION

• First generation 1945 - 1955, vacuum tubes, plug boards

• Second generation 1955 - 1965, transistors, batch systems

• Third generation 1965 - 1980, ICs and multiprogramming

• Fourth generation 1980 - present, personal computers

• Next generation ??, personal digital assistants (PDA), information ap-
pliances

Two distinct phases in history: Expensive computers, Cheap computers

1.2.1 M ainfram e Sy stem s

First commercial systems: Enormous, expensive and slow, I/O: Punch cards
and line printers.

• Single operator/programmer/user runs and debugs interactively:

– Standard library with no resource coordination

– Monitor that is always resident

∗ initial control in monitor

∗ control transfers to job

∗ when job completes control transfers back to monitor

• Inefficient use of hardware: poor throughput and poor utilization

• P erformance metrics:

Throughput: like amount of useful work done per hour
Utilization: keeping all devices busy

• Mainframe systems started to appear after world war 2.

• They initially executed one program at a time and were known as batch
systems.

1.2.2 B atch and M ultip rog ram m ed Sy stem s

Group if jobs submitted to machine together, B atch. A job was originally
presented to the machine (and its human operator) in the form of a set of
cards – these cards held information according to how “punched” out of the
cardboard. The operator grouped all of the jobs into various batches with
similar characteristics before running them (all the quick jobs might run,
then the slower ones, etc.).

1.2. HISTORY OF OPERATING SYSTEMS 17

• Operator collects job, orders efficiently, runs one at a time

• Amortize setup costs over many jobs

• Keep machine busy while programmer thinks

• User must wait for results until batch collected and submitted

Result: Improved system throughput and utilization, but lost interactivity.
Since the I/O used slow mechanical devices, the CPU was often idle waiting
on a card to be read or some result to be printed, etc. One way to minimize
this inefficiency was to have a number of jobs available and to switch to
running another one to avoid idleness.

• Mechanical I/O devices much slower than CPU

• Overlap I/O with execution by providing pool of ready jobs

• New OS Functionality evolved: Buffering, Direct Memory Access (DMA),
interrupt handling

Result: Improves throughput and utilization.
In multiprogrammed systems, a number of programs were resident in memory
and the CPU could choose which one to run. One way to choose is to just
keep executing the current program until an I/O delay is pending – instead
of just waiting, the CPU would move onto the next program ready to be run.

• Keep multiple jobs resident in memory

• OS chooses which job to run

• When job waits for I/O switch to another resident job

Result: Job scheduling policies, Memory management and protection, im-
proves throughput and utilization, still not interactive.

18 CHAPTER 1. INTRODUCTION

Figure 1.2: Job Interleaving

1.2.3 T ime Sharing

While multiprogrammed systems used resources more efficiently i.e. mini-
mized CPU idle time, a user could not interact with a program. By having
the CPU switch between jobs at relatively short intervals, we can obtain an
interactive system.That is, a system in which a number of users are sharing
the CPU (or other critical resource) with a timing interval small enough not
to be noticed e.g. no more than 1 second. We say that a time-sharing sys-
tem uses CPU scheduling and multiprogramming to provide each user with
a small portion of a time-shared computer.

• Switch between jobs so frequently that get appearance of dedicated
machines for each user/process.

• New OS Functionality: More complex job scheduling, memory man-
agement, concurrency control and synchronization

• Users easily submit jobs and get immediate feedbacks

OS Features N eeded for M ultiprogramming:

• I/O routines supplied by system

1.2. HISTORY OF OPERATING SYSTEMS 19

Figure 1.3: Memory Layout; Simple Batch, Multi Programming

• Memory management system must allocate memory to several jobs

• CPU scheduling system must choose among several jobs ready to run

• Allocation of devices

Time-Sharing Systems Interactive Computing:

• The CPU multiplexed among several jobs in memory and on disk (CPU
allocated only to jobs in memory). The CPU switches to the next job
that can be run whenever the current job enters a wait state or after
the current job has used a standard unit of time.When viewed over a
relatively long time frame, we obtain the appearance that the CPU is
simultaneously running multiple programs.

• Job swapped in and out of memory to disk. If the time-sharing com-
puter does not have enough semiconductor memory installed to hold all
of the desired programs, then a backing store must be used to temporar-
ily hold the contents relating to some programs when other programs
are present in semiconductor memory. In effect, we are now “memory
sharing” between competing users (programs). This idea leads to a
mechanism called virtual memory.

• On-line communication between user and system provided; when OS
finishes execution of a command, it awaits next “control statement”
from user.

The sensible sharing of resources such as CPU time and memory must be
handled by the operating system, which is just another program running on
the computer. For this control program to always be in control, we require

20 CHAPTER 1. INTRODUCTION

that it never be blocked from running. The operating system, which might
in fact be organized like a small number of cooperating programs, will lock
itself into memory and then control CPU allocation priority in order that it
never be blocked from running.

1.2.4 Personnel C omputers

Single-user, dedicated.

• I/O devices keyboards, mice, screens, printers

• User convenience and responsiveness

• Can adopt technology developed for larger system

• Previously thought,

– individuals have sole use of computer, do not need advanced CPU
utilization, protection features

– still true? See next list of operating systems...

• May run several different types of OS (Windows, Mac OS X, UNIX,
Linux)

• Operating systems such as FreeBSD, NetBSD, Mac OS-X and Linux
offer multitasking and virtual memory on PC hardware.

• The * BSD world has infl uenced the world of computing through net-
working advances, virtual file storage systems, dynamically self-optimizing
resource allocation schemes, etc.

• While all * BSD systems have a family history derived from the original
non-networking UNIX, Linux is mostly a “work-alike” re-implementation
and can be traced back to MINIX which was developed by Tanenbaum
for operating system teaching.

1.2.5 Parallel Processing Systems

Traditional multiprocessor system (share a common bus, clock, and memory),
tightly-coupled; multiprocessing. The desire for increased throughput has led
to system designs in which multiple streams of processing occurs in parallel.

1.2. HISTORY OF OPERATING SYSTEMS 21

• Tightly coupled system processors share memory and a clock; commu-
nication usually takes place through the shared memory. For a system
with n processors that is to run n or more separate programs, the
speedup may approach n. It will not reach n because there will be
some contention for access to shared elements such as the memory sys-
tem.

• Advantages of parallelism:

– higher throughput and better fault tolerance

– Economical (?)

– Increased availability (6= reliability)

• Symmetric multiprocessing (SMP), a symmetric multi-processor system
shares the execution of the operating system amongst all of the pro-
cessors – it is usually multi-threaded and contains no block structures.
The CPUs are equal i.e. we say that they are all peers.

– Each processor runs identical copy of OS

– Many processes at once without performance loss

– Most modern operating systems support SMP

• A symmetric multiprocessing, an asymmetric multi-processor system con-
tains a single CPU called the master that carefully controls access to
single threaded sections of the kernel – this processor controls the activ-
ities of the slave processors. Asymmetric MP systems are less efficient.

– Each processor is assigned specific task; master processor sched-
ules, allocates work to slave processors.

– Mostly for specialized high-end computation

• What can we say about an n-processor system that has m < n appli-
cation programs to run? Unless some of the application programs can
support multiple threadsÂ of simultaneous execution, then the speedup
may only approach m (since n - m processors are idle).

• As programmers, you will learn about thread models (and support
libraries) that allow you to develop multi-threaded applications. Im-
portant applications of multi-threading include database servers, and
users of databases will be aware that aspects of simultaneous access
can require special care.

22 CHAPTER 1. INTRODUCTION

Figure 1.4: SMP architecture, Client-Server

• In specialized application areas such as high speed digital signal pro-
cessing (DSP) e.g. radar processing, digital mobile base station pro-
cessing, etc., hybrid parallel systems may be assembled with individual
CPUs having significant private memory plus a connection onto a com-
mon shared memory.

• While these tightly coupled systems require specialized hardware sup-
port in order that the CPUs can share the common memory system,
another approach is to use a network to join together more conventional
systems into what is termed a distributed system.

1.2.6 D istrib uted Systems

Multicomputers (do not share memory and clock); loosely-coupled.

• Networked computers

• Require networking infrastructure

• Local area networks (LAN) or Wide area networks (WAN)

• May be either client-server or peer-to-peer systems

– Client and server roles may vary e.g. X terminal is a windows
server ; runs on machine you think of as client

– Client-Server Systems are a common form of distributed system
in which the client system and server system are not similar.

– An example of a client-server system is the file server on campus.
Here, a central server provides file access to authenticated users
at client machines.

1.2. HISTORY OF OPERATING SYSTEMS 23

– Peer-to-Peer Systems are another form of distributed system in
which the participating computer systems are similar.

• Students wishing to experiment with programming at this parallel level
can investigate the PVM (Parallel Virtual Machine) and MPI (Message
Passing Interface) libraries that are widely available.

1.2.7 Clustered Systems

• 2 or more systems share resources

• Provides high availability

• Asymmetric clustering : one server runs application, rest stand by.

• Symmetric clustering : all N run application

1.2.8 R eal– Time

Deadline (time critical) requirements. A real-time system is required to pro-
duce a result within a non-negotiable time period.

• Common uses:

– control device in dedicated application, e.g., control scientific ex-
periment, medical imaging, industrial control, space shuttle con-
trol systems, anti-lock automotive brake systems, banking sys-
tems, etc.

– some display systems

• Real-Time systems may be either;

– hard (must react in time), the real-time system absolutely must
complete critical tasks within a guaranteed time.

∗ Secondary storage limited or absent, data stored in short term
memory, or read-only memory (ROM)

∗ Conflicts with time-sharing systems, not supported by general-
purpose operating systems.

– soft real-time (deal with failure to react in time), the real-time
system can satisfy its performance criteria by running any critical
task at a higher priority (of CPU access).

∗ Limited utility in industrial control of robotics

24 CHAPTER 1. INTRODUCTION

∗ Useful in applications (multimedia, virtual reality) requiring
advanced operating-system features.

∗ In some instances, off-the-shelf operating systems such as
Linux or *BSD may be modified to support soft real-time
operation. An alternative is for the Linux or *BSD operating
system to be run as a task within some other (less conven-
tional) real-time operating system.

∗ An example of soft real-time service is a multi-media server
delivering audio or video – if it fails, no loss of life (other than
social life) occurs.

1.2.9 E mbedded, Smart-Card and H andheld

• Embedded systems are the most common. They typically run real-time
operating systems with custom I/O designed for specific tasks.

• For example, a microwave oven contains a microprocessor chip with
built in peripherals such as timers and I/O lines so that cooking may
be controlled and keypads and LCD modules handled.

• Personal Digital Assistants (PDAs)

• Cellular telephones, Cameras? ...

• Smart-card and digital mobile telephones also run custom real-time
operating systems. At least two “standards” exists – one is JAVA
based. The computation load from handling encryption means that the
designer has an interesting problem given limited resources of electrical
power, memory, and CPU capacity.

• Hand-held systems must also deal with limited resources although their
screens have recently become more substantial.

• Issues:

– Limited memory

– Variety of interconnect standards

– Slow processors

– Small screens

• Their current evolution may be towards a form of “cut back” PC.
Sounds like a PC in 1985...

1.3. COMPUTER HARDWARE REV IEW 25

1.3 C ompu ter Hard w are R ev iew

Understanding operating systems requires some basic understanding of com-
puter systems.

1.3.1 Processor

• Processor

– Fetches instructions from memory, decodes and executes them

– Set of instructions is processor specific

– Instructions include:

∗ load value from memory into register

∗ combine operands from registers or memory

∗ branch

– All CPU’s have registers to store

∗ key variables and temporary results

∗ information related to control program execution

• Processor Registers

– Data and address registers

∗ Hold operands of most native machine instructions

∗ Enable programmer to minimize main-memory references by
optimizing register use

∗ user-visible

– Control and status registers

∗ Used by processor to control operating of the processor

∗ Used by operating-system routines to control the execution of
programs

∗ Sometimes not accessible by user (architecture dependent)

• User–Visible Registers

– May be referenced by machine language instructions

– Available to all programs - application programs and system pro-
grams

– Types of registers

26 CHAPTER 1. INTRODUCTION

∗ Data

∗ Address

· Index

· Segment pointer

· Stack pointer

∗ Many architectures do not distinguish different types

• Control and Status Registers

– Program Counter (PC), Contains the address of an instruction to
be fetched

– Instruction Register (IR), Contains the instruction most recently
fetched

– Processor Status Word (PSW)

∗ condition codes

∗ interrupt enable/disable

∗ supervisor/user mode

– Condition Codes or Flags

∗ Bits set by the processor hardware as a result of operations

∗ Can be accessed by a program but not altered

∗ Examples: positive/negative result, zero, overflow

• Instruction Fetch and Execute

– Program counter (PC) holds address of the instruction to be fetched
next

– The processor fetches the instruction from memory

– Program counter is incremented after each fetch

– Overlapped on modern architectures (pipelining)

• Instruction Register

– Fetched instruction is placed in the instruction register

– Types of instructions

∗ Processor-memory, transfer data between processor and mem-
ory

∗ Processor-I/O, data transferred to or from a peripheral device

∗ Data processing, arithmetic or logic operation on data

∗ Control, alter sequence of execution

1.3. COMPUTER HARDWARE REVIEW 27

Figure 1.5: Fetch and Execute

1.3.2 Main Memory

• Referred to as real memory or primary memory

• volatile, because its contents are lost when the power is removed

• Should be, fast, abundant, cheap, Unfortunately, that’s not the re-
ality..., Solution: combination of fast & expensive and slow & cheap
memory

• Program instructions and the data used by programs being executed
must reside in high speed semiconductor memory called random ac-
cess memory (RAM) in order to obtain high speed operation. We say
random access because the CPU can access any byte of storage in any
order.

Disk Cache

• A portion of main memory used as a buffer to temporarily to hold data
for the disk

• Disk writes are clustered

• Some data written out may be referenced again. The data are retrieved
rapidly from the software cache instead of slowly from disk

• Mostly transparent to operating system

Cache Memory

• Contain a small amount of very fast storage which holds a subset of
the data held in the main memory

• Processor first checks cache

28 CHAPTER 1. INTRODUCTION

Figure 1.6: Cache Memory

• If not found in cache, the block of memory containing the needed in-
formation is moved to the cache replacing some other data

Cache Design

• Cache size, small caches have a significant impact on performance

• Line size (block size), the unit of data exchanged between cache and
main memory

• hit means the information was found in the cache

• larger line size ⇒ higher hit rate

• until probability of using newly fetched data becomes less than the
probability of reusing data that has been moved out of cache

Mapping function, determines which cache location the data will occupy.
Replacement algorithm

• determines which line to replace

• Least-Recently-Used (LRU) algorithm

Write policy,

• When the memory write operation takes place

• Can occur every time line is updated (write-through policy)

• Can occur only when line is replaced (write-back policy)

– Minimizes memory operations

– Leaves memory in an obsolete state

1.3. COMPUTER HARDWARE REVIEW 29

1.3.3 I/O Modules and Structure

• secondary memory devices

• communications equipment

• terminals

CPU much faster than I/O devices

• waiting for I/O operation to finish is inefficient

• not feasible for mouse, keyboard

• I/O module sends an interrupt to CPU to signal completion

• Interrupts normal sequence of execution

• I/O requests can be handled synchronously or asynchronously.

– In a synchronous system, a program makes the appropriate op-
erating system call and, as the CPU is now executing operating
system code, the original program’s execution is halted i.e. it
waits.

– In an asynchronous system, a program makes its request via the
operating system call and then its execution resumes. It will most
likely not have had its request serviced yet!

– The advantage of having an asynchronous mechanism available is
that the programmer is free to organize other CPU activity while
the I/O request is handled.

• Software that communicates with controller is called device driver

• Most drivers run in kernel mode

• To put new driver into kernel, system may have to

– be relinked

– be rebooted

– dynamically load new driver

• we must have an event driven I/O system handling all of the pend-
ing I/O requests (maybe these are triggered when data arrives, or a
peripheral device such as a CD drive indicates it is ready etc.).

• Requests that the operating system has not yet been able to service
might mean that the program is currently “sleeping” or “waiting”.

30 CHAPTER 1. INTRODUCTION

Figure 1.7: Top-level Components, Pentium System

Figure 1.8: Going down the hierarchy

1.3.4 System bus

Communication among processors, memory, and I/O modules.

• A system bus would link the CPU and memory – this structure would
involve a pathway along which data could travel (usually 32-bits side-
by-side i.e. in bit-wise parallel), a pathway along which the address
specifying a particular desired memory location could travel, and a few
other lines which would tell the memory whether to store (write) or
retrieve (read) data in an access.

• As any I/O device must pass data between the computer and the out-
side world, it will also be attached to the memory system and the CPU
via the system bus.

1.3.5 Storage Structure and Hierarchy

• Decreasing cost per bit

1.3. COMPUTER HARDWARE REVIEW 31

• Increasing capacity

• Increasing access time

• Decreasing frequency of access of the memory by the processor

• Fully electronic memory systems are the fastest and most expensive,
hence must be used in cost effective ways. This memory system is
called main memory or primary memory.

• A source of cheaper-per-byte and non-volatile storage is provided by
magnetic disk. However, the computer does not have direct random
access to any byte at any time on the disk – the magnetic discs in
the drive are rotating and magnetic heads move in and out in order to
access any part of the surface area on the disc that holds data. This
means access usually involves a disc rotation delay and also a head
positioning delay.

• Other common forms of non-volatile secondary storage include: optical
CD drives (CD-R write-once or CD-RW read-write), recent flash mem-
ory chips in very small modules that can be inserted into laptop card
interfaces or can be used for data logging.

• Stages such as the CPU registers and cache are typically located within
the CPU chip so distances are very short and busses can be made very
very wide (e.g. 128-bits), yielding very fast speeds.

• Future storage technology includes 3-dimensional crystal structures
which allow optical access to a dense 3-dimensional storage facility.

1.3.6 Protection

• Single Tasking System

– Only one program can perform at a time

– Simple to implement, Only one process attattempting use re-
sources

– Few security risks

– Poor utilization of the CPU and other resources

– i.e., MS-DOS

• Multi Tasking System

32 CHAPTER 1. INTRODUCTION

– Very complex

– Serious security issues, how to protect one program from another
sharing the same memory

– Much higher utilization of system resources

– i.e., Unix, Windows NT

• OS must protect itself from users -reserved memory only accessible by
OS. The operating system is responsible for allocating access to mem-
ory space and CPU time and peripherals etc., and it will control dedi-
cated hardware facilities to help it enforce whatever resource allocation
policies are in force:

– The memory controller, unremarked when it appeared in the ba-
sic computer ororganizationis under operating system control to
detect and prevent ununauthorizedccess

– A timer will also be under operating system control to manage
CPU time allocation to programs competing for resources

• OS may protect users from another user. A fundamental requirement
of multiple users of a shared computer system is that they do not
interfere with each other. This gives rise to the need for separation of
the programs in terms of their resource use and access;

– If one program attempts to access main memory allocated to some
other program, the access should be denied and an exception
raised

– If one program attempts to gain a larger proportion of the shared
CPU time, this should be prevented

• One approach to implementing resource allocation is to have at least
two modes of CPU operation, where one mode called the supervisory
mode has its code kept in a reserved memory region, and to limit
execution of special resource allocation instructions to only the program
executing in the supervisory mode.

• Modes of operation

– supervisor (protected, kernel) mode: all (basic and privileged)
instructions available.

∗ all hardware and memory available

∗ mode the OS runs in

1.3. COMPUTER HARDWARE REVIEW 33

∗ never let the user run in supervisory mode

– user mode: a subset (basic only) of instructions.

∗ limited set of hardware and memory available

∗ mode all user programs run in

∗ I/O protection, all I/O operations are privileged

∗ Memory protection, base/limit registers (in early systems),
memory management unit, MMU (in modern systems)

∗ CPU control, timer (alarm clock), context switch

– All I/O instructions are restricted to supervisory mode – so user
programs can only access I/O by sending a request to the (con-
trolling) operating system

– All instructions controlling the memory management unit are re-
stricted to supervisory mode – so user programs can only access
the memory that the operating system has allocated

– All instructions controlling the timer (or real-time clock) are re-
stricted to supervisory mode – so user programs can only read the
time of day, and can only have as much CPU time as the operating
system allocates

– All interrupt vector table entries, which are specific to each task
or program that can run, must be configured (initially at least)
by the (controlling) operating system

• One of the early advantages of UNIX operating systems was that a
well defined set of system calls was developed to allow a programmer
to request access to system resources.

34 CHAPTER 1. INTRODUCTION

Figure 1.9: Interrupt

1.4 Interrupts and Traps

• Consider the case when data is to be input from the outside world. One
approach is to execute a small code fragment to manage the transfer
of data in from the outside world e.g. a peripheral. But when should
this code fragment be run?

