1

1.1

File Systems

Files

A file is a named collection of related information, usually as a sequence
of bytes, with two views:

— Logical (programmer’s) view, as the users see it.

— Physical (operating system) view, as it actually resides on sec-

ondary storage.

What is the difference between a file and a data structure in memory?
Basically,

— files are intended to be non-volatile; hence in principle, they are
long lasting,
— files are intended to be moved around (i.e., copied from one place
to another), accessed by different programs and users, and so on.
File lifetime is independent of process lifetime
Used to share data between processes

Input to applications is by means of a file

File Management; File management system is considered part of the
operating system

— Manages a trusted, shared resource

— Bridges the gap between:
* lowlevel disk organization (an array of blocks),
« and the user’s views (a stream or collection of records)

— Also includes tools outside the kernel; E.g. formatting, recovery,
defrag, consistency, and backup utilities.

— Objectives for a File Management System;

*x Provide a convenient naming system for files

* Provide uniform I/O support for a variety of storage device
types

« Provide a standardized set of I/O interface routines

x Guarantee that the data in the file are valid

x Optimize performance

file type | usual extension | function
axaecutable | exe, com, bin | read to run machine-
| Or nora languags program
abject abj, o | compiled, machine language,

. = not linked
I?xtensmn . Meaning SouUrce code ¢, cc, java, pas, | souree code in various
file.bak Backup file asm, a languages
file.c C source program batch bat, sh commands to the command
o S Py A | Inte t
file.gif Compuserve Graphical Interchange Format image aibl £k o]
" " text =1, doc textual data, documents
file.hlp Help file — : = :
. n word processor wp, tex, rrf, VArous word-processor
file.html World Wide Web HyperText Markup Language document | doc | tormats
file.jpg Still picture encoded with the JPEG standard library b, a, so, dil, | libraries ot routines for
file.mp3 Music encoded in MPEG layer 3 audio format i S Sl Sl S . st
file mpg Movie encoded with the MPEG standard print or view are, zip, tar ASCIH or binary file Ina
. = - . . - formal for printing or
file.o Object file (compiler output, not yet linked) viewing
file.pdf Portable Document Format file archive are, zip, tar related files grouped into
n : " one fila, sometimes com-
file.ps PostScript file pressed, for archiving
file.tex Input for the TEX formatting program | er sterage
file.txt General text file multimedia mpeg, mov, rm binary file containing
r = = audio or AV information
file.zip Compressed archive -

Figure 1: Some typical file extensions.

* Minimize or eliminate the potential for lost or destroyed data

« Provide 1/O support and access control for multiple users

% Support system administration (e.g., backups)

1.1.1 File Naming

e File system must provide a convenient naming scheme

e Textual Names (see Fig. [I)

e May have restrictions

— Only certain characters, E.g. no ‘/’ characters
— Limited length
— Only certain format, E.g DOS, 8 4+ 3

e (Case (in)sensitive
e Names may obey conventions (.c files or C files)

— Interpreted by tools (UNIX)
— Interpreted by operating system (Windows)

1.1.2 File Structure; From OS’s perspective
e Stream of Bytes (see Fig. B

— OS considers a file to be unstructured

1 Byte 1 Record

v 4
[Aot][Fox | o |
" Cat " Cow " Dog " " Goat || Lion " Owl || " Pony || Rat "Worm"
(a) (b) (©)

Figure 2: Three kinds of files. (a) byte sequence. (b) record sequence. (c)
tree.

— Simplifies file management for the OS
— Applications can impose their own structure
— Used by UNIX, Windows, most modern OSes

e Records (see Fig.)

— Collection of bytes treated as a unit; Example: employee record
— Operations at the level of records (read._rec, write_rec)
— File is a collection of similar records

— OS can optimize operations on records
e Tree of Records (see Fig. B

— Records of variable length
— Each has an associated key

— Record retrieval based on key

1.1.3 File Types

e Regular files
e Directories

e Device Files

Module
name

Magic number
Header

Text size

Data size
Date

BSS size

Object Owner
module

Entry point Protection

Symbol table size

Header

Size

Fl
i ags Header

Text
Object
module

e Header

Relocation
bits

Object
module

Symbol

L=]

(a) (b)

Figure 3: (a) An executable file (b) An archive.

— Character Devices

— Block Devices

e Some systems distinguish between regular file types; ASCII text files,
binary files

e A common implementation technique (as organizational help with con-
sistent usage) is to include the type as an extension to the file name

(see Fig. M)

e Files are structured internally to meet the expectations of the pro-
gram(s) that manipulate them.

o All systems recognize their own executable file format; May use a magic
number (see Fig. B

1.1.4 File Access

e The information stored in a file can be accessed in a variety of methods:

— Sequential access

x in order, one record after another

Attribute

Meaning

Protection Who can access the file and in what way

Password Password needed to access the file

Creator ID of the person who created the file

Owner Current owner

Read-only flag 0 for read/write; 1 for read only

Hidden flag 0 for normal; 1 for do not display in listings

System flag 0 for normal files; 1 for system file

Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Figure 4: Some possible file attributes.

« read all bytes/records from the beginning
x cannot jump around, could rewind or back up

* convenient when medium was mag tape
— Random (Direct) access

* bytes/records read in any order skipping the previous records
x essential for data base systems
x read can be
move file pointer (seek), then read or
- each read specifies the file pointer

— Keyed; in any order, but with particular value(s); e.g., hash table
or dictionary. TLB lookup is one example of a keyed search

e Other access methods, such as indexed, can be built on top of the above
basic techniques.