– In a polling system, the computer periodically executes (or polls)
the peripheral device of interest and inputs data when it is avail-
able. This means data can only be input if the peripheral device
is polled.

– In an interrupt driven system, the peripheral triggers the execu-
tion of the previously mentioned code fragment when it has data
ready. We say interrupt because the handling of this data transfer
interrupts normal program execution. The original task (blue) has
execution interrupted while a task switching occurs (green) and
then the interrupt service routine runs (red) to do I/O. Later, the
original task resumes.

– As the system has more than one peripheral, it will need more
than one interrupt service routine available. Generally, a separate
interrupt service routine (ISR) is provided for each peripheral that
needs to trigger some CPU activity so an array of function pointers
holds the start address of each of the ISRs provided i.e. void
(∗isr ve cto rs[])().

– This trigger mechanism allows a computer response to an external
event – what about internal events? Most computers are also able
to trigger special event handling in software by executing a special
instruction called software interrupt or trap.

1.4. INTERRUPTS AND TRAPS 35

• The operating system gets the control of the CPU (which may be busy
waiting for an event or be in a busy loop) when either an external or
an internal event (or an exception) occurs.

– external events

∗ Character typed at console

∗ Completion of an I/O operation (controller is ready to do
more work)

∗ Timer: to make sure operating system eventually gets control.

∗ Hardware failure

∗ An interrupt is the notification of an (external) event that
occurs in a way that is asynchronous with the current activity
of the processor. Exact occurrence time of an interrupt is not
known and it is not predictable

– internal events

∗ System call

∗ Error item (e.g., arithmetic overflow, division by zero, illegal
instruction, addressing violation)

∗ Page fault, reference outside user’s memory space

∗ A trap is the notification of an (internal) event that occurs
while a program is executing, therefore is synchronous with
the current activity of the processor. Traps are immediate
and are usually predictable since they occur while executing
(or as a result of) a machine instruction.

• Interrupt Cycle

– Fetch next instruction

– Execute instruction

– Check for interrupt

– If no interrupts, fetch the next instruction

– If an interrupt is pending, divert to the interrupt handler

• Systems that generate interrupts have different priorities for various in-
terrupts; i.e., when two interrupts occur simultaneously, one is serviced
“before” the other.

36 CHAPTER 1. INTRODUCTION

Figure 1.10: Interrupt Cycle

– When a new “higher priority” interrupt occurs while lesser inter-
rupt is being serviced, the current handler is “suspended” until
the new interrupt is processed. This is called the “nesting of in-
terrupts.”

– When interruption of an interrupt handler is undesirable, other
interrupts can be “masked” (inhibited) temporarily

• Interrupt handling by “words”. When the CPU receives an interrupt,
it is forced to a different context (kernel’s) and the following occur:

– The current state of the CPU (PSW) is saved in some specific
location

– The interrupt information is stored in another specified location

– The CPU resumes execution at some other specific location–the
interrupt service routine

– After servicing the interrupt, the execution resumes at the saved
point of the interrupted program

– Although the details of the above differ from one machine to an-
other, the basic idea remains the same: the CPU suspends its
(current) execution and services the interrupt.

• Modern languages such as C+ + and JAVA allow the programmer to
write their own exception handlers. You are writing a special function
that can return no result (since it is not so much “called” as “trig-
gered”); and the computing environment is allowing you to store the
start address of your exception handler in the array isr vectors[].

1.4. INTERRUPTS AND TRAPS 37

Figure 1.11: Interrupt Picture

• As the computer designers have total control over which event handlers
can be accessed by users and which ones are reserved for their use,
the exception handling mechanism is also a good way to allow a user
program to make a request for a resource from the operating system.
We will come across special operations such as a system call or monitor
call which are implemented by the exception handling mechanism and
provide controlled access to system resources.

1.4.1 A ccessing OS Serv ices

• The mechanism used to provide access to OS services (i.e., enter the
operating system and perform a “privileged operation”) is commonly
known as a system call. The (only) difference between a “procedure
call” and a “system call” is that a system call changes the execution
mode of the CPU (to supervisor mode) whereas a procedure call does
not.

• System call interface: A set of functions that are called by (user) pro-
grams to perform specific tasks. System call groups:

– Process control, fork(), exec(), wait(), abort()

– File manipulation, chmod(), link(), stat(), creat()

– Device manipulation, open(), close(), ioctl(), select()

– Information maintenance, time(), acct(), gettimeofday()

38 CHAPTER 1. INTRODUCTION

Figure 1.12: System Call

– Communications, socket(), accept(), send(), recv()

1.5 Operating System Components

An operating system generally consists of the following components:

• Process management

• (Disk) storage management

• Memory management

• I/O (device) management

• File systems

• Networking

• Protection

• User Interface

1.6. BOOTSTRAPPING 39

Figure 1.13: OS Architecture

1.6 B ootstrapping

• The process of initializing the computer and loading the operating sys-
tem is known as bootstrapping. This usually occurs when the computer
is powered-up or reset.

• The initial loading is done by a small program that usually resides in
non-volatile memory (e.g., EPROM). This in turn loads the OS from
an external device.

• Once loaded, how does the operating system know what to do next? It
waits for some event to occur: e.g., the user typing a command on the
keyboard.

• During “normal” operations of a computer system, some portions of the
operating system remain in main memory to provide services for crit-
ical operations, such as dispatching, interrupt handling, or managing
(critical) resources.

• These portions of the OS are collectively called the kernel.

Kernel = OS - transient components
remains comes and goes

40 CHAPTER 1. INTRODUCTION

1.7 System Structure

• An operating system is usually large and complex. Therefore, it should
be engineered carefully. Possible ways to structure an operating system:

– Simple, single-user, MS-DOS,MacOS, W indows

1.8. WHY STUDY OPERATING SYSTEMS? 41

Figure 1.14: UNIN System initilization

– Monolithic, multi-user, UNIX,Multics, OS/ 3 6 0

– Layered,T.H .E . operating system

– Virtual machine, IBM V M/ 3 7 0

– Client/Server (microkernel), Chorus/MiX

1.8 Why Study Operating Systems?

• Build or modify real operating system.

• Tune application performance. Understanding the services offered by
an operating system will influence how you design applications.

• Administer and use system well. You will develop a better understand-
ing of the structure of modern computing systems, from the hardware
level through the operating system level and onto the applications level.

• Can apply techniques used in an OS to other areas;

– interesting, complex data structures

– confl ict resolution

42 CHAPTER 1. INTRODUCTION

Figure 1.15: OS Structures, MS-DOS, Unix, IBM VM/370, Chorus

– concurrency

– resource management

• Challenge of designing large and complex systems

• Future decisions regarding operating systems will be based on more
secure knowledge.

• Curiosity: How the system works.

• For your Course Requirement!!

1.8.1 Problems in building OS

• Large Systems: 100k’s to millions of lines of code involving 100 to 1000
man-years of work

• Complex: Performance is important while there is conflicting needs of
different users, Cannot remove all bugs from such complex and large
software

1.8. WHY STUDY OPERATING SYSTEMS? 43

• Behavior is hard to predict; tuning is done by guessing

44 CHAPTER 1. INTRODUCTION

Chapter 2

P rocesses and Threads

Simple C example
Include text of header file in <> for system, user header name in “ ”
main program called “main”, with these argument types

#include <stdio.h>

int main(int argc, char *argv[])

{

int i;

for (i=0; i < argc; i++)

printf(‘‘command line argument [%d] = %s \n’’,

i, argv[i]);

}

2.1 P ro c e sse s

What is a P ro cess

• talk in g abo u t p ro g rams ex ec u tin g bu t what it is mean t?

• At the very least, we are rec o g n iz in g that so me p ro g ram co d e is resid en t

in memo ry an d the C P U is fetchin g the in stru ctio n s in this c o d e an d

ex ec u tin g them

• O f c o u rse, a ru n n in g p ro g ram co n tain s d ata to man ip u late in ad d itio n

to the in stru ctio n s d esc ribin g the man ip u latio n . T herefo re, there mu st

also be so me memo ry ho ld in g d ata.

• We are startin g to talk o f p ro cesses o r task s o r even jo bs when referrin g

to the p ro g ram co d e an d d ata asso c iated with an y p artic u lar p ro g ram

4 5

46 CHAPTER 2 . PRO CES S ES AN D THREAD S

F igure 2 .1 : S ystem Calls

– a program in execution,

– an instance of a program running on a computer,

– a unit of execution characterised by a single, seq uential thread of
execution,

– a current state an associated set of system resources (memory,
devices, fi les),

– process execution must progress in seq uential fashion

• An operating system executes a variety of programs:

– B atch system, jobs

– Time-shared systems, user programs or tasks

• K eep track of the states of every process currently executed. make sure;
no process monopolises the CPU, no process starves

2.1.1 T h e P ro c e ss M o d e l

The operating system must know specifi c information about processes in
order to manage and control them. S uch information is usually grouped into
two categories:

• process state information

2.1. PROCESSES 47

Figure 2.2: A UN IX Process Context

– CPU registers (general purpose and special purpose); used by the
process will include:

∗ memory access registers such as a stack pointer and a heap
pointer, a stack frame pointer (points at a data block on the
stack holding data exchanged between caller and callee func-
tions),

∗ a processor status register, possibly a register to hold return
addresses,

– program counter; this is a pointer to the program memory (text)
location where the next instruction for this process resides

• process control information

– scheduling priority, this describes the rules enforced when deter-
mining access to a processor by this process, and can include the
identity of the “ process ready to run” queue that this process is
placed in when it is ready to take CPU time

– resource use information, this information records the use of CPU
time, elapsed time, process identity number, user or account iden-
tity number, etc.

– I/ O status information, this can include a list of I/ O devices used
by the process, a list of open files and any buff ers associated with
them

– memory allocated, this can describe the region of memory in use
(a base address and a size), the page tables (a description of which

48 CHAPTER 2. PROCESSES AND THREADS

pieces of memory are “mapped” into the single region used by the
process)

• This collection of process information is represented in the operating
system by a data structure element called process con trol b lock (P C B)
or a task con trol b lock . Consists of:

– An executable program (code), which is usually referred to as the
text section

– Associated data needed by the program (global data, stack)

∗ the global data variables and constants, which are usually
referred to as the data section

∗ the dynamic storage memory used to hold temporary variables
and pass function call arguments and results, usually referred
to as the stack

∗ the dynamic storage memory used by C+ + new/delete oper-
ators and C calls to malloc()/free(), usually referred to as the
heap

– E xecution context (or state) of the program;

∗ contents of data registers,

∗ program counter,

∗ stack pointer state (waiting on an event?),

∗ memory allocation,

∗ status of open files,

2.1.2 C on tex t S w itch

• Switching between processes is termed as context switch. When the
CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process;

– process table keeps track of processes,

– context information stored in PCB,

– process suspended: register contents etc stored in PCB,

– process resumed: PCB contents loaded into registers

• Context-switch time is overhead; the system does no useful work while
switching.

2.1. PROCESSES 49

Figure 2.3 : Process Control Block (PCB), Processes from main memory to
registers.

• Context switching can be critical to performance,

• D ealing with multiple processes is diffi cult;

– Synchronization ensure a process waiting for an I/O device re-
ceives the signal, signals may be lost or duplicated.

– Failed mutual exclusion attempt to use a shared resource at the
same time.

– Non-deterministic program operation; program should only de-
pend on input to it, not relying on common memory areas.

– D eadlocks.

• OS requirements for multiprogramming;

– Policy to determine which process to schedule (Scheduler).

– M echanism to switch between processes (L ow-level code that im-
plements the decision D ispatcher).

– M ethods to protect processes from one another (memory system).

50 CHAPTER 2. PROCESSES AND THREADS

Figure 2.4: CPU Switch From Process to Process

2.1.3 D isp a tcher

• Dispatch Mechanism OS keeps system-wide list of processes. Each
process in one of three modes; R unning: On the CPU (only one in
uniprocessor system), R eady: Waiting for the CPU, Blocked: Waiting
for I/O or synchronization with another thread. Dispatch loop:

while (1) {

run a process for a while

stop process and save its state context-switch

load state of another process context-switch

}

• H ow does Dispatcher gain Control?

– must change from user mode to system mode; the CPU can only
do one thing at a time. While a user process is running, dispatcher
cannot run, thus the operating system may lose control

– two ways operating system gains control;

∗ Traps: Events internal to user process (System calls, Errors,
Page faults)

∗ H ardware interrupts: Events external to user process (Char-
acter typed at terminal, Completion of disk transfer, Control
given to OS interrupt service routine (ISR))

2.1. PROCESSES 51

• Dispatcher must track state of process when not running; On every
trap or interrupt, save process state in Process Control Block (PCB)

2.1.4 Process Creation

• There are two ways of creating a new process:

– Build one from scratch:

∗ Load code and data into memory.

∗ Create (empty) a dynam ic m em ory w orkspace (h eap).

∗ Create and initialize the PCB (make look like context-switch).

∗ Make process known to dispatcher.

– Clone an existing one (e.g., Unix fork() syscall):

∗ Stop current process and save its state.

∗ Make a copy of code, data, dynam ic m em ory w orkspace and
PCB.

∗ Make process known to dispatcher.

• Who creates the processes and how they are supported? E very operat-
ing sy stem h as a m ech anism to create processes.

• in UNIX, the fo rk () system call is used to create processes. fo rk ()
creates an identical copy of the calling process. After the fo rk (), the
parent continues running concurrently with its ch ild competing equally
for the CPU. e x e c system call used after a fo rk to replace the process’
memory space with a new program.

cmd = readcmd();

pid = fork();

if (pid == 0) {

// Child process -- Setup environment here

// e.g., standard i/o, signals exec(cmd);

// exec doesn t return

} else {

// Parent process -- Wait for child to finish

wait(pid);

}

• in MS-DOS, the L O A D A N D E X E C system call creates a child pro-
cess. This call suspends the parent until the child has finished execu-
tion, so the parent and child do not run concurrently

52 CHAPTER 2. PROCESSES AND THREADS

• Parent process create children processes, which, in turn create other
processes forming a tree of processes

• Resource sharing

– Parent and children share all resources.

– Children share subset of parent’s resources.

– Parent and child share no resources.

• Execution, once a parent creates a child process, a number of execution
possibilities exist:

– Parent and children execute concurrently.

– the parent may immediately enter a wait state for the child to
finish – on UNIX, see the man pages for {wait, waitpid, wait4,
wait3}.

– the parent could immediately terminate.

• If the parent happens to terminate before the child has returned its
value, then the child will become a zombie process and may be listed
as such in the process status list!

• Address space, once a parent creates a child process, a number of mem-
ory possibilities exist:

– the child can have a duplicate of the parent’s address space – as
each process continues to execute, their data spaces will presum-
ably diverge.

– the child can have a completely new program loaded into its ad-
dress space.

• If either process needs to run a different program, it can perform a call
to int execlp(const char * file, const char * arg, ...) where arguments
specify the executable file and optional run-time arguments which the
caller may wish to provide. See the man pages on fork and also {execl,
execlp, execle, exect, execv, execvp}.

• How does each process know whether it is the parent or child after a
fork? On BSD UNIX, fork() returns a value of 0 to the child process
and returns the process ID of the child process to the parent process.

2.1. PROCESSES 53

2.1.5 Process Term ination

• A process enters the exiting state for one of the following reasons:

– normal completion: Once a process executes its final instruction,
a call to exit() is made.

– abnormal termination: programming errors.

– run time.

– I/O.

– user intervention.

• Even if the user did not program in a call to exit(), the compiler will
have appended one to int main()

– The final result of the process from its int main() is returned to
the parent, with a call to wait() if necessary.

– Process’ resources are deallocated by operating system.

• Parent may terminate execution of children processes (a b ort)

– Child has exceeded allocated resources.

– Task assigned to child is no longer required.

– Parent is exiting

∗ Operating system does not allow child to continue if its parent
terminates.

∗ Cascading termination.

54 CHAPTER 2. PROCESSES AND THREADS

2.1.6 Process States

• There are a number of states that can be attributed to a process: in-
deed, the operation of a multiprogramming system can be described
by a state transition diagram on the process states. The states of a
process include:

– New –a process being created but not yet included in the pool of
executable processes (resou rce acqu isition).

– R ead y –processes that are prepared to execute when given the
opportunity.

– Activ e, R u n n in g –the process that is currently being executed
by the CPU.

– B locked , Waitin g –a process that cannot execute until some
event occurs, such as completion of an I/O service or reception
of a signal.

– S top p ed –a special case of blocked where the process is sus-
pended by the operator or the user.

– Exitin g , Term in ated –a process that is about to be removed
from the pool of executable processes (resou rce release), a process
has finished execution and is no longer a candidate for assignment
to a processor, and its remaining resources and attributes are to
be disassembled and returned to the operating system’s “free”
resource structures.

• As a process executes, it can change state due to either an external
infl uence, e.g. it is forced to give up the CPU so that another process
can take a turn, or an internal reason, e.g. it has finished or is waiting
for a service from the operating system

• A process therefore takes part in a finite state system, and we typically
show this in a state diagram which highlights the conditions necessary
to transit from one state to another

2.2 T h rea d s

• Process: Owner of resources allocated for individual program execu-
tion, can encompass more than one thread of execution

2.2. THREADS 55

Figure 2.5: Diagram of Process State

• Thread: Unit of execution (unit of dispatching) and a collection of
resources, with which the unit of execution is associated, characterize
the notion of a process. A thread is the abstraction of a unit of execu-
tion. It is also referred to as a light-weight process LW P that share the
same text (program code) and global data, but possess their own CPU
register values and their own dynamic (or stack based) variables

• First look at the advantages of threads;

– a program does not stall when one of its operations blocks.

– save contents of a page to disk while downloading other page (for
web server example)

– Simplification of programming model

• Single process, single thread MS-DOS, old MacOS

• Single process, multiple threads OS/161

• Multiple processes, single thread traditional Unix

• Multiple processes, multiple threads modern Unices (Solaris, Linux),
Windows2000

• As a basic unit of CPU utilization, a thread consists of an instruction
pointer (also referred to as the PC or instruction counter), CPU register
set and a stack. A thread shares its code and data, as well as system
resources and other OS related information, with its peer group (other
threads of the same process)

56 CHAPTER 2. PROCESSES AND THREADS

Figure 2.6: Single and Multithreaded Processes

• Threads versus processes;

– A thread operates in much the same way as a process:

∗ can be one of the several states.

∗ executes sequentially (within a process and shares the CPU).

∗ can issue system calls.

– Economy of Overheads – managing processes is considerably more
expensive than managing threads so LWPs are better.

– Responsiveness – less setup work means faster response to re-
quests, and multiple thread of execution mean there can be re-
sponse from some threads even if other threads are busy or blocked.

– Resource Sharing – Threads within a process share resources (in-
cluding the same memory address space) conveniently and effi-
ciently compared to separate processes

– Threads within a process are NOT independent and are NOT
protected against each other

– Multiprocessor Use – if multiple processors are available, a mul-
tithreaded application can have its threads run in parallel which
means better utilization (especially if there are few other processes
present so that, without a multithreaded application, some CPUs
would be idle)

• A process utilizing multithreading is a process with multiple points of
execution–up to now, we have assumed that each process has only one
point of execution

2.2. THREADS 57

Figure 2.7: Threads and Processes

Figure 2.8: A word processor with three threads, a multithreaded web server

• similarity between an operating system supporting multiple processes
and a process supporting multiple threads

• Figure 2.6 shows a traditional (or heavyweight) process, on the left, and
3 LWPs are drawn on the right in a way to emphasize their common
text and global data (i.e. data and heap)

• In practice, an application such as a web server that can have consid-
erable variations in the rate of requests can create additional threads
in response to serving load, yet minimize process creation load on the
host

• Less setup improves responsiveness, and shared text means more effi-
cient memory use

58 CHAPTER 2. PROCESSES AND THREADS

2.2.1 The Thread Model

• Many-to-One

– Many user-level threads mapped to single kernel thread.

– Thread management is done in user space but the whole process
blocks if any one user thread blocks.

– Used on systems that do not support kernel threads.

• One-to-One

– Each user-level thread maps to kernel thread.

– As thread management is done in kernel space, a blocked thread
does not prevent other threads from running and multiprocessor
utilization is efficient.

– Examples, Windows 95/98/NT/2000, OS/2

• Many-to-Many

– Allows many user level threads to be mapped to many kernel
threads.

– The number of kernel threads provided might be specified accord-
ing to the application and also the number of processors on a
particular host.

– Allows the operating system to create a sufficient number of kernel
threads.

– Solaris 2, DEC/compaq (Thu64), HP (HP-UX), and Silicon G raph-
ics (IRIX), Windows NT/2000 with the ThreadF iber package

2.2.2 Implementing Threads in U ser Space

• Thread management done by user-level threads library

• a thread library is used for management with no support from (or
knowledge by) the kernel. If the kernel is single threaded, and one of
the user threads blocks, then the user’s process is also blocked which
means that the remaining user threads are also blocked. Available for
many OSes

2.3. INTERPROCESS COM M U NICATION 59

Figure 2.9: Thread Models; Many-to-One, One-to-One, Many-to-Many

• While user threads usually emphasize their lower management load
compared to kernel threads, one must consider this in relation to their
lower functionality

• Examples;

– One quite common library is pthread – the POSIX (POSIX is an
IEEE standard for a portable operating system interface based on
UNIX) thread functions.

– Mach C-threads.

– The Sun Microsystems Solaris 2 OS provides UI-threads (a stan-
dard originating from the Unix International Organization, RIP).

2.2.3 Implementing Threads in the K ernel

• Supported by the kernel, the kernel performs all management (creation,
scheduling, deletion, etc.)

• if one thread blocks, another may be run

• If the kernel is managing multiple processors, an efficient mapping of
threads to processors is possible

• Examples; Windows 95/98/NT/2000, Solaris, Tru64 UNIX, BeOS, Linux

2.3 In terp rocess C om m u n ication

• Multi-threading: concurrent threads share an address space

60 CHAPTER 2. PROCESSES AND THREADS

• Multi-programming: concurrent processes execute on a uniprocessor

• Multi-processing: concurrent processes on a multiprocessor

• Distributed processing: concurrent processes executing on multiple
nodes connected by a network

• Concurrent processes (threads) need special support:

– Communication among processes

– Allocation of processor time

– Sharing of resources

– Synchronization of multiple processes

• In a multiprogramming environment, processes executing concurrently
are either competing for the CPU and other global resources, or coop-
erating with each other for sharing some resources

• An OS deals with competing processes by carefully allocating resources
and properly isolating processes from each other. For cooperating pro-
cesses, on the other hand, the OS provides mechanisms to share some
resources in certain ways as well as allowing processes to properly in-
teract with each other

• Cooperation is either by implicit sharing or by explicit communication

• Processes: competing Processes that do not exchange information can-
not affect the execution of each other, but they can compete for devices
and other resources. Such processes do not intend to work together,
and so are unaware of one another

• Properties: Deterministic, Reproducible,Can stop and restart without
“side” effects, Can proceed at arbitrary rate

• Processes: cooperating Processes that are aware of each other, and
directly (by exchanging messages) or indirectly (by sharing a common
object) work together, may affect the execution of each other

• Properties: Share (or exchange) something: a common object (or a
message), Non-deterministic (a problem!), May be irreproducible (a
problem!), Subject to race conditions (a problem!)

• Threads of a process usually do not compete, but cooperate

2.3. INTERPROCESS COMMUNICATION 61

Table 2.1: Race Condition

Process A Process B concurrent access
A = 1 ; B = 2 ; does not matter
A = B + 1 ; B = B * 2 ; important!

• Why cooperation? We allow processes to cooperate with each other,
because we want to:

– share some resources.

– do things faster

∗ Read next block while processing current one.

∗ Divide jobs into smaller pieces and execute them concurrently.

– construct systems in modular fashion.

– UNIX example:

cat infile | tr ’ ’ ’\012’ |tr ’[A-Z]’ ’[a-z]’ | sort | uniq -c

2.3.1 R ace Conditions

• A potential problem; Instructions of cooperating processes can be in-
terleaved arbitrarily. Hence, the order of (some) instructions are irrel-
evant. However, certain instruction combinations must be eliminated.
For example: see Table 2.1

• A race condition is a situation where two or more processes access
shared data concurrently and correctness depends on specific interleav-
ings of operations; final value of shared data depends on timing (i.e.,
race to access and modify data)

• To prevent race conditions, concurrent processes must be synch ro-
nized

2.3.2 Critical R egions

• A section of code, or a collection of operations, in which only one pro-
cess may be executing at a given time and which we want to make
“sort of” atomic. Atomic means either an operation happens in its
entirely (everything happens at once) or NOT at all; i.e., it cannot be

62 CHAPTER 2. PROCESSES AND THREADS

interrupted in the middle. Atomic operations are used to ensure that
cooperating processes execute correctly. Mutual exclusion mechanisms
are used to solve the critical region problem

• machine instructions are atomic, high level instructions are not (count++;
this is actually 3 machine level instructions, an interrupt can occur in
the middle of instructions)

• Fundamental requirements; Concurrent processes should meet the fol-
lowing requirements in order to cooperate correctly and efficiently using
shared data:

– M utual exclusion–no two processes will simultaneously be inside
the same critical region (CR).

– N o assumptions–may be made about speeds or the number of
CPUs. Must handle all possible interleavings.

– Fault tolerance–processes running outside their CR should not
block with others accessing the CR.

– Progress–no process should have to wait forever to enter its CR.
A process wishing to enter its CR will eventually do so in finite
time.

Also, a process in one CR should not block others entering a different
CR. Effi ciency–a process will remain inside its CR for a short time
only, without blocking.

• Conceptually, there are three ways to satisfy the implementation re-
quirements:

– Software approach: put responsibility on the processes themselves

– Systems approach: provide support within operation system or
programming language

– Hardware approach: special-purpose machine instructions

2.3.3 Mu tu al E xclu sion with B u sy Waiting (Software

approach)

• M utual exclusion is a mechanism to ensure that only one process (or
person) is doing certain things at one time, thus avoid data inconsis-
tency. All others should be prevented from modifying shared data until
the current process finishes

2.3. INTERPROCESS COMMUNICATION 63

Figure 2.10: Mutual exclusion using critical regions

• Strict Alternation (see Fig. 2.11)

– the two processes strictly alternate in entering their CR

– the integer variable turn, initially 0, keeps track of whose turn is
to enter the critical region

– busy waiting, continuously testing a variable until some value
appears, a lock that uses busy waiting is called a spin lock

– both processes are executing in their noncritical regions

– process 0 finishes its noncritical region and goes back to the top
of its loop

– unfortunately, it is not permitted to enter its CR, turn is 1 and
process 1 is busy with its nonCR

– this algorithm does avoid all races

– but violates condition 3

• Petersons’s solution (see Fig. 2.12)

– does not require strict alternation

– this algorithm consists of two procedures

– before entering its CR, each process calls enter region with its
own process number, 0 or 1

64 CHAPTER 2. PROCESSES AND THREADS

Figure 2.11: A proposed solution to the CR problem. (a) Process 0, (b)
Process 1

– after it has finished with the shared variables, the process calls
leave region to allow the other process to enter

– consider the case that both processes call enter region almost
simultaneously

– both will store their process number in turn . Whichever store
is done last is the one that counts; the first one is overwritten and
lost

– suppose that process 1 stores last , so turn is 1.

– when both processes come to the while statement, process 0 en-
ters its critical region

– process 1 loops until process 0 exists its CR

– no violation, implements mutual exclusion

– burns CPU cycles (requires busy waiting), can be extended to
work for n processes, but overhead, cannot be extended to work for
an unknown number of processes, unexpected effects (i.e.,priority
inversion problem)

2.3.4 Sleep and wak eup

• blocks instead of wasting CPU time (while loop) when they are not
allowed to enter their CRs

• sleep and wakeup pair

• sleep is a system call that causes the caller to block (be suspended until
another process wakes is up)

2.3. INTERPROCESS COMMUNICATION 65

Figure 2.12: Peterson’ solution for achieving mutual exclusion

• The Producer-Consumer Problem

– Suppose one process is creating information that is going to be
used by another process, e.g., suppose one process reads informa-
tion from the disk, and another compiles that information from
source to machine code.

– Producer: creates copies of a resource

– Consumer: uses up copies of a resource

– Buffers: used to hold information after producer has created it
but before consumer has used it

– Signaling: keeping control of producer and consumer (e.g., pre-
venting overrun of the producer)

– Constraints:

∗ Consumer must wait for a producer to fill buffers. (signaling)

∗ Producer must wait for consumer to empty buffers, when all
buffer space is in use. (signaling)

∗ Only one process must manipulate buffer pool at once. (
mutual exclusion)

66 CHAPTER 2. PROCESSES AND THREADS

– Trouble arises when the producer wants to put a new item in the
buffer, but it is already full

– The solution is for the producer to go to sleep, to be awakened
when the consumer has removed one or more items

– RACE CONDITION can occur because access to count (see Fig.
2.13) is unconstrained.

∗ the buffer is empty

∗ the consumer has read count to see if it is 0, sleeping

∗ at that instant, the scheduler started running the producer

∗ the producer inserts an item in the buffer, count is 1

∗ the consumer should be awaken up, the producer calls wakeup

∗ the consumer is not logically asleep, so the wakeup signal is
lost

∗ the producer will fill up the buffer and also go to sleep

∗ BOTH WILL SLEEP FOREV ER.

2.3. INTERPROCESS COMMUNICATION 67

Figure 2.13: The producer-consumer problem with a fatal race problem

68 CHAPTER 2. PROCESSES AND THREADS

2.3.5 Semaphores

• Dijkstra (1965) introduced the concept of a semaphore

• A semaphore is an integer variable that is accessed through two stan-
dard atomic operations: wait (a spinlock, i.e. stops blocking and
decrements thesemaphore) and signal (i.e. the semaphore counts the
signals it receives)

• Semaphores are variables that are used to signal the status of shared
resources to processes (a semaphore could have the value of 0, indicat-
ing that no wakeups are saved, or some positive value if one or more
wakeups are pending)

• How does that work?

– If a resource is not available, the corresponding semaphore blocks
any process waiting for the resource

– Blocked processes are put into a process queue maintained by the
semaphore (avoids busy waiting!)

– When a process releases a resource, it signals this by means of the
semaphore

– Signalling resumes a blocked process if there is any

– Wait and signal operations cannot be interrupted

– Complex coordination can be specified by multiple semaphores

• the down operation on a semaphore

– checks to see if the value is greater than 0

– if so, it decrements the value and continues

– if the value is 0, the process is put to sleep without the completing
the down for the moment

– all is done as a single, indivisible atomic action

∗ checking the value

∗ changing it

∗ possibly going to sleep

– it is guaranteed that once a semaphore operation has started, no
other process can access the semaphore until the operation has
completed

2.3. INTERPROCESS COMMUNICATION 69

– synchronization and no race condition

• the up operation on a semaphore

– increments the value of the semaphore

– if one or more processes were sleeping on that semaphore, unable
to complete an earlier down operation, one of them is chosen by
the system and allowed to complete its down

– the semaphore will be 0. but there will be one fewer process
sleeping on it

– indivisible process; incrementing the semaphore and waking up
one process

• Solving the producer-consumer problem using semaphores (see Fig.
2.14)

– the solution uses three semaphores;

∗ one called full for counting the number of slots that are full

∗ one called empty for counting the number of slots that are
empty

∗ one called mutex to make sure the producer and the con-
sumer do not access the buffer at the same time. mutex is
initially 1 (binary semaphore)

∗ if each process does a down just before entering its CR and an
up just after leaving it, the mutual exclusion is guaranteed.

• Possible uses of semaphores;

– Mutual exclusion, initialize the semaphore to one

– Synchronization of cooperating processes (signaling), initialize the
semaphore to zero

– Managing multiple instances of a resource, initialize the semaphore
to the number of instances

• Type of semaphores;

– binary is a semaphore with an integer value of 0 and 1.

– counting is a semaphore with an integer value ranging between 0
and an arbitrarily large number. Its initial value might represent
the number of units of the critical resources that are available.
This form is also known as a general semaphore.

70 CHAPTER 2. PROCESSES AND THREADS

Figure 2.14: The producer-consumer problem using semaphore

2.3. INTERPROCESS COMMUNICATION 71

2.3.6 Monitors

• Semaphores are useful and powerful

• But, they require programmer to think of every timing issue; easy to
miss something, difficult to debug

• Let the compiler handle the details

• Monitors are a high level language construct for dealing with synchro-
nization

– similar to classes in J ava

– a monitor has fields and methods

• A monitor is a software module implementing mutual exclusion

• Monitors are easier to program than semaphores

– programmer only has to say what to protect

– compiler actually does the protection (compiler will use semaphores
to do protection)

• Natively supported by a number of programming languages: J ava

– Resources or critical sections can be protected using the keyword:
synchronized keyword

– synchronized can be applied to a method: entire method is a
critical section

• Chief characteristics (see Fig. 2.15):

– Local data variables are accessible only by the monitor (not ex-
ternally)

– Process enters monitor by invoking one of its procedures, but can-
not directly access the monitor’s internal data structures

– Only one process may be executing in the monitor at a time (mu-
tual exclusion)

– Only methods inside monitor can access fields

– At most one thread can be active inside monitor at any one time

• Main problem: provides less control

72 CHAPTER 2. PROCESSES AND THREADS

• Allow process to wait within the monitor with condition variable,
condition x,y;

• can only be used with operations wait and signal (notify() in Java);

– operation wait(x); means that the process invoking this operation
is suspended until another process invokes signal(x);

– operation signal(x); resumes exactly one process suspended

• condition variables are not counters, they do not accumulate signals
for later use the way the semaphores do. Thus if a condition variable
is signaled with no waiting on it, the signal is lost

• This solution is deadlock free

• In Fig. 2.16, the solution for the producer-consumer problem with a
monitor is given

• The class our monitor contains the buffer, the administration vari-
ables and two synchronized methods

• when the producer is active in insert, it knows for sure that the con-
sumer can not be active inside remove

• making it safe to update the variables and buffer without fear of race
conditions

Figure 2.15: A monitor

2.3. INTERPROCESS COMMUNICATION 73

Figure 2.16: The producer-consumer problem with a monitor.

74 CHAPTER 2. PROCESSES AND THREADS

2.4 Classical IPC Prob lems

2.4.1 The Dining Philosophers Prob lem (see F ig. 2.17)

Figure 2.17: Lunch time in the Philosophy Department.

• Five philosophers are seated around a circular table

• A philosopher needs two forks to eat

• The life of a philosopher consists of alternate periods of eating and
thinking

• Write a program for each philosopher that does what it is supposed to
do and never gets stuck

• one attempt is to use a binary semaphore (think)

– before starting to acquire forks, a philosopher would do a down
on mutex

– after replacing the forks, he would up on mutex

– bug: only one philosopher can be eating at any instant

• the solution presented in Fig. 2.18 uses an array, state, to keep track of
whether a philosopher is eating, thinking, or hungry (trying to acquire
forks)

• A philosopher may move only into eating state if neither neighbor is
eating

2.4. CL ASSICAL IPC PROB L EMS 75

Figure 2.18: A solution to the dining philosophers problem.

76 CHAPTER 2. PROCESSES AND THREADS

• The solution is deadlock–free and allows the maximum parallelism for
any number of philosophers

2.4.2 The Readers and Writers Problem (see Fig. 2.19)

Figure 2.19: A solution to the readers and writers problem.

• Models access to a database; many competing processes wishing to read
and write

• It is acceptable to have multiple processes reading the database at the
same time, but if one process is updating (writing) the database, no
other process may have access to the database, not even readers

• Write a program for the readres and writers

2.4. CLASSICAL IPC PROBLEMS 77

• the solution presented in Fig. 2.19, the first reader to get access to the
database does a down on the semaphore db

• Subsequent readers increment a counter, rc

• As readers leave, they decrement the counter and the last one does an
up on the semaphore, allowing a blocked writer

• bug:

– As long as at least one reader is still active, subsequent readers is
admitted

– As a consequence of this strategy, as long as there is a steady
supply of readers. they will all get in as soon as they arrive

– The writer will be kept suspended until no reader is present

• The solution is that when a reader arrives and a write is waiting, the
reader is suspended behind the writer instead of being admitted imme-
diately (less concurrency, lower performance)

2.4.3 The Sleeping Barber Problem (see Fig. 2.20)

• This problem is similar to various queueing situations

• The problem is to program the barber and the customers without get-
ting into race conditions

– Solution uses three semaphores:

∗ customers; counts the waiting customers

∗ barbers ; the number of barbers (0 or 1)

∗ mutex ; used for mutual exclusion

∗ also need a variable waiting ; also counts the waiting customers
(reason; no way to read the current value of semaphore)

– The barber executes the procedure barber, causing him to block
on the semaphore customers (initially 0)

– The barber then goes to sleep

– When a customer arrives, he executes customer, starting by ac-
quiring mutex to enter a critical region

– if another customer enters, shortly thereafter, the second one will
not be able to do anything until the first one has released mutex

78 CHAPTER 2. PROCESSES AND THREADS

Figure 2.20: A solution to the sleeping barber problem.

– The customer then checks to see if the number of waiting cus-
tomers is less than the number of chairs

– if not, he releases mutex and leaves without a haircut

– if there is an available chair, the customer increments the integer
variable, waiting

– Then he does an up on the semaphore customers

– When the customer releases mutex, the barber begins the haircut

2.5. SCHEDULING 79

2.5 S cheduling

• In multiprogramming systems, where there is more than one process
runnable (i.e., ready), the operating system must decide which one to
run next

• The decision is made by the part of the operating system called the
scheduler, using a scheduling algorithm or scheduling discipline.

2.6 Introduction to S cheduling

• In the beginning–there was no need for scheduling, since the users
of computers lined up in front of the computer room or gave their job
to an operator

• Batch processing–the jobs were executed in first come first served
manner

• M ultiprogramming–life became complicated!

• The scheduler is concerned with deciding policy, not providing a mech-
anism

• The dispatcher is the mechanism

• Dispatcher

– Low-level mechanism

– Responsibility: Context-switch

∗ Save execution state of old process in PCB

∗ Load execution state of new process from PCB to registers

∗ Change scheduling state of process (running, ready, or blocked)

∗ Switch from kernel to user mode

∗ Jump to instruction in user process

• Scheduler

– Higher-level policy

– Responsibility: Deciding which process to run

• Scheduling refers to a set of policies and mechanisms to control the
order of work to be performed by a computer system.

80 CHAPTER 2. PROCESSES AND THREADS

• Of all the resources of a computer system that are scheduled before
use, the CPU is the far most important.

• But, other criteria may be important too (e.g.,memory)

• Multiprogramming is the (efficient) scheduling of the CPU

• Metrics

– Execution time: Ts

– Waiting time: time a thread waits for execution: Tw

– Turnaround time: time a thread spends in the system (waiting
plus execution time): Ts + Tw = Tr

– Normalized turnaround time: Tr/ Ts

• Process Behavior

– The basic idea is to keep the CPU busy as much as possible by
executing a (user) process until it must wait for an event and then
switch to another process

– Processes alternate between consuming CPU cycles (CPU-burst)
and performing I/O (I/ O -burst)

• Categories of Scheduling Algorithms (See Fig. 2.21)

– In general, scheduling policies may be preemptive or non- preemp-
tive

– In a non-preemptive pure multiprogramming system, the short-
term scheduler lets the current process run until it blocks, waiting
for an event or a resource, or it terminates. First-Come-First-
Served (FCFS), Shortest Job first (SJF). Good for “background”
batch jobs.

– Preemptive policies, on the other hand, force the currently active
process to release the CPU on certain events, such as a clock
interrupt, some I/O interrupts, or a system call. Round-Robin
(RR), Priority Scheduling. Good for “foreground” interactive jobs

• Scheduling Algorithm Goals

– A typical scheduler is designed to select one or more primary per-
formance criteria and rank them in order of importance

2.6. INTRODUCTION TO SCHEDULING 81

Figure 2.21: Some goals of the scheduling algorithm under different circum-
stances.

– One problem in selecting a set of performance criteria is that they
often conflict with each other

– For example, increased processor utilization is usually achieved by
increasing the number of active processes, but then response time
decreases

– So, the design of a scheduler usually involves a careful balance of
all requirements and constraints

– The following is only a small subset of possible characteristics:I/O
throughput, CPU utilization, response time (batch or interactive),
urgency of fast response, priority, maximum time allowed, total
time required.

– Maximize:

∗ CPU utilization

∗ throughput (number of tasks completed per time unit, also
called bandwidth)

– Minimize:

∗ Turnaround time (submission to completion, also called la-
tency)

∗ Waiting time (sum of time spent in Ready-queue)

82 CHAPTER 2. PROCESSES AND THREADS

∗ Response time (time from start of request to production of
first response, not full time for output)

– Fairness:

∗ every task should be handled eventually (no starvation)

∗ tasks with similar characteristics should be treated equally

– different type of systems have different priorities!

2.7 Scheduling in B atch Sy stems

• First-Come First Served (FCFS) (See Fig. 2.22)

– FCFS, also known as First-In-First-Out (FIFO), is the simplest
scheduling policy

– Arriving jobs are inserted into the tail of the ready queue and the
process to be executed next is removed from the head (front) of
the queue

– FCFS performs better for long jobs

– Relative importance of jobs measured only by arrival time (poor
choice)

– A long CPU-bound job may take the CPU and may force shorter
(or I/O-bound) jobs to wait prolonged periods

– This in turn may lead to a lengthy queue of ready jobs, and thence
to the “convoy effect

• Shortest Job First (SJF)(See Fig. 2.23)

– SJF policy selects the job with the shortest (expected) processing
time first

– Shorter jobs are always executed before long jobs

– One major difficulty with SJF is the need to know or estimate the
processing time of each job (can only predict the future!)

– Also, long running jobs may starve for the CPU when there is a
steady supply of short jobs

– SJF is optimal Â minimum average waiting time for given set of
processes

– nonpreemptive Â once CPU given to process, can’t be preempted
until completes CPU burst

2.7. SCHEDULING IN BATCH SY STEMS 83

Figure 2.22: An example to First-Come First Served.

Figure 2.23: An example to Shortest Job First.

84 CHAPTER 2. PROCESSES AND THREADS

Figure 2.24: Example of non-preemptive SJF and example of preemptive
SJF.

• Shortest Remaining Time Next (SRTF)

– preemptive version of the SJF

– if new process arrives with CPU burst length remaining time of
current executing process, preempt: Shortest-Remaining-Time-
First

2.8 Scheduling in Interactiv e Systems

• Round-Robin Scheduling (RR) (See Fig. 2.25)

– RR reduces the penalty that short jobs suffer with FCFS by pre-
empting running jobs periodically

– Scheduled thread is given a time slice

– The CPU suspends the current job when the reserved quantum
(time-slice) is exhausted

– The job is then put at the end of the ready queue if not yet
completed

– Advantages;

∗ no starvation

2.8. SCHEDULING IN INTERACTIV E SYSTEMS 85

Figure 2.25: An example to Round Robin.

∗ Fair allocation of CPU across jobs

∗ Low average waiting time when job lengths vary widely

– Disadvantages;

∗ Poor average waiting time when job lengths are identical;
Imagine 10 jobs each requiring 10 time slices, all complete
after about 100 time slices, even FCFS is better!

∗ The critical issue with the RR policy is the length of the quan-
tum. If it is too short, then the CPU will be spending more
time on context switching. Otherwise, interactive processes
will suffer

• Priority Scheduling (See Fig. 2.26)

– Each process is assigned a priority (e.g., a number)

– The ready list contains an entry for each process ordered by its
priority

– The process at the beginning of the list (highest priority) is picked
first

∗ Scheduler will always choose a thread of higher priority over
one of lower priority

86 CHAPTER 2. PROCESSES AND THREADS

Figure 2.26: An example to Priority-based Scheduling.

∗ Implemented via multiple FCFS ready queues (one per prior-
ity)

– Lower-priority may suffer starvation

– A variation of this scheme allows preemption of the current process
when a higher priority process arrives

– Another variation of the policy adds an aging scheme where the
priority of a process increases as it remains in the ready queue;
hence, will eventually execute to completion

• Multiple Q ueues (See Fig. 2.27)

– Multi-Level Q ueue (MLQ) scheme solves the mix job problem
(e.g., batch, interactive, and CPU-bound) by maintaining sepa-
rate “ready” queues for each type of job class and apply different
scheduling algorithms to each

– Multi-level feedback queue

∗ this is a variation of MLQ where processes (jobs) are not per-
manently assigned to a queue when they enter the system

2.8. SCHEDULING IN INTERACTIVE SYSTEMS 87

Figure 2.27: Multi-level queue and Multi-level feedback queue (lower).

∗ In this approach, if a process exhausts its time quantum (i.e.,
it is CPU-bound), it is moved to another queue with a longer
time quantum and a lower priority

∗ The last level usually uses FCFS algorithm in this scheme

• Lottery Scheduling

– Implemented guaranteed access to resources is, in general, diffi-
cult!

– process gets “lottery tickets” for various resources

– more lottery tickets imply better access to resource

– Advantages: Simple, Highly responsive, Allows cooperating pro-
cesses/threads to implement individual scheduling policy (exchange
of tickets)

– Process A: 15% of CPU time, Process B: 25% of CPU time, Pro-
cess C: 5% of CPU time, Process D: 55% of CPU time How many
tickets should each process get to achieve this?

88 CHAPTER 2. PROCESSES AND THREADS

2.9 Policy versus M echanism

– Separate what is allowed to be done with how it is done; a pro-
cess knows which of its children threads are important and need
priority

– Scheduling algorithm parameterized; mechanism in the kernel

– Parameters filled in by user processes; policy set by user process

Chap te r 3

D ead lo ck

• Deadlock is defined as the permanent blocking of a set of processes
that compete for system resources, including database records or com-
munication lines

• Unlike other problems in multiprogramming systems, there is no effi-
cient solution to the deadlock problem in the general case

• Deadlock prevention, by design, is the “best” solution

• Deadlock occurs when a set of processes are in a wait state, because
each process is waiting for a resource that is held by some other waiting
process

• None will release what they hold until they get what they are waiting
for

• Therefore, all deadlocks involve conflicting resource needs by two or
more processes

• Example: Unordered Mutex; Two threads accessing two locks
Sema p h o r e m[2] = {1, 1}; //bin a r ys ema p h o r e
T h r ea d 1 T h r ea d 2
m[0].P (); m[1].P ();
m[1].P (); m[0].P ();
//a cces s s h a r ed d a ta //a cces s
m[1].V (); m[0].V ();
m[0].V (); m[1].V ();

• What happens if Thread1 grabs m[0] and Thread2 grabs m[1]? (P
means down operation and V means up operation)

89

90 CHAPTER 3. DEADLOCK

3.1 R esources

• Classification of resources–I, Two general categories of resources can
be distinguished:

– Reusable: something that can be safely used by one process at
a time and is not depleted by that use.

∗ Processes obtain resources that they later release for reuse by
others.

∗ Examples are processors, I/O channels, main and secondary
memory, files, specific I/O devices, databases, and semaphores.

∗ In case of two processes and two resources, deadlock occurs if
each process holds one resource and requests the other.

– Consumable: these can be created and destroyed.

∗ When a resource is acquired by a process, the resource ceases
to exist.

∗ Examples are interrupts, signals, messages, and information
in I/O buffers

∗ Deadlock may occur if a Receive message is blocking

∗ May take a rare combination of events to cause deadlock

• Classification of resources–II, One other taxonomy again identifies two
types of resources:

– Preemptable: these can be taken away from the process owning
it with no ill effects (needs save/restore). E.g., memory or CPU.

– Non-preemptable: cannot be taken away from its current owner
without causing the computation to fail. E.g., printer or floppy
disk.

• Deadlocks occur when sharing reusable and n o n -p reem p table reso u rces

3.2 In tro d u ctio n to D e a d lo ck s

3.2.1 C o n d itio n s fo r D e a d lo ck (S e e F ig . 3.1)

• Fo u r co nditio ns th at mu st h o ld fo r a deadlo ck to be po ssible:

– 1 . M u tu a l e x c lu sio n : pro cesses req u ire ex clu siv e co ntro l o f its
reso u rces (no t sh aring), o nly o ne pro cess may u se a reso u rce at a
time

3.2. IN T R O D U C T IO N T O D E A D L O C K S 91

Figure 3 .1: A n example to D eadlock.

– 2 . H old and wait: process may wait for a resource while holding
others

– 3 . N o p reem p tion: process will not give up a resource until it
is fi nished with it. A lso, p rocesses are irrev ersib le: unable to
reset to an earlier state where resources not held

– 4 . C ircular wait: each process in the chain holds a resource
requested by another, there exists set {P0, P1, . . ., P

n
} of waiting

processes such that P0 waiting for resource held by P1, P1 waiting
for resource held by P2, . . ., P

n−1 waiting for resource held by P
n
,

P
n

waiting for resource held by P0

• If any one of the necessary conditions is prevented a deadlock need not
occur. For example:

– S ystems with only simultaneously shared resources cannot dead-
lock; N egates mutual exclusion.

– S ystems that abort processes which request a resource that is in
use; N egates h old and w ait.

– P reemptions may be possible if a process does not use its resources
until it has acquired all it needs; N egates no preemption.

– Transaction processing systems provide checkpoints so that pro-
cesses may back out of a transaction; N egates irreversible process.

– S ystems that prevent, detect, or avoid cycles; N egates circular

w ait. O ften, the preferred solution.

92 CHAPTER 3. DEADLOCK

Figure 3.2: R esource Allocation G raphs, in the right one, either P2 or P4

could relinquish a resource allowing P1 or P3 (which are currently blocked)
to continue.

3.2.2 Deadlock M odeling (See Fig. 3.2)

• C ycle is a necessary condition for a deadlock

• B ut when dealing with multiple unit resources – not suffi cient

• A knot must exist– a cycle with no non-cycle outgoing path from any
involved node

• At the moment assume that:

– a process halts as soon as it waits for one resource,

– processes can wait for only one resource at a time

• In general, four strategies are used for dealing with deadlocks:

– Ig nore (T he O strich A lg orithm): stick your head in the sand
and pretend there is no problem at all.

– P revention: design a system in such a way that the possibility
of deadlock is excluded a priori (e.g., compile-time/ statically, by
design)

– A voidance: make a decision dynamically checking whether the
request will, if granted, potentially lead to a deadlock or not (e.g.,
run-time/ dynamically, before it happens)

3.3. THE OSTRICH ALG ORITHM 93

– D etection and R ecovery : let the deadlock occur and detect
when it happens, and take some action to recover after the fact
(e.g., run-time/dynamically, after it happens)

3.3 T he O strich A lg orithm

• Diff erent people react to this strategy in diff erent ways:

– Mathematicians: find deadlock totally unacceptable, and say
that it must be prevented at all costs.

– E ngineers: ask how serious it is, and do not want to pay a penalty
in performance and convenience.

• The U NIX approach is just to ignore the problem on the assumption
that most users would prefer an occasional deadlock, to a rule restrict-
ing user access to only one resource at a time

• The problem is that the prevention price is high, mostly in terms of
putting inconvenient restrictions on processes

3.4 Deadlock Detection and R ecovery

• This technique does not attempt to prevent deadlocks; instead, it lets
them occur

• The system detects when this happens, and then takes some action to
recover after the fact (i.e., is reactive)

• W ith deadlock detection, requested resources are granted to processes
whenever possible

• Periodically, the operating system performs an algorithm that allows
it to detect the circular wait condition

• A check for deadlock can be made as frequently as resource request, or
less frequently, depending on how likely it is for a deadlock to occur

• Checking at each resource request has two advantages: It leads to early
detection, and the algorithm is relatively simple because it is based on
incremental changes to the state of the system

94 CHAPTER 3. DEADLOCK

Figure 3.3: An example of how deadlock occurs and how it can be avoided.

3.4. DEADLOCK DETECTION AND RECOV ERY 95

• On the other hand, such frequent checks consume considerable proces-
sor time

• Once the deadlock algorithm has successfully detected a deadlock, some
strategy is needed for recovery

• There are various ways:

– Recovery through Preemption; In some cases, it may be possible
to temporarily take a resource away from its current owner and
give it to another.

– Recovery through Rollback ; If it is known that deadlocks are
likely, one can arrange to have processes checkpointed periodically.
For example, can undo transactions, thus free locks on database
records. This often requires extra software functionality.

– Recovery through Termination; The most trivial way to break a
deadlock is to kill one or more processes. One possibility is to kill
a process in the cycle. Warning! Irrecoverable losses or erroneous

results may occur, even if this is the least advanced process.

96 CHAPTER 3. DEADLOCK

3.5 Deadlock Avoidance

• Deadlock avoidance, allows the necessary conditions but makes sen-
sible choices to ensure that a deadlock-free system remains free from
deadlock

• With deadlock avoidance, a decision is made dynamically whether the
current resource allocation request will, if granted, potentially lead to
a deadlock

• Deadlock avoidance thus requires knowledge of future requests for pro-
cess resources

• Ways to avoid deadlock by careful resource allocation:

– Resource trajectories.

– Safe/unsafe states.

– Dijkstra’s Banker’s algorithm.

3.5.1 R esou rce Trajectories (See Fig. 3.4)

• The horizontal (vertical) axis represents the number of instructions
executed by process A (B)

• E very point in the diagram represents a joint state of the two processes

• If the system ever enters the box bounded by I1 and I2 on the sides
and I5 and I6 top and bottom, it will eventually deadlock when it gets
to the intersection of I2 and I6

• At this point, A is requesting the plotter and B is requesting the
printer, and both are already assigned

• The entire box is unsafe and must not be entered

• At point t the only safe thing to do is run process A until it gets to I4.
Beyond that, any trajectory to u will do

• At point t B is requesting a resource. The system must decide whether
to grant it or not

• If the grant is made, the system will enter an unsafe region and even-
tually deadlock

3.5. DEADLOCK AVOIDANCE 97

Figure 3.4: Two process resource trajectories.

3.5.2 Safe and U nsafe States (See Fig. 3.5)

•
∑n

i=1
Cij + Aj = Ej

– C: Current Allocation M atrix

– A: Resources Available

– E: Resources in Existence

• Add up all the instances of the resource j that have been allocated and
to this add all the instances that are available, the result is the number
of instances of that resource class that exist

• At any instant of time, there is a current state consisting of E, A, C,
and R (Request M atrix)

• A state is said to be safe if it is not deadlocked and there is some
scheduling order in which every process can run to completion even
if all of them suddenly request their maximum number of resources
immediately

• A total of 10 instances of the resource exist, so with 7 resources already
allocated, there are 3 still free

• The upper state of Fig 3.5 is safe because there exist a sequence of
allocations (scheduler runs B) that allows all processes to complete; by
careful scheduling, can avoid deadlock

98 CHAPTER 3. DEADLOCK

Figure 3.5: Demonstration that the state in is safe (upper), and in is not safe
(lower).

• The lower state of Fig 3.5 is not safe because this time scheduler runs
A and A gets another resource

• There is no sequence that guarantees completion

• An unsafe state is not a deadlock state

• The difference between a safe state and an unsafe state is that from a
safe state the system can guarantee that all processes will finish; from
an unsafe state, no such guarantee can be given

3.5.3 Th e B anker’s A lgorith m for Deadlock A v oidance

• Assume N Processes Pi, M Resources Rj

• Availability vector Av a ilj , units of each resource (initialized to maxi-
mum, changes dynamically)

• L et Ma x ij be an N × M matrix

• Ma x ij = L means Process Pi will request at most L units of Rj

• Ho ldij Units of Rj currently held by Pi

• Needij Remaining need by Pi for units of Rj

3.5. DEADLOCK AVOIDANCE 99

• Needij = Maxij − Holdij, for all i,j

• Resource Request

– At any instance, Pi posts its request for resources in vector REQj

(i.e., no hold-and-wait)

– S tep 1: verify that a process matches its needs.
if REQj > Needij abort –error, impossible

– S tep 2: check if the requested amount is available.
if REQj > Availj goto S tep 1 –Pi must wait

– S tep 3: provisional allocation (i.e., guess and check).
Availj = Availj − REQj

Holdij = Holdij + REQj

Needij = Needij − REQj

if isS afe() then grant resources (system is safe) else cancel allo-
cation; goto S tep 1–Pi must wait

• isSafe

– Find out whether the system is in a safe state. Work and F inish
are two temporary vectors.

– S tep 1: initialize.
Workj = Availj for all j; Fin is h i = fals e for all i

– S tep 2: find a process Pi such that
Fin is h i = fals e and Needij ≤ Workj, for all j

if no such process, goto S tep 4

– S tep 3: Workj = Workj + Holdij

(i.e., pretend it finishes and frees up the resources)
Fin is h i = tr ue goto S tep 2

– S tep 4: if Fin is h i = tr ue for all i

then return true–yes, the system is safe

else return false–no, the system is N O T safe

• What is safe?

– Safe with respect to some resource allocation

∗ very safe
NEEDi ≤ AV AIL for all Processes Pi. Processes can run to

completion in any order.

100 CHAPTER 3. DEADLOCK

∗ safe (but take care)
NEEDi > AV AIL for some Pi

NEEDi ≤ AV AIL for at least one Pi such that There is at

least one correct order in which the processes may complete

their use of resources.

∗ unsafe (deadlock inevitable)
NEEDi > AV AIL for some Pi

NEEDi ≤ AV AIL for at least one Pi B ut some processes

cannot complete successfully.

∗ deadlock
NEEDi > AV AIL for all Pi Processes are already blocked or

will become so as they request a resource.

3.6 Deadlock P revention

• The strategy of deadlock prevention is to design a system in such a way
that the possibility of deadlock is excluded a priori

• Methods for preventing deadlock are of two classes:

– indirect methods prevent the occurrence of one of the necessary
conditions listed earlier.

– direct methods prevent the occurrence of a circular wait condition.

• Deadlock prevention strategies are very conservative; they solve the
problem of deadlock by limiting access to resources and by imposing
restrictions on processes

• Make it impossible that one of the four conditions for deadlock arise

• Mutual exclusion

– In general, this condition cannot be disallowed

– we can avoid assigning resources when not absolutely necessary

– as few processes as possible should claim the resource

• H old-and-wait

– The hold and-wait condition can be prevented by requiring that a
process request all its required resources at one time, and blocking
the process until all requests can be granted simultaneously

3.6. DEADLOCK PREVENTION 101

– Can we require processes to request all resources at once?

– Most processes do not statically know about the resources they
need

– Wasteful, but works

• No preemption

– One solution is that if a process holding certain resources is denied
a further request, that process must release its unused resources
and request them again, together with the additional resource

– Preemption is feasible for some resources (e.g., processor and mem-
ory), but not for others (state must be saved and restored)

• Circular Wait

– The circular wait condition can be prevented by defining a lin-
ear ordering of resource types. If a process has been allocated
resources of type R, then it may subsequently request only those
resources of types following R in the ordering

– order resources by an index:R1, R2, . . .

– requires that resources are always requested in order

– P1 holds Ri and requests Rj, and P2 holds Rj and requests Ri is
impossible

– sometimes a feasible strategy, but not generally effi cient

102 CHAPTER 3. DEADLOCK

3.7 S ummary of Deadlock strategies

Table 3.1: Summary of Deadlock strategies

Principle Reso u rce

Alloca tio n

S tra tegy

D iff erent

S ch em es

M a jo r Ad va n-

ta ges

M a jo r D isa d va n-

ta ges

DETECTION Very liberal;

g ran t reso u rces

as req u ested

In vo ke perio d i-

cally to test fo r

d ead lo ck

1- N ever d elays

pro cess in itia-

tio n 2 - Facilitates

o n -lin e h an d lin g

In h eren t preemp-

tio n lo sses

P R EVENTION C o n servative;

u n d ercommits

reso u rces

Req u estin g all

reso u rces at

o n ce

1-Wo rks well fo r

pro cesses with sin -

g le bu rst o f activity

2 - N o preemptio n is

n eed ed

1- In effi cien t 2 -

D elays pro cess

in itiatio n

P reemptio n C o n ven ien t wh en

applied to reso u rces

wh o se state can be

saved an d resto red

easily

1- P reempts mo re

o ften th en n eces-

sary 2 -S u bject to

cyclic restart

Reso u rce

o rd erin g

1- Feasible to en -

fo rce via compile

time ch ecks 2 -

N eed s n o ru n -time

compu tatio n

1- P reempts with -

o u t immed iate u se

2 - D isallows in cre-

men tal reso u rce re-

q u ests

AVOIDANCE S elects mid way

between th at

o f d etectio n

an d preven tio n

M an ipu late to

fi n d at least

o n e safe path

N o preemptio n n ec-

essary

1- Fu tu re reso u rce

req u iremen ts mu st

be kn own 2 - P ro -

cesses can be

blo cked fo r lo n g

perio d s

Chap te r 4

M e m o ry M an ag e m e n t

• The CPU fetches instructions and data of a program from memory;
therefore, both the program and its data must reside in the main (RAM
and ROM) memory

• What is memory Huge linear array of storage

• malloc library call

– used to allocate and free memory

– finds sufficient contiguous memory

– reserves that memory

– returns the address of the first byte of the memory

• free library call

– give address of the first byte of memory to free

– memory becomes available for reallocation

• both malloc and free are implemented using the brk system call

• Example of allocation (see the Fig. 4.1)

char *ptr=malloc(4096); //char* is address of a single byte

• Mod ern mu ltip rog ra mmin g systems a re c a p a ble of storin g more th a n

on e p rog ra m, tog eth e r w ith th e d a ta th ey a c c e ss, in th e ma in memory

• A fu n d a men ta l ta sk of th e memory ma n a g emen t comp on e n t of a n

op e ra tin g system is to en su re sa fe e x e c u tion of p rog ra ms by p rov id in g :

1 0 3

104 CHAPTER 4 . M EM O RY M AN AG EM EN T

F igure 4.1: Allocating Memory.

– S haring of memory; issues are

∗ Tra n spa ren cy ; S everal processes may co-exist, unaware of each
other, in the main memory and run regardless of the number
and location of processes.

∗ E ffi cien cy ; C P U utilization must be preserved and memory
must be fairly allocated. Want low overheads for memory
management.

∗ Reloca tion Ability of a program to run in diff erent memory
locations.

– Memory protection; processes must not corrupt each other (nor
the O S !)

• Information stored in main memory can be classifi ed in a variety of
ways:

– P rogram (cod e) and data (va ria b les, con sta n ts).

– R ead-only (cod e, con sta n ts) and read-write (va ria b les).

– Address (e.g., poin ters) or data (oth er va ria b les); binding (when
memory is allocated for the object): static or dynamic

– T he compiler, linker, loader and run-time libraries all
cooperate to manage this information.

• B efore a program can be executed by the C P U , it must go through
several steps:

– C omp iling (translating)– generates the object code.

– L ink ing– combines the object code into a single self-suffi cient ex-

ecu ta b le cod e.

– L oad ing– copies the executable code into memory. May include
run-time linking with libraries.

4.1. B AS IC MEMORY MANAGEMENT 105

Figure 4.2 : From source to executable code.

– E x ec u tion–dynamic memory allocation.

• The process of associating program instructions and data (addresses)
to physical memory addresses is called address binding, or relocation

– S tatic–new locations are determined before execution

∗ Compile time: The compiler or assembler translates sym bolic

addresses (e.g., variables) to absolute addresses.

∗ L oad time: The compiler translates symbolic addresses to
relative (relocatable) addresses. The loader translates these
to absolute addresses.

– D ynamic–new locations are determined during execution

∗ Run time: The program retains its relative addresses. The
absolute addresses are generated by hardware.

4.1 B a sic M e m o ry M a n a g e m e n t

• An important task of a memory management system is to bring (load)
programs into main memory for execution. The following contiguous

m em ory allocation techniq ues were commonly employed by earlier op-
erating systems:

106 CHAPTER 4. MEMORY MANAGEMENT

Figure 4.3: Three simple ways of organizing memory with an operating sys-
tem and one user process.

– D irect placement

– Overlays

– Partitioning

– Techniques similar to those listed above are still used by some
modern, dedicated special-purpose operating systems and real-
time systems

• Memory management systems can be divided into two classes:

1. those that move process back and forth between main memory
and disk during execution (swapping and paging)

2. those that do not

• starting with the second one

4.1.1 M o n o p ro g ra m m in g w ith o u t S w a p p in g o r Pa g in g

(se e th e F ig . 4.3)

• The simplest possible memory management scheme is to run just one
program at a time, sharing the memory between that program and the
operating system

• Memory allocation is trivial. N o special relocation is needed, because
the user programs are always loaded (one at a time) into the same
memory location (absolute loading). The linker produces the same
loading address for every user program

4.1. BASIC MEMORY MANAGEMENT 107

• E xamples:E arly batch monitors, MS-DOS

4.1.2 Multiprogramming with Fix ed Partitions (see the
Fig. 4.4)

• E xcept on simple embedded systems, monoprogramming is hardly used
any more

• A simple method to accommodate several programs in memory at the
same time (to support multiprogramming) is partitioning

• The easiest way to achieve multiprogramming is simply to divide mem-
ory up into n (possibly unequal) partitions during system generation
or startup

• When a job arrives, it can be put into the input queue for the smallest
partition large enough to hold it

• The aim of multiprogramming is to increase the CPU utilization

• CPU u tiliz a tio n = 1 − pn, where n is the number of processes in the
memory, p is waiting-time fraction that a process spends for I/ O.

• say p = 0.8 , means process spend 8 0 percent of their time waiting for
I/ O and n=10; then CPU u tiliz a tio n = 8 9 % , in other words CPU
wasted 11 percent.

4.1.3 R elocation and Protection (see the Fig. 4.5)

• when a program is linked, the linker must know at what address the
program will begin in the memory

• In order to provide basic protection among programs sharing the mem-
ory, partitioning techniques use a hardware capability known as mem-

ory address mapping, or address translation

• suppose that the first instruction is a call to a procedure at absolute
address 100 within the binary file produced by the linker

• if this program is loaded in partition 1 (at address 100 K , see the Fig.
4.4), that instruction will jump to to absolute address 100, which is
inside the operating system

108 CHAPTER 4. MEMORY MANAGEMENT

Figure 4.4: (a) Fixed memory partitions with separate input queues for each
partition. (b) Fixed memory partitions with a single input queues.

• what is needed is a call to 100K+ 100

• this problem is known as the relocation problem possible solution is is
to modify the instructions as the program loaded into memory

• relocation during loading does not solve the protection problem

• A solution to both the relocation and protection problems is to equip
the machine with two special hardware registers, called the base and
limits registers

4.2 S w ap p ing

• Two general approaches to memory management can be used, depend-
ing (in part) on the available hardware

• The simplest strategy, called sw apping, consists of bringing in each
process in its entirety, running it for a while, then putting it back on
the disk

• The other strategy, called v irtual memory, allows programs to run
even they are only partially in main memory

• The basic idea of swapping is to treat main memory as a preemptable

resource

4.2. SW APPING 109

Figure 4.5: Address Translation.

Figure 4.6: Swapping.

• A high-speed swapping device is used as the backing storage of the
preempted processes

• Fragmentation refers to the unused memory that the memory manage-
ment system cannot allocate

– Internal fragmentation; Waste of memory w ithin a partition, caused
by the difference between the size of a partition and the process
loaded. Severe in static partitioning schemes (Multiprogramming
with Fixed Partitions (MFT)).

– External fragmentation; Waste of memory betw een partitions, caused
by scattered noncontiguous free space. Severe in dynamic parti-

110 CHAPTER 4. MEMORY MANAGEMENT

tioning schemes (Multiprogramming with Variable Partitions (MVT),
swapping).

• Compaction (aka relocation) is a technique that is used to overcome
external fragmentation

• The responsibilities of a swapper include:

– Selection of processes to swap out criteria: suspended/blocked
state, low priority, time spent in memory

– Selection of processes to swap in criteria: time spent on swapping
device, priority

– Allocation and management of swap space on a swapping device.
Swap space can be:

∗ system wide

∗ dedicated (e.g., swap partition or disk)

4.2. SWAPPING 111

Figure 4.7: (a) A part of memory with five processes and three holes. The
tick marks show the memory allocation units. The shaded region (0 in the
bitmap) are free. (b) The corresponding bitmap. (c) The same information
as a list.

4.2.1 Memory Management cont.

• Memory allocation and freeing operations are partially predictable.
Since the organization is hierarchical, the freeing operates in reverse
(opposite) order (Stack Organization)

• Allocation and release of heap space is totally random. H eaps are used
for allocation of arbitrary list structures and complex data organiza-
tions. As programs execute (and allocate and free structures), heap
space will fill with holes (unallocated space, i.e., fragmentation) (H eap
Organization)

• H ow do we know when memory can be freed? It is trivial when a
memory block is used by one process

• H owever, this task becomes difficult when a block is shared (e.g., ac-
cessed through pointers) by several processes

• Two problems with reclaiming memory:

– Dangling pointers: occur when the original allocator frees a
shared pointer.

– M emory leaks: occur when we forget to free storage, even when
it will not or cannot be used again. This is a common and serious

112 CHAPTER 4. MEMORY MANAGEMENT

problem. Unacceptable in an OS.

• Memory Management with Bitmaps (see Fig. 4.7)
This technique divides memory into fixed-size blocks (e.g., sectors of
256-byte blocks) and keeps an array of bits (bit map), one bit for each
block

• Memory Management with Linked Lists (see Fig. 4.7)
A free list keeps track of the unused memory. There are several algo-
rithms that can be used, depending on the way the unused memory
blocks are allocated (Dynamic Partitioning Placement Algorithm):

– F irst-fi t: Allocate fi rst hole that is big enough

∗ Scan the list for the first entry that fits

∗ If greater in size, break it into an allocated and free part

∗ May have many processes loaded in the front end of memory
that must be searched over when trying to find a free block

∗ May have lots of unusable holes at the beginning.

∗ External fragmentation

– N ext-fi t

∗ Like first-fit, except it begins its search from the point in list
where the last request succeeded instead of at the beginning.

∗ More often allocates a block of memory at the end of memory
where the largest block is found

∗ The largest block of memory is broken up into smaller blocks

∗ Compaction is required to obtain a large block at the end of
memory

∗ Simulations show it is slightly slower

– B est-fi t: Allocate smallest hole that is big enough;

∗ Chooses the block that is closest in size to the request

∗ Poor performer

∗ Has to search complete list, unless ordered by size.

∗ Since smallest block is chosen for a process, the smallest amount
of fragmentation is left memory compaction must be done
more often

– Worst-fi t: Allocate largest hole;

∗ Chooses the block that is largest in size (worst-fit)

4.3. V IRTU AL MEMORY 113

∗ Idea is to leave a usable fragment left over

∗ Poor performer

∗ must also search entire list to find largest leftover hole (keep
list in size order)

∗ Simulations show it is not a good idea

4.3 V irtu al Memory

• Differentiation of user logical memory from physical memory

– only part of program needs to be in memory for execution

– logical address space can be >> than physical address space

– allows address spaces to be shared by processes

– allows more efficient process creation

• Virtual memory (VM) can be implemented via:

– demand paging

– demand segmentation

4.3.1 Paging (see the Fig. 4.8)

• A VM Larger Than Physical Memory

• Logical address space of a process can be noncontiguous; process allo-
cated physical memory wherever latter available

• Bring page into memory only when needed

– less I/O needed

– less memory needed

– faster response

– more processes

• Page is needed ⇒ reference to it

– invalid reference ⇒ abort

– Not in memory ⇒ bring to memory

• Reference may result from:

114 CHAPTER 4. MEMORY MANAGEMENT

– instruction fetch

– data reference

Figure 4.8: The relation between virtual address and physical memory ad-
dresses is given by a page table.

• Divide physical memory into fixed-sized blocks called frames (size
power of 2, typically 512 bytes - 8KB)

• Divide logical memory into blocks of same size called pages

• A P resent/ A bsent bit keeps track of which pages are physically
present in memory

• A page table defines (maps) the base address of pages for each frame
in the main memory

• The major goals of paging are to make memory allocation and swapping
easier and to reduce fragmentation

• Paging also allows allocation of non-contiguous memory (i.e., pages
need not be adjacent.)

4.3. VIRTUAL MEMORY 115

Figure 4.9: The position and function of the MMU.

• Keep track of all free frames

• Set up page table to translate logical to physical addresses

• Internal fragmentation, sometimes less than full page needed

• Dynamic relocation, each program-generated address (logical address)
is translated to hardware address (physical address) at runtime for ev-
ery reference, by a hardware device known as the memory management
unit (MMU)

• Memory-Management Unit

– Hardware maps logical to physical address

– With MMU, value in relocation register added to every address
generated by user process when sent to memory

– User program deals with logical addresses; never sees real physical
addresses

• Address Translation Scheme; address generated by CPU divided into:

– P age number (p) used to index into page table with base address
of each page in physical memory

– P age off set (d) combined with base address defines physical ad-
dress for memory system

116 CHAPTER 4. MEMORY MANAGEMENT

• What happens when an executing program references an address that
is not in main memory? (see Fig. 4.10)

• The page table is extended with an extra bit, present/absent bit

• Page Fault: Access to a page whose present bit is not set causes a
special hardware trap, called page fault

• Initially, all the present bits are cleared. While doing the address trans-
lation, the MMU checks to see if this bit is set.

1. Trap to OS

2. Save user registers and process state

3. Determine that interrupt was page fault

4. Check that page reference was legal, determine location of page
on disk

5. Issue read from disk to free (physical) frame:

– Wait in queue for device to service read request

– Wait for device seek / rotational latency

– Wait for transfer

6. While waiting for disk: allocate CPU to another process

7. Interrupt from disk

8. Save registers and process state for other process

9. Determine that interrupt was from disk

10. Update page / OS tables to show page is in memory

11. Wait for CPU to be allocated to this process

12. Restore registers, process state, page table

13. Restart instruction

• When a page fault occurs the operating system brings the page into
memory, sets the corresponding present bit, and restarts the execution
of the instruction

• What happens if no free frame?

– Page replacement find some page in memory, ideally not in use,
swap it out

∗ algorithm performance

4.3. VIRTUAL MEMORY 117

Figure 4.10: Page fault handling by picture.

∗ want to minimize number of page faults

– Same page may be brought into memory several times

• Problem: Both paging and segmentation (we will discuss later) schemes
introduce extra memory references to access translation tables.

• Solution? Translation buffers (like caches)

• Based on the notion of locality (at a given time a process is only using
a few pages or segments), a very fast but small associative (content
addressable) memory is used to store a few of the translation table
entries

• This memory is known as a translation look-aside buffer or TLB

• Similar to storing memory addresses in TLBs, frequently used data in
main memory can also be stored in fast buffers, called cache memory,
or simply cache (see Fig. 4.11)

• Basically, memory access occurs as follows:

for each memory reference

if data is not in cache <miss>

if cache is full

remove some data

if read access

118 CHAPTER 4. MEMORY MANAGEMENT

Figure 4.11: Memory Caching.

issue memory read

place data in cache

return data

else <hit>

if read access

return data

else

store data in cache

• The idea is to make frequent memory accesses faster!

• Cache terminology;

– Cach e h it: item is in the cache.

– Cach e miss: item is not in the cache; must do a full operation.
Categories of cach e miss:

∗ Compulsory : the first reference will always miss.

∗ Capacity : non-compulsory misses because of limited cache
size.

– Eff ective access time: P(hit) * cost of hit + P(miss)* cost of
miss, where P(hit) = 1 - P(miss)

4.3.2 Page Tab les (see Fig. 4.12)

• Page table kept in main memory

4.3. VIRTUAL MEMORY 119

Figure 4.12: The internal operation of the MMU with 16 4-KB pages.

• The Modified and Referenced bits keep track of the page usage. If the
page in it has been modified, it must be written back to the disk. This
bit s sometimes called the dirty bit.

• Page-table base register (PTBR) points to page table

• Page-table length register (PRLR) has size of page table

• In this scheme every data/instruction access needs 2 memory accesses:
page table and data/instruction

• 2-memory access problem can be solved by special fast-lookup hard-
ware cache using associative memory called translation look-aside buffer
(TL B)

• Address space may be very large, e.g.:

– 32-bit addresses 4G B

– 64-bit addresses millions of TB

• May have big gaps (sparse), e.g.

120 CHAPTER 4. MEMORY MANAGEMENT

– stack grows down from high memory

– dynamic allocation grows up from low memory

• Page table very large, big waste of memory

4.3.3 Inverted Page Tables

• The inverted page table has one entry for each memory frame.

• Entry is virtual address of page stored in real location, with information
about owning process

• Decreases memory to store page table, increases time to search for page
translation

• Hashing is used to speedup table search. Hash table limits search to
O(1) entries

• Popular with virtual space >> physical

• Hard to handle aliases (> 1 virtual page maps to 1 physical page)

• The inverted page table can either be per process or system-wide. In
the latter case, a new entry, PID (process id)is added to the table.

• Adv: independent of size of address space; small table(s) if we have
large logical address spaces.

4.3.4 B asic policies

• The hardware only provides the basic capabilities for virtual memory.
The operating system, on the other hand, must make several decisions:

– Allocation–how much real memory to allocate to each (ready) pro-
gram?

∗ In general, the allocation policy deals with confl icting require-
ments:

· The fewer the frames allocated for a program, the higher
the page fault rate

· The fewer the frames allocated for a program, the more
programs can reside in memory; thus, decreasing the need
of swapping.

4.3. VIRTUAL MEMORY 121

· Allocating additional frames to a program beyond a cer-
tain number results in little or only moderate gain in per-
formance.

∗ The number of allocated pages (also known as resident set
size) can be fixed or can be variable during the execution of
a program.

– Fetching–when to bring the pages into main memory?

∗ Demand paging; Start a program with no pages loaded;
wait until it references a page; then load the page (this is the
most common approach used in paging systems.)

∗ R eq uest paging; Similar to overlays, let the user identify
which pages are needed (not practical, leads to over estimation
and also user may not know what to ask for.)

∗ Pre-paging; Start with one or a few pages preloaded. As
pages are referenced, bring in other (not yet referenced) pages
too.

∗ Opposite to fetching, the cleaning policy deals with determin-
ing when a modified (dirty) page should be written back to
the paging device.

– Placement–where in the memory the fetched page should be loaded?

∗ This policy usually follows the rules about paging and seg-
mentation.

∗ Given the matching sizes of a page and a frame, placement
with paging is straightforward.

∗ Segmentation requires more careful placement, especially when
not combined with paging. Placement in pure segmentation
is an important issue and must consider free memory man-
agement policies.

∗ With the recent developments in non-uniform memory access
(N U M A) distributed memory multiprocessor systems, place-
ment does become a major concern.

– Replacement (see the Fig. 4.13) –what page should be removed
from main memory?

∗ The most studied area of the memory management is the
replacement policy or victim selection to satisfy a page fault.

122 CHAPTER 4. MEMORY MANAGEMENT

Figure 4.13: Page Replacement.

4.3.5 Page Replacement A lgorithms

• Prevent over-allocation of memory by modifying page-fault service rou-
tine to include page replacement

• Use dirty (modify) bit to reduce overhead of page transfers; only mod-
ified pages written back to disk

• Page replacement completes separation between logical memory and
physical memory; large virtual memory can be provided on smaller
physical memory

• Find location of desired page on disk

• Find free frame:

– if free frame, use it.

– if no free frame, page replacement algorithm selects victim frame

– If victim dirty write back to disk

• Read desired page into (newly) free frame; update page and frame
tables

• Restart faulting process

• Want lowest page-fault rate

• Evaluate algorithm by running on given string of memory references
(reference string) and compute number of page faults

4.3. VIRTUAL MEMORY 123

Table 4.1: Page replacement algorithms
Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU Very crude
FIFO Might throw out important pages
Second Chance Big improvement over FIFO
Clock Realistic
LRU Excellent, but difficult to implement exactly
NFU Fairly crude approximation to LRU
Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

• The Optimal Page Replacement Algorithm; the page that will not be
referenced again for the longest time is replaced (prediction of the
future; purely theoretical, but useful for comparison.)

• The Not Recently Used Page Replacement Algorithm; algorithm re-
moves a page at random

• The First-In, First-Out (FIFO) Page Replacement Algorithm; FIFO
the frames are treated as a circular list; the oldest (longest resident)
page is replaced

• The Second Chance Page Replacement Algorithm; look for an old page
that has not been referenced in the previous clock interval, avoids the
problem of throwing out of heavily used page

• The Least Recently Used (LRU) Page Replacement Algorithm; LRU
the frame whose contents have not been used for the longest time is
replaced

• Summary of Page Replacement Algorithms

4.3.6 Page Replacement C ont.

• Global vs. Local Allocation

– G lobal replacement; process selects replacement frame from set
of all frames; process can take frame from another

– Local replacement each process selects only from its own set of
allocated frames

124 CHAPTER 4. MEMORY MANAGEMENT

Figure 4.14: Trashing.

• Frame locking; frames that belong to resident kernel, or are used for
critical purposes, may be locked for improved performance.

• Page buffering; victim frames are grouped into two categories: those
that hold unmodified (clean) pages and modified (dirty) pages

• T hrashing (see Fig. 4 .1 4);

– The number of processes that are in the memory determines the
multiprogramming (MP) level.

– The effectiveness of virtual memory management is closely related
to the MP level.

– When there are just a few processes in memory, the possibility of
processes being blocked and thus swapped out is higher.

– When there are far too many processes (i.e., memory is overcom-
mitted), the resident set of each process is smaller.

– This leads to higher page fault frequency, causing the system to
exhibit a behavior known as thrashing.

– In other words, the system is spending its time moving pages in
and out of memory and hardly doing anything useful.

– process spends more time paging than executing

– The only way to eliminate thrashing is to reduce the multipro-
gramming level by suspending one or more process(es).

– Victim process(es) can be the: lowest priority process, faulting
process, newest process, process with the smallest resident set,
process with the largest resident set

4.3. VIRTUAL MEMORY 125

– Student analogy to thrashing: Too many courses!

126 CHAPTER 4. MEMORY MANAGEMENT

Figure 4.15: Logical View of Segmentation (left) , User’s View of a Program
(right).

4.4 Segmentation

• The most important problem with base-and-limits (see Fig. 4.5) relo-
cation is that there is only one segment for each process

• Segmentation generalizes the base-and-limits technique by allowing each
process to be split over several segments (i.e., multiple base-limits pairs)

• S egment table maps 2-dimensional physical addresses (segment-number,
offset); each table entry has:

– base; contains starting physical address where segments reside in
memory

– limit specifies length of segment

• Table entries are filled as new segments are allocated for the process

• A segment is a region of contiguous memory. Although the segments
may be scattered in memory, each segment is mapped to a contiguous
region

• Memory-management scheme that supports user view of memory (see
Fig. 4.15)

• Program is collection of segments. Segment a logical unit such as:
main program, procedure, function, method, object, local variables,

4.4. SEGMENTATION 127

Figure 4.16: Example of Segmentation

global variables, common block, stack, symbol table, array (see Fig.
4.16)

• When a process is created, an empty segment table is inserted into the
process control block (PCB)

• The segments are returned to the free segment pool when the process
terminates

• Segmentation, as well as the base and limits approach, causes external
fragmentation (because they require contiguous physical memory) and
requires memory compaction

• An advantage of the approach is that only a segment, instead of a whole
process, may be swapped to make room for the (new) process.

• Like paging, use virtual addresses and use disk to make memory look
bigger that it really is

• Segmentation can be implemented with or without paging

• Segment-table base register (STBR) points to segment table’s location
in memory

128 CHAPTER 4. MEMORY MANAGEMENT

Figure 4.17: Sharing of Segmentation

• Segment-table length register (STLR) indicates number of segments
used by a program , segment number s is legal if s < STLR

• Segmentation Architecture

– Relocation; dynamic, by segment table

– Sharing; shared segments, same segment number

– Allocation; first fit/best fit, external fragmentation

– Protection: with each entry in segment table: illegal segment,
read/write/execute privileges

– Protection bits associated with segments; code sharing at segment
level

– Since segments vary in length, memory allocation a dynamic storage-
allocation problem

4.4.1 Segmentation with Paging

• Advantages of Segmentation

– Different protection for different segments read-only status for
code

4.4. SEGMENTATION 129

– Enables sharing of selected segments (see Fig. 4.17)

– Easier to relocate segments than entire address space

– Enables sparse allocation of address space

• Disadvantages of Segmentation

– Still expensive/difficult to allocate contiguous memory to seg-
ments

– External fragmentation: Wasted memory

– Paging; Allocation easier, Reduces fragmentation

• Advantages of Paging

– Fast to allocate and free;

∗ Alloc: Keep free list of free pages and grab first page in list,
no searching by first-fit, best-fit

∗ Free: Add page to free list, no inserting by address or size

– Easy to swap-out memory to disk

∗ Page size matches disk block size

∗ Can swap-out only necessary pages

∗ Easy to swap-in pages back from disk

• Disadvantages of Paging

– Additional memory reference: Inefficient. Page table too large
to store as registers in MMU. Page tables kept in main memory.
MMU stores only base address of page table.

– Storage for page tables may be substantial

∗ Simple page table: Require entry for all pages in address
space. Even if actual pages are not allocated

∗ Partial solution: Base and bounds (limits) for page table.
Only processes with large address spaces need large page ta-
bles. Does not help processes with stack at top and heap at
bottom.

– Internal fragmentation: Page size does not match allocation size

∗ How much memory is wasted (on average) per process?

∗ Wasted memory grows with larger pages

• Combine Paging and Segmentation

130 CHAPTER 4. MEMORY MANAGEMENT

– Structure

∗ Segments correspond to logical units: code, data, stack. Seg-
ments vary in size and are often large

∗ Each segment contains one or more (fixed-size) pages

– Two levels of mapping to make tables manageable (2 look-ups!)

∗ Page table for each segment

∗ Base (real address) and bound (size) for each page table

• Segments + Pages Advantages

– Advantages of Segments

∗ Supports sparse address spaces. If segment is not used, no
need for page table. Decreases memory required for page ta-
bles.

– Advantages of Paging

∗ Eliminate external fragmentation

∗ Segments to grow without any reshuffl ing

– Advantages of Both. Increases flexibility of sharing. Share at two
levels: Page or segment (entire page table)

• Segments + Pages Disadvantages

– Internal fragmentation increases. Last page of every segment in
every process

– Increases overhead of accessing memory

∗ Translation tables in main memory

∗ 1 or 2 overhead references for every real reference

– Large page tables

∗ Do not want to allocate page tables contiguously

∗ More problematic with more logical address bits

∗ Two potential solutions: Page the user page tables (multilevel
page table), Inverted page table

4.4.2 Segmentation with Paging: MU L TICS

• MULTICS solved problems of external fragmentation and lengthy search
times by paging segments

4.4. SEGMENTATION 131

Figure 4.18: Intel 386 Address Translation

• Solution differs from pure segmentation: segment-table entry contains
not base address of segment, but base address of page table for this
segment

4.4.3 Segmentation with Paging: The Intel Pentium
(see Fig. 4.18)

• Intel 386 and later use segmentation with paging

• OS/2 uses full scheme

• Other OSes mostly only use pages; Linux, Windows NT and successors

132 CHAPTER 4. MEMORY MANAGEMENT

Chap te r 5

IN P U T / O U T P U T

5.1 P rinciples of I/ O H ard ware

• There exists a large variety of I/O devices:

– Many of the with different properties

– They seem to require different interfaces to manipulate and man-
age them

• We don’t want a new interface for every device

• Diverse, but similar interfaces leads to code duplication

• Challenge: Uniform and efficient approach to I/O

• Common concepts

– port

– bus

– controller (host adapter)

• each port is given a special address (see Table 5.1)

• communication, use an assembly instruction (high–level languages
only work with main memory) to read/write a port; e.g., OUT port,
reg : writes the value in CPU register reg to I/O port port

• protection, users should have access to some I/O devices but not to
others

• I/O instructions control devices

133

134 CHAPTER 5 . INPUT/ OUTPUT

Table 5.1: Device I/O Port Locations on PCs (Partial).
I/O address range (hexadecimal) Device

000-00F DMA Controller
020-021 Interrupt Controller
040-043 Timer
200-20F Game Controller
2F8-2FF Serial port (secondary)
320-32F Hard disk Controller
378-37F Parallel port
3D0-3DF Graphics Controller
3F0-3F7 Diskette drive Controller
3F8-3FF Serial port (primary)

• Devices have addresses, used by

– direct I/O instructions

– memory-mapped I/O

5.1.1 D evice Controllers (see Fig. 5.1)

• I/O devices have controllers; disk controller, monitor controller, etc.

• controller manipulates/interprets electrical signals to/from the device

• controller accepts commands from CPU or provides data to CPU

• controller and CPU communicate over I/O ports; control, status, input
and output registers

5.1.2 I/ O D evices

• Categories of I/O Devices (by usage)

– Human readable

∗ Used to communicate with the user

∗ Printers, Video Display, Keyboard, Mouse

– Machine readable

∗ Used to communicate with electronic equipment

∗ Disk and tape drives, Sensors, Controllers, Actuators

5.1. PRINCIPLES OF I/O HARD WARE 135

Figure 5.1: A kernel I/O structure.

– Communication

∗ Used to communicate with remote devices

∗ Ethernet, Modems, Wireless

• I/O system calls abstract device behaviors in generic classes (see Fig.
5.1)

• Device-driver layer hides I/O-controller differences from kernel

• Devices vary in many dimensions

– character-stream or block

– sequential or random-access

– sharable or dedicated

– speed of operation

– read-write, read only, or write only

• Block and Character Devices; Block devices include disk drive

– commands include read, write, seek

– raw I/O or file-system access

136 CHAPTER 5. INPUT/OUTPUT

– file system maps location i onto block + offset

– memory-mapped file access possible

• Character devices include keyboard, mouse, serial port

– commands include get, put

– libraries layered on top allow line editing

5.1.3 Characteristics (see Table 5.2) and Diff erences in

I/O Devices

Table 5.2: Characteristics of I/O Devices
aspect variation example
data transfer mode character, block terminal, disk
access method sequential, random modem, CD-ROM
transfer schedule synchronous, asynchronous tape, keyboard
sharing dedicated, sharable tape, keyboard
device speed latency, seek time, transfer

rate, delay between opera-
tions

I/O direction read only, write only, read-
write

CD-ROM, graphics
controller, disk

• Application

– Disk used to store files requires file management software

– Disk used to store virtual memory pages needs special hardware
and software to support it

– Terminal used by system administrator may have a higher priority

• Complexity of control;

– Unit of transfer; Data may be transferred as a stream of bytes for
a terminal or in larger blocks for a disk

– Data representation; Encoding schemes

– Error conditions; Devices respond to errors differently

• Blocking; process suspended until I/O completed

5.1. PRINCIPLES OF I/O HARDWARE 137

Figure 5.2: Evolution of the I/O Function

– Easy to use and understand

– Insufficient for some needs

• Nonblocking; I/O call returns as much as available

– user interface, data copy (buffered I/O)

– implemented via multi-threading code for I/O call

– returns quickly with count of bytes transferred

• Asynchronous; process runs while I/O executes

– difficult to use

– I/O subsystem signals process when I/O completed, e.g., call-
backs: pointer to completion code

5.1.4 E volution of the I/O Function (see Fig. 5.2)

• Processor directly controls a peripheral device. Example: CPU controls
a flip-flop to implement a serial line

• Controller or I/O module is added

– Processor uses programmed I/O without interrupts

– Processor does not need to handle details of external devices

138 CHAPTER 5. INPUT/OUTPUT

Figure 5.3: a) Separate I/O and memory space. b) Memory-mapped I/O. c)
Hybrid.

– Example: A Universal Asynchronous Receiver Transmitter

∗ CPU simply reads and writes bytes to I/O controller

∗ I/O controller responsible for managing the signalling

• Controller or I/O module with interrupts. Processor does not spend
time waiting for an I/O operation to be performed

• Direct Memory Access

– Blocks of data are moved into memory without involving the pro-
cessor

– Processor involved at beginning and end only

• I/O module has a separate processor. Example: SCSI controller, con-
troller CPU executes SCSI program code out of main memory

• I/O processor

– I/O module has its own local memory, internal bus, etc.

– It is a computer in its own right.

– Example: Myrinet Multi-gigabit Network Controller

5.1.5 Memory-Mapped I/O (see Fig. 5.3)

• Separate I/O and memory space

– I/O controller registers appear as I/O ports

– Accessed with special I/O instructions

5.1. PRINCIPLES OF I/O HARDWARE 139

• Memory-mapped I/O

– Controller registers appear as memory

– Use normal load/store instructions to access

• Hybrid; x86 has both ports and memory mapped I/O

• Bus Architectures (see Fig. 5.4)

Figure 5.4: a) A single-bus architecture. b) A dual-bus memory architecture.

– A single-bus architecture; if the computer has a single bus, having
everyone look at every address is straightforward

– A dual-bus memory architecture; the trend in modern personal
computers is to have a dedicated high–speed memory bus. This
bus is tailored for optimize memory performance, with no com-
promises for the sake of slow I/O devices. Pentium systems even
have three external buses (memory, PCI, ISA)

5.1.6 Direct Memory Access (DMA)

• Takes control of the bus from the CPU to transfer data to and from
memory over the system bus

• Cycle stealing is used to transfer data on the system bus

• The instruction cycle is suspended so data can be transferred

• The CPU pauses one bus cycle, CPU Cache can hopefully avoid such
pauses

• Reduced number of interrupts occur, No expensive context switches

140 CHAPTER 5. INPUT/OUTPUT

Figure 5.5: The Process to Perform DMA Transfer.

• Cycle stealing causes the CPU to execute more slowly; Still more effi-
cient than CPU doing transfer itself

• The CPU cache can hide some bus transactions

• Number of required busy cycles can be cut by

– integrating the DMA and I/O functions

– Path between DMA module and I/O module that does not include
the system bus

• The Process to Perform DMA Transfer (see Fig. 5.5)

1. device driver is told to transfer disk data to buffer at address X

2. device driver tells disk controller to transfer C bytes from disk to
buffer at address X

3. disk controller initiates DMA transfer

4. disk controller sends each byte to DMA controller

5. DMA controller transfers bytes to buffer X, increasing memory
address and decreasing C until C=0

6. when C=0, DMA interrupts CPU to signal transfer completion

5.2. PRINCIPLES OF I/O SOFTWARE 141

5.1.7 Interrupts Revisited (see Fig. 5.6)

Figure 5.6: How interrupts happen. The connections between devices and
interrupt controller actually use interrupt lines on the bus rather than dedi-
cated wires.

• CPU interrupt request line triggered by I/O device

• Interrupt handler receives interrupts

• Maskable to ignore or delay some interrupts

• Interrupt vector to dispatch interrupt to correct handler based on pri-
ority some unmaskable

• Interrupt mechanism also used for exceptions, traps

5.2 Principles of I/O Software

5.2.1 Programmed I/O (see Fig. 5.7a)

• Also called polling, or busy waiting

• I/O module (controller) performs the action, not the processor

• Sets appropriate bits in the I/O status register

• No interrupts occur

• Processor checks status until operation is complete; Wastes CPU cycles

142 CHAPTER 5. INPUT/OUTPUT

Figure 5.7: a) Programmed I/O. b) Interrupt-Driven I/O. c) Direct Memory
Access.

5.2.2 Interrupt-Driven I/O (see Fig. 5.7b)

• Processor is interrupted when I/O module (controller) ready to ex-
change data

• Processor is free to do other work

• No needless waiting

• Consumes a lot of processor time because every word read or written
passes through the processor

5.2.3 Direct Memory Access (see Fig. 5.7c)

• Transfers a block of data directly to or from memory

• An interrupt is sent when the task is complete

• The processor is only involved at the beginning and end of the transfer

5.3. OPERATING SYSTEM DESIGN ISSUES 143

5.3 Operating System D esign Issues

• Efficiency

– Most I/O devices slow compared to main memory (and the CPU)

∗ Use of multiprogramming allows for some processes to be
waiting on I/O while another process executes

∗ Often I/O still cannot keep up with processor speed

∗ Swapping may used to bring in additional Ready processes;
More I/O operations

• O ptimise I/O effi ciency especially Disk & Network I/O

• The quest for generality/uniformity:

– Ideally, handle all I/O devices in the same way; Both in the OS
and in user applications

– Problem:

∗ Diversity of I/O devices

∗ Especially, different access methods (random access versus
stream based) as well as vastly different data rates.

∗ Generality often compromises efficiency!

– Hide most of the details of device I/O in lower-level routines so
that processes and upper levels see devices in general terms such
as read, write, open, close, lock, unlock

5.4 I/O Software Layers (see F ig. 5.8)

5.4.1 Interrupt H andlers

• Interrupt handlers are best hidden

– Can execute at almost any time

– Raise (complex) concurrency issues in the kernel

– Have similar problems within applications if interrupts are prop-
agated to user-level code (via signals, upcalls).

– Generally, have driver starting an I/O operation block until inter-
rupt notifies of completion; Example dev read() waits on semaphore
that the interrupt handler signals

144 CHAPTER 5. INPUT/OUTPUT

Figure 5.8: Layers of the I/O Software System.

• Interrupt procedure does its task then unblocks driver that started it

• Steps must be performed in software upon occurance of an interrupt

– Save registers not already saved by hardware interrupt mechanism

– Set up context (address space) for interrupt service procedure

∗ Typically, handler runs in the context of the currently running
process; No expensive context switch

– Set up stack for interrupt service procedure

∗ Handler usually runs on the kernel stack of current process

∗ Implies handler cannot block as the unlucky current process
will also be blocked ⇒ might cause deadlock

– Ack/Mask interrupt controller, reenable other interrupts

– Run interrupt service procedure

∗ Acknowledges interrupt at device level

∗ Figures out what caused the interrupt; Received a network
packet, disk read finished, UART transmit queue empty

∗ If needed, it signals blocked device driver

– In some cases, will have woken up a higher priority blocked thread

∗ Choose newly woken thread to schedule next.

∗ Set up MMU context for process to run next

– Load new/original process’ registers

– Start running the new process

5.4. I/O SOFTWARE LAYERS (SEE FIG. 5.8) 145

Figure 5.9: Logical positioning of device drivers. In reality all communica-
tions between drivers and device controllers goes over the bus.

5.4.2 Device Drivers (see Fig. 5.9)

• Drivers (originally) compiled into the kernel

– Device installers were technicians

– Number and types of devices rarely changed

• Nowadays they are dynamically loaded when needed

– Linux modules

– Typical users (device installers) can’t build kernels

– Number and types vary greatly; Even while OS is running (e.g
hot-plug USB devices)

• Drivers classified into similar catagories; Block devices and character
(stream of data) device

• OS defines a standard (internal) interface to the different classes of
devices

• Device drivers job

– translate request through the device-independent standard inter-
face (open, close, read, write) into appropriate sequence of com-
mands (register manipulations) for the particular hardware

146 CHAPTER 5. INPUT/OUTPUT

Figure 5.10: (a) Without a standard driver interface (b) With a standard
driver interface.

– Initialise the hardware at boot time, and shut it down cleanly at
shutdown

• After issue the command to the device, the device either

– Completes immediately and the driver simply return to the caller

– Or, device must process the request and the driver usually blocks
waiting for an I/O complete interrupt.

• Drivers are reentrant as they can be called by another process while a
process is already blocked in the driver

– Reentrant: Code that can be executed by more than one thread
(or CPU) at the same time

– Manages concurrency using synch primitives

5.4.3 Device Independent I/O Software(see Fig. 5.10)

• There is commonality between drivers of similar classes

• Divide I/O software into device-dependent and device-independent I/O
software

• Device independent software includes

– Buffer or Buffer-cache management

– Managing access to dedicated devices

– Error reporting

• Driver ⇔ Kernel Interface; Major Issue is uniform interfaces to devices
and kernel

5.4. I/O SOFTWARE LAYERS (SEE FIG. 5.8) 147

Figure 5.11: (a) Unbuffered input (b) Buffering in user space (c) Single
buffering in the kernel followed by copying to user space (d) Double buffering
in the kernel.

– Uniform d evice interface for kernel cod e

∗ A llows d iff erents d evices to be u sed the same way

· N o need to rewrite fi lesystem to switch between S C S I,
ID E or R A M d isk

∗ A llows internal chang es to d evice d river with fear of breaking
kernel cod e

– Uniform kernel interface for d evice cod e

∗ D rivers u se a d efi ned interface to kernel services (e.g . kmalloc,
install IR Q hand ler, etc.)

∗ A llows kernel to evolve withou t breaking ex isting d rivers

– Tog ether both u niform interfaces avoid a lot of p rog ramming im-
p lementing new interfaces

• N o B u ff ering (see F ig . 5 .1 1)

– P rocess mu st read / write a d evice a byte/ word at a time

– E ach ind ivid u al system call ad d s sig nifi cant overhead

– P rocess mu st what u ntil each I/ O is comp lete

∗ B locking / interru p t/ waking ad d s to overhead .

∗ M any short ru ns of a p rocess is ineffi cient (p oor C P U cache
temp oral locality)

• User-level B u ff ering (see F ig . 5 .1 1)

148 CHAPTER 5 . IN PU T/ O U TPU T

– Process specifies a memory buffer that incoming data is placed in
until it fills

∗ Filling can be done by interrupt service routine

∗ Only a single system call, and block/wakeup per data buffer;
Much more efficient

– Issues

∗ What happens if buffer is paged out to disk

· Could lose data while buffer is paged in

· Could lock buffer in memory (needed for DMA), however
many processes doing I/O reduce RAM available for pag-
ing. Can cause deadlock as RAM is limited resource

∗ Consider write case, When is buffer available for re-use?

· Either process must block until potential slow device drains
buffer

· or deal with asynchronous signals indicating buffer drained

• Single Buffer (see Fig. 5.11)

– Operating system assigns a buffer in main memory for an I/O
req uest

– Stream-oriented

∗ Used a line at time

∗ User input from a terminal is one line at a time with carriage
return signaling the end of the line

∗ Output to the terminal is one line at a time

– Block-oriented

∗ Input transfers made to buffer

∗ Block moved to user space when needed

∗ Another block is moved into the buffer; Read ahead

∗ User process can process one block of data while next block
is read in

∗ Swapping can occur since input is taking place in system
memory, not user memory

∗ Operating system keeps track of assignment of system buffers
to user processes

– What happens if kernel buffer is full, the user buffer is swapped
out, and more data is received? ? ? We start to lose characters or
drop network packets

5.4. I/O S OF TW ARE L AY ERS (S EE F IG . 5.8) 149

Figure 5.12 : Networking may involve many copies.

• Double Buffer (see Fig. 5.11)

– Use two system buffers instead of one

– A process can transfer data to or from one buffer while the oper-
ating system empties or fills the other buffer

– May be insufficient for really bursty traffic

∗ L ots of application writes between long periods of computa-
tion

∗ L ong periods of application computation while receiving data

∗ Might want to read-ahead more than a single block for disk

• Notice that buffering, double buffering are all Bounded-Buffer Producer-
Consumer Problems

• Buffering in Fast Networks (see Fig. 5.12)

– Copying reduces performance; Especially if copy costs are similar
to or greater than computation or transfer costs

– Super-fast networks put significant effort into achieving zero-copy

– Buffering also increases latency

5.4.4 U se r L e v e l S o ftwa re

• library calls

– users generally make library cals that then make the system calls

– example:

∗ int count= w rite (fd,buffer,n);

∗ w rite function is run at the user level

150 CHAPTER 5. INPUT/OUTPUT

∗ simply takes parameters and makes a system call

– another example:

∗ printf("My age: %d \n",age);

∗ takes a string, reformats it, and then calls the write system
call

• spooling

– user program places data in a special directory

– a daemon (background program) takes data from directoryy and
outputs it to a device

∗ the user doesn’t have permission to directly access the device

∗ daemon runs as a privileged user

– prevents users from tying up resources for extented periods of
time; printer example

– OS never has to get involved in working with the I/O device

5.5 D isk s (se e F ig . 5.1 3)

• Management and ordering of disk access requests is important:

– H uge speed gap between memory and disk

– Disk throughput is extremely sensitive to

∗ Request order =⇒ Disk Scheduling

∗ Placement of data on the disk =⇒ file system design

– Disk scheduler must be aware of disk geometry

• Disk management issues

– Formatting

∗ Physical: divide the blank slate into sectors identified by
headers containing such information as sector number; sec-
tor interleaving

∗ Logical: marking bad blocks; partitioning (optional) and writ-
ing a blank directory on disk; installing file allocation tables,
and other relevant information (file system initialization)

– Reliability

5.5. D ISK S (SEE FIG. 5.1 3) 151

Figure 5.13 : Disk Structure.

∗ disk interleaving or striping

∗ RAIDs (Redundant Array of Inexpensive Disks): various lev-
els, e.g., level 0 is disk striping)

– Controller caches newer disks have on-disk caches (128K B 512K B)

5.5.1 D isk H ard ware

• Disk drives addressed as large 1-dimensional arrays of logical blocks

(smallest transfer unit)

• 1-dimensional array of logical blocks mapped onto sectors of disk se-
quentially

– sector 0: 1st sector of 1st track on outermost cylinder

– mapping in order through that track, then rest of tracks in that
cylinder, then through rest of cylinders from outermost to inner-
most

• Outer tracks can store more sectors than inner without exceed max
information density (see Fig. 5.14 Left)

• Evolution of Disk Hardware (see Fig. 5.14 Right)

– Average seek time is approx 12 times better

– Rotation time is 24 times faster

152 CHAPTER 5. INPUT/OUTPUT

Figure 5.14: Left: (a) Physical geometry of a disk with two zones (b) A pos-
sible virtual geometry for this disk, Right: Disk parameters for the original
IBM PC fl oppy disk and a Western Digital WD 18300 hard disk.

Figure 5.15: Disk Performance.

– Transfer time is 1300 times faster

– Most of this gain is due to increase in density

– Represents a gradual engineering improvement

• Disk Performance (see Fig. 5.15)

– Disk is a moving device; must be positioned correctly for I/O

– Execution of a disk operation involves

∗ Wait time: the process waits to be granted device access

· Wait for device: time the request spend in wait queue

· Wait for channel: time until a shared I/O channel is avail-
able

∗ Access time: time hardware need to position the head

· Seek time: position the head at the desire track

· Rotational delay (latency): spin disk to the desired sector

∗ Transfer time: sectors to be read/written rotate below head

• Estimating Access Time;

5.5. DISKS (SEE FIG. 5.13) 153

– Seek Time T
s
: Moving the head to the required tgrack not linear

in the number of tracks to traverse: startup time, settling time.
Typical avearge seek time: a few milliseconds

– Rotational delay: rotational speed, r, of 5000 to 10000 rpm. At
10000 rpm, one revolution per 6 ms⇒ average delay 3ms

– Transfer time: to transfer b bytes, with N bytes per track;

T =
b

rN

Total average access time:

T
a

= T
s
+

1

2r
+

b

rN

• A Timing Comparison

– T
s
= 2 ms, r = 10000rpm, 512B sect, 320 sect/track

– read a file with 256 0 sectors (=1.3MB)

– file stored compactly (8 adjacent tracks): Read first track
Average seek 2ms
Rot. Delay 3ms
Read 320 sectors 6 ms
Total 11ms
All sectors 11+7 * 9=7 4ms

– Sectors distributed randomly over the disk: Read any sector
Average seek 2ms
Rot. Delay 3ms
Read 1 sectors 0.0187 5ms
Total 5.0187 5ms
All 256 0* 5.0187 5=20,328ms

• Disk Performance is Entirely Dominated by Seek and Rotational Delays

– Will only get worse as capacity increases much faster than increase
in seek time and rotation speed (it has been easier to spin the disk
faster than improve seek time)

– Operating System should minimise mechanical delays as much as
possible

154 CHAPTER 5. INPUT/OUTPUT

Figure 5.16: Left: Low-level Disk Formatting; A disk sector, Right: An
illustration of cylinder skew.

5.5.2 Disk Form attin g

• A hard disk consist of a stack of aliminum, aaloy, or glass platters
5.25 inch or 3.5 inch in diameter. On each platter is deposited a thin
magnetizable metal oxide

• Before the disk can be used, each platter must recieve a low-lev el

form a t , or p h y sic a l form a ttin g ; divide disk into sectors that disk
controller can read and write (see Fig. 5.16 left)

• To use disk to hold files, OS needs to record own data structures on
disk

– partition disk into ≥ 1 groups of cylinders logical formatting or
“ making a file system”

• Boot block to start up system

– bootstrap code in ROM

– bootstrap loader program minimum in ROM

• When reading sequential blocks, the seek time can result in missing
block 0 in the next track

• Disk can be formatted using a cylinder skew to avoid this (see Fig. 5.16
right)

• Issue: After reading one sector, the time it takes to transfer the data
to the OS and receive the next request results in missing reading the
next sector

5.5. DISKS (SEE FIG. 5.13) 155

Figure 5.17: a) No interleaving b) Single interleaving c) Double interleaving.

Figure 5.18: From left to right: First-in, First-out (FIFO); Shortest Seek
Time First; Elevator Algorithm (SCAN); Modified Elevator (Circular SCAN,
C-SCAN)

• To overcome this, we can use interleaving (see Fig. 5.17)

• Modern drives overcome interleaving type issues by simply reading the
entire track (or part thereof) into the on-disk controller and caching it.

5.5.3 Disk A rm Sch edu ling A lgorith ms (see Fig. 5.18)

• Time required to read or write a disk block determined by 3 factors;
Seek time, Rotational delay, Actual transfer time

• Seek time dominates

• For a single disk, there will be a number of I/O requests

• Processing them in random order leads to worst possible performance

• First-in, First-ou t (FIFO)

156 CHAPTER 5. INPUT/OUTPUT

– Process requests as they come

– Fair (no starvation)

– G ood for a few processes with clustered requests

– Deteriorates to random if there are many processes

• S hortest S eek T ime First

– Select request that minimises the seek time

– G enerally performs much better than FIFO

– May lead to starvation

• E levator A lgorithm (S C A N)

– Move head in one direction; Services requests in track order until
it reaches the last track, then reverses direction

– Better than FIFO, usually worse than SSTF

– Avoids starvation

– Makes poor use of sequential reads (on down-scan)

• M od ifi ed E levator (C ircular S C A N , C -S C A N)

– Like elevator, but reads sectors in only one direction; When reach-
ing last track, go back to first track non-stop

– Better locality on sequential reads

– Better use of read ahead cache on controller

– Reduces max delay to read a particular sector

• Selecting a Disk-Scheduling Algorithm

– SSTF common, natural appeal

– SCAN and C-SCAN perform better if heavy load on disk

– Performance depends on number and types of requests

– Requests for disk service influenced by file-allocation method

– Disk-scheduling should be separate module of OS, allowing re-
placement with different algorithm if necessary

5.5.4 E rror–Handling

• Bad blocks are usually handled transparently by the on-disk controller
(see Fig. 5.19)

5.5. DISKS (SEE FIG. 5.13) 157

Figure 5.19: a) A disk track with a bad sector b) Substituting a spare for
the bad sector c) Shifting all the sectors to bypass the bad one.

158 CHAPTER 5. INPUT/OUTPUT

Chap te r 6

F ile S y ste m s

6.1 Files

• A file is a named collection of related information, usually as a sequence
of bytes, with two views:

– Logical (programmer’s) view, as the users see it.

– Physical (operating system) view, as it actually resides on sec-
ondary storage.

• What is the difference between a file and a data structure in memory?
Basically,

– files are intended to be non-volatile; hence in principle, they are
long lasting,

– files are intended to be moved around (i.e., copied from one place
to another), accessed by different programs and users, and so on.

• File lifetime is independent of process lifetime

• Used to share data between processes

• Input to applications is by means of a file

• File Management; File management system is considered part of the
operating system

– Manages a trusted, shared resource

– Bridges the gap between:

∗ lowlevel disk organization (an array of blocks),

159

160 CHAPTER 6 . FILE SYSTEM S

Figure 6.1: Some typical file extensions.

∗ and the user’s views (a stream or collection of records)

– Also includes tools outside the kernel; E.g. formatting, recovery,
defrag, consistency, and backup utilities.

– Objectives for a File Management System;

∗ Provide a convenient naming system for files

∗ Provide uniform I/O support for a variety of storage device
types

∗ Provide a standardized set of I/O interface routines

∗ Guarantee that the data in the file are valid

∗ Optimize performance

∗ Minimize or eliminate the potential for lost or destroyed data

∗ Provide I/O support and access control for multiple users

∗ Support system administration (e.g., backups)

6.1.1 File N aming

• File system must provide a convenient naming scheme

• Textual Names (see Fig. 6.1)

• May have restrictions

– Only certain characters, E.g. no ‘/’ characters

– Limited length

6.1. FILES 161

– Only certain format, E.g DOS, 8 + 3

• Case (in)sensitive

• Names may obey conventions (.c files or C files)

– Interpreted by tools (UNIX)

– Interpreted by operating system (Windows)

6.1.2 File Structure; From O S’s perspective

• Stream of B ytes (see Fig. 6.2)

– OS considers a file to be unstructured

– Simplifies file management for the OS

– Applications can impose their own structure

– Used by UNIX , Windows, most modern OSes

• R ecords (see Fig. 6.2)

– Collection of bytes treated as a unit; Example: employee record

– Operations at the level of records (read rec, write rec)

– File is a collection of similar records

– OS can optimize operations on records

• Tree of R ecords (see Fig. 6.2)

– Records of variable length

– Each has an associated key

– Record retrieval based on key

6.1.3 File Ty pes

• Regular files

• Directories

• Device Files

– Character Devices

162 CHAPTER 6. FILE SYSTEMS

Figure 6.2: Three kinds of files. (a) byte sequence. (b) record sequence. (c)
tree.

– Block Devices

• Some systems distinguish between regular file types; ASCII text files,
binary files

• A common implementation technique (as organizational help with con-
sistent usage) is to include the type as an extension to the file name
(see Fig. 6.1)

• Files are structured internally to meet the expectations of the pro-
gram(s) that manipulate them.

• All systems recognize their own executable file format; May use a magic
number (see Fig. 6.3)

6.1.4 File Access

• The information stored in a file can be accessed in a variety of methods:

– Sequential access

∗ in order, one record after another

∗ read all bytes/records from the beginning

∗ cannot jump around, could rewind or back up

∗ convenient when medium was mag tape

– Random (Direct) access

6.1. FILES 163

Figure 6.3: (a) An executable file (b) An archive.

∗ bytes/records read in any order skipping the previous records

∗ essential for data base systems

∗ read can be

· move file pointer (seek), then read or

· each read specifies the file pointer

– Keyed; in any order, but with particular value(s); e.g., hash table
or dictionary. TLB lookup is one example of a keyed search

• Other access methods, such as indexed, can be built on top of the above
basic techniques.

6.1.5 File Attrib utes(see Fig. 6.4)

• Information about files kept in directory structure maintained on disk

• Each file is associated with a collection of information, known as at-
tributes:

– name, owner, creator, only information in human-readable form

– type, (e.g., source, data, binary) needed if system supports differ-
ent types

164 CHAPTER 6. FILE SYSTEMS

Figure 6.4: Some possible file attributes.

– location, (e.g., I-node or disk address) pointer to file location on
device

– organization, (e.g., sequential, indexed, random)

– time and date, (creation, modification, and last accessed)

– size, current file size

– protection, who can do reading, writing, executing

– variety of other (e.g., maintenance) information.

6.1.6 File Operations

• There are six basic operations (not all) for file manipulation: create,
write, read, delete, reposition r/w pointer (a.k.a. seek), and truncate
(not very common.) (see Fig. 6.5)

• Open(Fi) search directory structure on disk for entry Fi, move content
of entry to memory

• Close (Fi) move content of entry Fi in memory to directory structure
on disk

6.1. FILES 165

Figure 6.5: File operations.

6.1.7 An Ex ample Program Using File System C alls

(see Fig. 6.6)

• copyfile abc xyz ; where argv[0]=”copyfile”, argv[1]=”abc”, argv[2]=”xyz”

6.1.8 M emory–M apped Files (see Fig. 6.7)

• Avoids translating from on-disk format to in-memory format (and vice
versa)

– Supports complex structures

– No read/write systems calls

– File simply (paged or swapped) to file system

– Unmap when finished

• Problems

– Determining actual file size after modification; Round to nearest
whole page (even if only 1 byte file)

– Care must be taken if file is shared; E.g. one process memo-
rymapped and one process read/write syscalls

– Large files may not fit in the virtual address space

6.1.9 File Organization and Access; Programmer’s Per-
spective

• One of the key elements of a file system is the way the files are orga-
nized. File organization is the logical structuring as well as the access
method(s) of files.

166 CHAPTER 6. FILE SYSTEMS

Figure 6.6: A simple program to copy a file.

6.1. FILES 167

Figure 6.7: Left: (a) Segmented process before mapping files into its address
space (b) Process after mapping existing file abc into one segment creating
new segment for xyz. Right: Memory mapped files and paging

• Given an operating system supporting unstructured files that are stream-
of-bytes, how should one organize the contents of the files?

• Performance considerations:

– File system performance affects overall system performance

– Organization of the file system affects performance

– File organization (data layout) affects performance; depends on
access patterns

• Possible access patterns:

– Read the whole file

– Read individual blocks or records from a file

– Read blocks or records preceding or following the current one

– Retrieve a set of records

– Write a whole file sequentially

– Insert/delete/update records in a file

– Update blocks in a file

• Criteria for File Organization

– Rapid access

168 CHAPTER 6. FILE SYSTEMS

∗ Needed when accessing a single record

∗ Not needed for batch mode

– Ease of update; File on CDROM will not be updated, so this is
not a concern

– Economy of storage

∗ Should be minimum redundancy in the data

∗ Redundancy can be used to speed access such as an index

– Simple maintenance

– Reliability

• Fundamental File Organizations; Common file organization schemes
are:

– Pile

– Sequential

– Indexed Sequential

– Indexed

– Direct or Hashed

• P ile (see Fig. 6.8)

– Data are collected in the order they arrive

– Purpose is to accumulate a mass of data and save it

– Records may have different fields

– No structure

– Record access is by exhaustive search

– Update:

∗ Same size record; okay

∗ Variable size; poor

– Retrieval:

∗ Single record; poor

∗ Subset; poor

∗ Exhaustive; okay

• Seq uential (see Fig. 6.8)

– Fixed format used for records

6.1. FILES 169

– Records are the same length

– Field names and lengths are attributes of the file

– One field is the key filed

∗ Uniquely identifies the record

∗ Records are stored in key sequence

– New records are placed in a log file or transaction file

– Batch update is performed to merge the log file with the master
file

– Update:

∗ Same size record; good

∗ Variable size; No

– Retrieval:

∗ Single record; poor

∗ Subset; poor

∗ Exhaustive; okay

Figure 6.8: Fundamental File Organizations; (a) Pile (b) Sequential (c) In-
dexed Sequential (d) Indexed.

• Index ed Sequential (see Figs. 6.8,6.9)

– Index provides a lookup capability to quickly reach the vicinity of
the desired record

∗ Contains key field and a pointer to the main file

170 CHAPTER 6. FILE SYSTEMS

Figure 6.9: IBM indexed-sequential access method (ISAM).

∗ Indexed is searched to find highest key value that is equal or
less than the desired key value

∗ Search continues in the main file at the location indicated by
the pointer

– New records are added to an overflow file

– Record in main file that precedes it is updated to contain a pointer
to the new record

– The overflow is merged with the main file during a batch update

– Update:

∗ Same size record; good

∗ Variable size; No

– Retrieval:

∗ Single record; good

∗ Subset; poor

∗ Exhaustive; okay

• Comparison of sequential and indexed sequential lookup

– Example: a file contains 1 million records

– On average 500,00 accesses are required to find a record in a se-
quential file

– If an index contains 1000 entries, it will take on average 500 ac-
cesses to find the key, followed by 500 accesses in the main file.
Now on average it is 1000 accesses

• Indexed File (see Fig. 6.8)

6.2. DIRECTORIES 171

– Uses multiple indexes for different key fields

– May contain an exhaustive index that contains one entry for every
record in the main file

– May contain a partial index

– Update:

∗ Same size record; good

∗ Variable size; good

– Retrieval:

∗ Single record; good

∗ Subset; good (Assuming the selecting attribute is indexed on)

∗ Exhaustive; okay

• The D irect, or H ashed File

– Key field required for each record

– Key maps directly or via a hash mechanism to an address within
the file

– Directly access a block at a the known address

– Update:

∗ Same size record; good

∗ Variable size; No (Fixed sized records used)

– Retrieval:

∗ Single record; excellent

∗ Subset; poor

∗ Exhaustive; poor

6.2 Direc to ries

• A directory is a symbol table, which can be searched for information
about the files. Also, it is the fundamental way of organizing files.
Usually, a directory is itself a file

• A typical directory entry contains information (attributes, location,
ownership) about a file. Directory entries are added as files are created,
and are removed when files are deleted.

• Provides mapping between file names and the files themselves

172 CHAPTER 6. FILE SYSTEMS

Figure 6.10: (a) Single-Level Directory Systems (b) Two-Level Directory
Systems (c) Hierarchical Directory Systems.

• Goals in Organization of Directory

– Effi ciency; locate file quickly

– Naming; convenient to users,

∗ 2 users can use same name for different files

∗ Same file can have several different names

– G rouping; logical grouping of files by attributes, (e.g., all J ava
programs, all games, . . .)

• Single– Level Directory Systems (see Figs. 6.10,6.11)

– List of entries, one for each file

– Sequential file with the name of the file serving as the key

– Provides no help in organizing the files

– Forces user to be careful not to use the same name for two different
files

• Two– Level Directory Systems (see Figs. 6.10,6.11)

– One directory for each user and a master directory

– Master directory contains entry for each user; Provides access con-
trol information

– Each user directory is a simple list of files for that user

– Still provides no help in structuring collections of files

• Hierarchical, or Tree-Structured Directory Systems (see Figs. 6.10,6.11)

6.2. DIRECTORIES 173

Figure 6.11: Example to (a) Single-Level Directory Systems (b) Two-Level
Directory Systems (c) Hierarchical Directory Systems.

– Files can be located by following a path from the root, or master,
directory down various branches; This is the absolute pathname
for the file

– Can have several files with the same file name as long as they have
unique path names

6.2.1 Path Names

• Always specifying the absolute pathname for a file is tedious!

• Introduce the idea of a working directory; Files are referenced relative
to the working directory

• Example: cwd = /home/dizin, profile = /home/dizin/.profile

• Absolute pathname; A path specified from the root of the file system
to the file

• A Relative pathname; A pathname specified from the cwd

• Note: ‘.’ (dot) and ‘..’ (dotdot) refer to current and parent directory

– Example: cwd = /home/dizin

174 CHAPTER 6. FILE SYSTEMS

– ../../etc/passwd

– /etc/passwd

– ../dizin/../.././etc/passwd

– Are all the same file

6.2.2 File Sharing

• In multiuser system, allow files to be shared among users

• Two issues

– Access rights. Allowing users to share files raises a major issue:
protection. A general approach is to provide controlled access to
files through a set of operations such as read, write, delete, list,
and append. Then permit users to perform one or more opera-
tions. One popular protection mechanism is a condensed version
of access list, where the system recognizes three classifications of
users with each file and directory: user, group, other

– Management of simultaneous access

• Access Rights

– None

∗ User may not know of the existence of the file

∗ User is not allowed to read the user directory that includes
the file

– Knowledge; User can only determine that the file exists and who
its owner is

– Execution; The user can load and execute a program but cannot
copy it

– Reading; The user can read the file for any purpose, including
copying and execution

– Appending; The user can add data to the file but cannot modify
or delete any of the file’s contents

– Updating; The user can modify, deleted, and add to the file’s data.
This includes creating the file, rewriting it, and removing all or
part of the data

– Changing protection; User can change access rights granted to
other users

6.2. DIRECTORIES 175

– Deletion; User can delete the file

– Owners

∗ Has all rights previously listed

∗ May grant rights to others using the following classes of users;
Specific user, User groups, All for public files

total 1704

drwxr-x--- 3 user group 4096 Oct 14 08:13 .

drwxr-x--- 3 user group 4096 Oct 14 08:14 ..

drwxr-x--- 2 user group 4096 Oct 14 08:12 backup

-rw-r----- 1 user group 141133 Oct 14 08:13 eniac3.jpg

-rw-r----- 1 user group 1580544 Oct 14 08:13 wk11.ppt

– First letter: file type

∗ d for directories

∗ - for regular files

– Three user categories; user, group, and other

– Three access rights per category; read, write, and execute

– drwxrwx rwx; user group other

– Execute permission for directory? Permission to access files in the
directory

– To list a directory requires read permissions

– What about drwxr-x–x ?

– Problematic example

∗ A owns file foo.bar

∗ A wishes to keep his file private

∗ Inaccessible to the general public

∗ A wishes to give B read and write access

∗ A wishes to give C readonly access

∗ ???????

• Management of Simultaneous Access

– Most Oses provide mechanisms for users to manage concurrent
access to files; Example: lockf(), flock() system calls

– Typically

∗ User may lock entire file when it is to be updated

∗ User may lock the individual records during the update

– Mutual exclusion and deadlock are issues for shared access

176 CHAPTER 6. FILE SYSTEMS

Figure 6.12: The solid curve (left hand scale) gives data rate of a disk. The
dashed curve (right hand scale) gives disk space efficiency. All files 2KB (an
approximate median file size).

6.3 File S y stem Im p lem en ta tion

6.3.1 File System Layout

• Tradeoff in physical block size (see Fig. 6.12)

– Sequential Access; The larger the block size, the fewer I/O oper-
ation required

– Random Access

∗ The larger the block size, the more unrelated data loaded.

∗ Spatial locality of access improves the situation.

– Choosing the an appropriate block size is a compromise

6.3.2 Implementing Files (see Fig. 6.13)

• The file system must keep track of

– which blocks belong to which files.

– in what order the blocks form the file

– which blocks are free for allocation

• Given a logical region of a file, the file system must identify the corre-
sponding block(s) on disk.

– Stored in file allocation table (FAT) (see Fig. 6.13), directory,
Inode

6.3. FILE SYSTEM IMPLEMENTATION 177

Figure 6.13: Left: A possible file system layout. Right: File Allocation Table.

• Creating and writing files allocates blocks on disk

• Allocation Strategies

– Preallocation

∗ Need the maximum size for the file at the time of creation

∗ Difficult to reliably estimate the maximum potential size of
the file

∗ Tend to overestimated file size so as not to run out of space

– Dynamic Allocation; Allocated in portions as needed

• Portion Size

– Extremes

∗ Portion size = length of file (remember or contiguous)

∗ Portion size = block size

– Tradeoffs

∗ Contiguity increases performance for sequential operations

∗ Many small portion increase the size of the file allocation table

∗ Fixed–sized portions simplify reallocation of space

∗ Variable–sized portions minimize internal fragmentation losses

• Methods of File Allocation

– The file system allocates disk space, when a file is created. With
many files residing on the same disk, the main problem is how to
allocate space for them. File allocation scheme has impact on the
efficient use of disk space and file access time.

– Common file allocation techniques are:

178 CHAPTER 6. FILE SYSTEMS

∗ Contiguous

∗ Chained (linked)

∗ Indexed

– All these techniques allocate disk space on a per block (smallest
addressable disk unit) basis.

• Methods of File Allocation; Contiguous allocation (see Fig.
6.14a, b)

– Allocate disk space like paged, segmented memory. Keep a free
list of unused disk space.

– Single set of blocks is allocated to a file at the time of creation

– Advantages;

∗ Only a single entry in the directory entry; Starting block and
length of the file

∗ easy access, both sequential and random

∗ Simple, only starting location (block #) and length (number
of blocks) to find all contents

∗ few seeks

– Disadvantages;

∗ External fragmentation will occur

∗ May not know the file size in advance

∗ Eventually, we will need compaction to reclaim unusable disk
space.

∗ Files can’t grow

• Methods of File Allocation; Chained (or linked list) allocation
(see Fig. 6.14c,d,e,f)

– Space allocation is similar to page frame allocation. Mark allo-
cated blocks as in-use

– Each block contains a pointer to the next block in the chain

– Only single entry in a directory entry; Starting block and length
of file

– No external fragmentation; Free-space manageable, no wasted
space

– Files can grow easily

6.3. FILE SYSTEM IMPLEMENTATION 179

– Simple; need only starting address

– Best for sequential files; Poor for random access

– No accommodation of the principle of locality; Blocks end up scat-
tered across the disk

– To improve performance, we can run a defragmentation utility to
consolidate files.

– Storing a file as a linked list of disk blocks (see Fig. 6.14e)

– Linked allocation with file allocation table (FAT) in RAM (see
Fig. 6.14f)

∗ Avoids disk accesses when searching for a block

∗ Entire block is available for data

∗ Table gets too large for large file systems; Can cache parts
of it, but still can consume significant RAM or generate disk
traffic

∗ Used in MSDOS, OS/2

• Methods of File Allocation; Indexed allocation (see Fig. 6.15)

– Allocate an array of pointers during file creation. Fill the array
as new disk blocks are assigned

– File allocation table contains a separate one level index for each
file

– The index has one entry for each portion allocated to the file

– The file allocation table contains block number for the index

– Supports both sequential and direct (easy) access to the file

– Small internal fragmentation

– Lots of seeks if the file is big

– Maximum file size is limited to the size of a block

– Portions

∗ Block sized; Eliminates external fragmentation

∗ Variable sized; Improves contiguity, Reduces index size

– Most popular of the three forms of file allocation

– Example: UNIX file system

180 CHAPTER 6. FILE SYSTEMS

Figure 6.14: (a) Contiguous allocation (b) Contiguous allocation with com-
paction (c) Storing a file as a linked list of disk blocks (d) Storing a file as a
linked list of disk blocks with defragmentation (e) Alternative representation
of chained allocation (f) Linked list allocation using a file allocation table in
main memory.

6.3. FILE SYSTEM IMPLEMENTATION 181

Figure 6.15: (a) Indexed allocation with block partitions (b) Indexed alloca-
tion with variable–length partitions (c) An example of i-node.

6.3.3 Implementing Directories

• (see Fig. 6.16 Left)

• A simple directory containing fixed–sized entries with the disk ad-
dresses and attributes in directory entry; DOS/Windows

• A directory in which each entry just refers to an inode; U NIX

• Fixed Size Directory Entries;

– Either too small; Example: DOS 8+3 characters

– Waste too much space; Example: 255 characters per file name

• Free variable length entries can create external fragmentation in direc-
tory blocks; Can compact when block is in RAM

182 CHAPTER 6. FILE SYSTEMS

Figure 6.16: Left: (a) A simple directory containing fixed–sized entries with
the disk addresses and attributes in directory entry (b) A directory in which
each entry just refers to an inode. Right: Two ways of handling long file
names in directory (a) Inline (b) In a heap.

6.3.4 Shared Files (see Fig. 6.17)

• Copy entire directory entry (including file attributes)

– Updates to shared file not seen by all parties

– Not useful

• Keep attributes separate (in Inode) and create a new entry that points
to the attributes (hard link)

– Updates visible

– If one link remove, the other remains (ownership is an issue)

• Create a special ”LINK” file that contains the pathname of the shared
file (symbolic link)

– File removal leaves dangling links

– Not as efficient to access

6.3.5 Disk Space Management (Free space manage-
ment)

• Since the amount of disk space is limited (posing a management prob-
lem similar to that of physical memory), it is necessary to reuse the
space released by deleted files

6.3. FILE SYSTEM IMPLEMENTATION 183

Figure 6.17: Left: File system containing a shared file. Right: (a) Situation
prior to linking (b) After the link is created (c)After the original owner
removes the file.

• In general, file systems keep a list of free disk blocks (initially, all the
blocks are free) and manage this list by one of the following techniques

• Bit tables (see Fig. 6.18b)

– Individual bits in a bit vector flags used/free blocks

– 16GB disk with 1KB blocks; for each block 1 bit is used
(16Gb/1KB) ≈ 224/8/1KB = 2048 blocks; 2MB table

– 16GB disk with 512byte blocks 4MB table

– May be too large to hold in main memory

– Expensive to search; But may use a two level table

• Chained free portions (see Fig. 6.18a)

– Free portions are linked

– Fragmentation if using variable allocation ⇒ many small portions

– Required read before write to a block

• Free block list

– Single list of a set of free block lists (unallocated blocks)

– Manage as LIFO or FIFO on disk with ends in main memory

– Background jobs can reorder list for better contiguity

184 CHAPTER 6. FILE SYSTEMS

Figure 6.18: (a) Storing the free list on a linked list (b) A bit map.

6.3.6 Other fi le system implementation issues

• Recovery, Reliability

– Consistency checking; compares data in directory with data blocks
on disk, tries to fix inconsistencies (e.g., UNIX fsck)

– Use system programs to back up data from disk to another device
(optical media, magnetic tape) (disaster scenarios)

– Recover lost file or disk by restoring from backup

• Efficiency and Performance

– Efficiency dependent on:

∗ disk allocation and directory algorithms

∗ types of data kept in file’s directory entry

– Performance: disk and page caches

∗ disk cache: frequently used blocks in main memory

∗ free-behind, read-ahead: optimize sequential access

∗ improve PC performance by dedicating section of memory as
virtual disk, or RAM disk.

• Log Structured File Systems

6.3. FILE SYSTEM IMPLEMENTATION 185

– Log structured (or journaling) file systems record each update to
file system as transaction.

– All transactions written to log. Transaction considered committed
once written to log file system may not yet be updated.

– Transactions in log asynchronously written to file system. When
file system modified, transaction removed from log.

– If file system crashes, all remaining logged transactions must still
be performed

• Sun Network File System (NFS)

– Implementation and specification of software system for accessing
remote files across LANs (or WANs)

– Implemented as part of Solaris, SunOS on Suns: uses unreliable
datagram protocol (UDP/IP and Ethernet)

– Widely used in UNIX (including free kinds)

– Interconnected machines seen as independent with independent
file systems allowing transparent sharing

∗ remote directory mounted over local file system directory;
mounted directory looks like integral subtree of local file sys-
tem, replacing subtree descending from local directory

∗ specification of remote directory for mount operation non-
transparent; host name of remote directory provided: files in
remote directory can then be accessed transparently

∗ subject to access-rights, potentially any file system (or direc-
tory within file system), can be mounted remotely on top of
any local directory

– NFS designed to operate in heterogeneous environment: different
machines, OSes, network architectures; NFS specifications inde-
pendent of these details

186 CHAPTER 6. FILE SYSTEMS

6.4 U N IX File M anagement

• Focus on two types of files

– Ordinary files (stream of bytes)

– Directories

• And mostly ignore the others

– Character devices

– Block devices

– Named pipes

– Sockets

– Symbolic links

• UNIX index node (inode)

– Each file is represented by an Inode

– Inode contains all of a file’s metadata

∗ Access rights, owner,accounting info

∗ (partial) block index table of a file

– Each inode has a unique number (within a partition)

∗ System oriented name

∗ Try ‘ls –i’ on Unix (Linux)

– Directories map file names to inode numbers

∗ Map human–oriented to system–oriented names

∗ Mapping can be many–to–one; Hard links

ozdogan@ozdogan:~/week12$ man ls

.

-i, --inode print index number of each file

.

ozdogan@ozdogan:~/week12$ ls -i

toplam 128

901649 drwxr-xr-x 3 ozdogan ozdogan 4096 2004-05-25 15:00 ./

885067 drwxr--r-- 5 ozdogan ozdogan 8192 2004-05-25 14:47 ../

901651 drwxr-xr-x 2 ozdogan ozdogan 4096 2004-05-25 14:47 figures/

901656 -rw-r--r-- 1 ozdogan ozdogan 1264 2004-05-25 14:59 week12.aux

6.4. UNIX FILE MANAGEMENT 187

901658 -rw-r--r-- 1 ozdogan ozdogan 5264 2004-05-25 14:59 week12.dvi

901655 -rw-r--r-- 1 ozdogan ozdogan 8654 2004-05-25 14:59 week12.log

901657 -rw-r--r-- 1 ozdogan ozdogan 57 2004-05-25 14:59 week12.out

901659 -rw-r--r-- 1 ozdogan ozdogan 55968 2004-05-25 15:00 week12.ps

901652 -rw-r--r-- 1 ozdogan ozdogan 2153 2004-05-25 14:59 week12.tex

901654 -rw-r--r-- 1 ozdogan ozdogan 1939 2004-05-25 14:58 week12.tex~

901653 -rw-r--r-- 1 ozdogan ozdogan 13767 2004-05-25 14:47 week12.tex.backup

A code example for for printing out structure members of files; Try
‘structuremembers *’ on Unix (Linux)

/* structuremembers.c

print structure members of files

st_mode the type and mode of the file

st_ino

st_dev

st_rdev

st_nlink

st_uid

st_gid

st_size

st_atime

st_mtime

st_ctime

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

main(argc,argv)

int argc; char *argv[];

{

struct stat status;

int i;

for(i=1; i < argc; i++)

if(stat (argv[i],&status))

fprintf(stderr,"Cannot stat %s \n",argv[i]);

else

printf("%15s %4.4o\n",argv[i],status.st_mode & 07777);

//printf("%15s %14d\n",argv[i],status.st_ino);

}

188 CHAPTER 6. FILE SYSTEMS

Internal sructure of week12 inode

Inode: 901649 Type: directory Mode: 0755 Flags: 0x0 Generation:

User: 1000 Group: 1000 Size: 4096

File ACL: 0 Directory ACL: 0

Links: 3 Blockcount: 8

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x40b33fde -- Tue May 25 15:45:18 2004

atime: 0x40b34ba7 -- Tue May 25 16:35:35 2004

mtime: 0x40b33fde -- Tue May 25 15:45:18 2004

BLOCKS:

(0):1828886

TOTAL: 1

Internal sructure of week12.ps inode

Inode: 901659 Type: regular Mode: 0644 Flags: 0x0 Generation: 2473956273

User: 1000 Group: 1000 Size: 83309

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 176

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x40b34007 -- Tue May 25 15:45:59 2004

atime: 0x40b34016 -- Tue May 25 15:46:14 2004

mtime: 0x40b34007 -- Tue May 25 15:45:59 2004

BLOCKS:

(0-11):7742-7753, (IND):7754, (12-20):7755-7763

TOTAL: 22

• Inode Contents (see Fig. 6.19)

– Mode

∗ Type; Regular file or directory

∗ Access mode; rwxrwxrwx

– Uid; User ID

– Gid; Group ID

– atime; Time of last access

– ctime; Time when file was reference count created

– mtime; Time when file was last modified

– Size; Size of the file in bytes

6.4. UNIX FILE MANAGEMENT 189

Figure 6.19: Inode contents.

– Block count; Number of disk blocks used by the file.

– Note that number of blocks can be much less than expected given
the file size; Files can be sparsely populated

– Direct Blocks

∗ Block numbers of first 10 blocks in the file

∗ Most files are small; We can find blocks of file directly from
the inode (see Fig. 6.20left)

– Problem; How do we store files greater than 10 blocks in size?
Adding significantly more direct entries in the inode results in
many unused entries most of the time.

– Single Indirect B lock ; Block number of a block containing block
numbers, (see Fig. 6.20right) In this case 8

∗ Requires two disk access to read; One for the indirect block;
one for the target block

∗ Max File Size

· In previous example; 10 direct + 8 indirect = 18 block file

· A more realistic example; Assume 1Kbyte block size, 4
byte block numbers 10 * 1K + 1K/4 * 1K = 266 Kbytes

∗ For large majority of files (¡ 266 K), only one or two accesses
required to read any block in file.

– Double Indirect Block; Block number of a block containing block
numbers of blocks containing block numbers

190 CHAPTER 6. FILE SYSTEMS

Figure 6.20: Left: Direct Block. Right: Single Indirect Block

– Triple Indirect; Block number of a block containing block num-
bers of blocks containing block numbers of blocks containing block
numbers

• Inode Summary

– The inode contains the on disk data associated with a file

– Contains mode, owner, and other bookkeeping

– Efficient random and sequential access via indexed allocation

– Small files (the majority of files) require only a single access

– Larger files require progressively more disk accesses for random
access; Sequential access is still efficient

– Can support really large files via increasing levels of indirection

• Where/How are Inodes Stored

• System V Disk L ayout (s5 fs) (see Fig. 6.21Upper)

– Boot Block; contain code to bootstrap the OS

– Super Block; Contains attributes of the file system itself; e.g. size,
number of inodes, start block of inode array, start of data block
area, free inode list, free data block list

– Inode Array

– Data blocks

• Some problems with s5fs

6.4. UNIX FILE MANAGEMENT 191

Figure 6 .2 1 : U p p er: S ystem V D isk L ayo ut (s5 fs). M id d le: L ayo ut o f an
E x t2 Partitio n. L ower: L ayo ut o f a B lo ck G ro up .

– Ino d es at start o f d isk; d ata blo cks end . L o ng seek tim es; M ust
read ino d e befo re read ing d ata blo cks

– O nly o ne sup erblo ck; C o rrup t th e sup erblo ck and entire fi le sys-
tem is lo st

– B lo ck allo catio n subo p tim al; C o nsecutiv e free blo ck list created
at FS fo rm at tim e. A llo catio n and d eallo catio n ev entually ran-
d o m izes th e list resulting th e rand o m allo catio n

– Ino d es allo cated rand o m ly; D irecto ry listing resulted in rand o m
ino d e access p atterns

• T h e L in u x E x t2 F ile S y ste m (see Fig. 6 .2 1 M id d le)

– S eco nd E x tend ed Filesystem ; E v o lv ed fro m M inix fi lesystem (v ia
” E x tend ed Filesystem ”)

– Features

∗ B lo ck size (1 0 2 4 , 2 0 4 8 , and 4 0 9 6) co nfi gured as FS creatio n

∗ Preallo cated ino d es (m ax num ber also co nfi gured at FS cre-
atio n)

∗ B lo ck gro up s to increase lo cality o f reference

∗ S ym bo lic links ¡ 6 0 ch aracters sto red with in ino d e

– M ain Pro blem : unclean unm o unt → e 2 fsck

∗ E x t3 fs keep s a jo urnal o f (m etad ata) up d ates

∗ J o urnal is a fi le wh ere up d ated are lo gged

∗ C o m p atible with ex t2 fs

192 CHAPTER 6 . F IL E S Y S TEM S

– Layout of an Ext2 Partition

∗ Disk divided into one or more partitions

∗ Partition:

· R eserved boot block,

· Collection of eq ually sized block groups,

· All block groups have the same structure

– Layo ut o f a B lo ck G ro up (see Fig. 6.21Lower)

∗ R eplicated super block and group descriptors; For e2fsck

∗ Bitmaps identify used inodes/ blocks

∗ All block have the same number of data blocks

∗ Advantages of this structure:

· R eplication simplifies recovery

· Proximity of inode tables and data blocks (reduces seek
time)

"!� 	 !#

6.5. V ITA 193

6.5 v ita

Cem Özdoğan was born in Merzifon, Amasya on October 23, 1969. H e
received his B.S. degree in Physics from the Middle East Technical University
in June 1994. H e received his M.S. degree in Physics from the Middle East
Technical University in June 1996. H e received his Ph.D. degree in Physics
from the Middle East Technical University in June 2002. H e worked as a
research assistant from 1994 to 2001 in the department of physics, K ırıkkale
University and Middle East Technical University and as instructor in the
department of computer engineering, Çankaya University from 2001 to 2002.
H e is currently employed as Assist. Prof. in the department of computer
engineering, Çankaya University. H is main areas of interest are electronic
structure calculations, parallel computing and scientific computing.