1.1.5 File Attributes(see Fig. HI)

e Information about files kept in directory structure maintained on disk

e Each file is associated with a collection of information, known as at-
tributes:

seek
read fruncate

read pointer ————— - E-O-F pointer
| :
— 1 1
write pointer —_—

watte read pointer E-O-F pointer

&
delete #8¢ E creafe

write pointer

Figure 5: File operations.

— name, owner, creator, only information in human-readable form

— type, (e.g., source, data, binary) needed if system supports differ-
ent types

— location, (e.g., I-node or disk address) pointer to file location on
device

— organization, (e.g., sequential, indexed, random)

— time and date, (creation, modification, and last accessed)
— size, current file size

— protection, who can do reading, writing, executing

— variety of other (e.g., maintenance) information.

1.1.6 File Operations

e There are six basic operations (not all) for file manipulation: create,
write, read, delete, reposition r/w pointer (a.k.a. seek), and truncate
(not very common.) (see Fig. H)

e Open(Fi) search directory structure on disk for entry Fi, move content
of entry to memory

e Close (Fi) move content of entry Fi in memory to directory structure

on disk

1.1.7 An Example Program Using File System Calls (see Fig. [6)
e copyfile abc zyz; where argv|0]="copyfile”, argv[1]="abc”, argv[2]|="xyz"

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argvf[])

{
int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (argc != 3) exit(1); /* syntax error if argc is not 3 */

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out_ fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */

close(in_fd);

close(out_fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

Figure 6: A simple program to copy a file.

Fazvln | Address Space
@ (b) P

Figure 7: Left: (a) Segmented process before mapping files into its address
space (b) Process after mapping existing file abc into one segment creating
new segment for xyz. Right: Memory mapped files and paging

1.1.8 Memory—Mapped Files (see Fig. [1)

e Avoids translating from on-disk format to in-memory format (and vice
versa)
— Supports complex structures
— No read/write systems calls
— File simply (paged or swapped) to file system
— Unmap when finished

e Problems
— Determining actual file size after modification; Round to nearest

whole page (even if only 1 byte file)

— Care must be taken if file is shared; E.g. one process memo-
rymapped and one process read/write syscalls

— Large files may not fit in the virtual address space

1.1.9 File Organization and Access; Programmer’s Perspective

e One of the key elements of a file system is the way the files are orga-
nized. File organization is the logical structuring as well as the access
method(s) of files.

Memory \[_ i
mapped :ﬁ
file: Sl He
Disk
P P
o ot e
Data Data Xyz Physmal

e Given an operating system supporting unstructured files that are stream-
of-bytes, how should one organize the contents of the files?

o Performance considerations:

— File system performance affects overall system performance
— Organization of the file system affects performance
— File organization (data layout) affects performance; depends on

access patterns

e Possible access patterns:

— Read the whole file

— Read individual blocks or records from a file

— Read blocks or records preceding or following the current one
— Retrieve a set of records

— Write a whole file sequentially

— Insert/delete/update records in a file

— Update blocks in a file

e Criteria for File Organization

— Rapid access

* Needed when accessing a single record
x Not needed for batch mode

— Ease of update; File on CDROM will not be updated, so this is
not a concern

— Economy of storage

* Should be minimum redundancy in the data

* Redundancy can be used to speed access such as an index
— Simple maintenance

— Reliability

e Fundamental File Organizations; Common file organization schemes
are:

— Pile

— Sequential

— Indexed Sequential
— Indexed

— Direct or Hashed
e Pile (see Fig. R)

— Data are collected in the order they arrive

— Purpose is to accumulate a mass of data and save it
— Records may have different fields

— No structure

— Record access is by exhaustive search

— Update:

x Same size record; okay
* Variable size; poor

— Retrieval:

* Single record; poor
* Subset; poor

x Exhaustive; okay
e Sequential (see Fig. B

— Fixed format used for records
— Records are the same length
— Field names and lengths are attributes of the file

— One field is the key filed

x Uniquely identifies the record
* Records are stored in key sequence

— New records are placed in a log file or transaction file

— Batch update is performed to merge the log file with the master
file

— Update:

* Same size record; good

x Variable size; No
— Retrieval:

* Single record; poor

10

Exhagstive Exhanstive Partial
Incex

Maia Fie

Primary e
Onvertiow { variahk Heagth meomRis)
Faie

Figure 8: Fundamental File Organizations; (a) Pile (b) Sequential (¢) Indexed
Sequential (d) Indexed.

* Subset; poor
x Exhaustive; okay

e Indexed Sequential (see Figs. B)
— Index provides a lookup capability to quickly reach the vicinity of
the desired record

x Contains key field and a pointer to the main file

x Indexed is searched to find highest key value that is equal or
less than the desired key value

x Search continues in the main file at the location indicated by
the pointer

— New records are added to an overflow file

— Record in main file that precedes it is updated to contain a pointer
to the new record

— The overflow is merged with the main file during a batch update
— Update:

* Same size record; good
x Variable size; No

— Retrieval:

* Single record; good
x Subset; poor

11

search index file first (e.g. binary search)

logeeal recond

last narma nurrEer
1 /Smhh. John smial-secuﬁtyiaga
i

index file relatie file

Adarms
Arthur

Ashr

Smith

Figure 9: IBM indexed-sequential access method (ISAM).

x Exhaustive; okay
e Comparison of sequential and indexed sequential lookup

— Example: a file contains 1 million records

— On average 500,00 accesses are required to find a record in a se-
quential file

— If an index contains 1000 entries, it will take on average 500 ac-
cesses to find the key, followed by 500 accesses in the main file.
Now on average it is 1000 accesses

e Indexed File (see Fig. B)

— Uses multiple indexes for different key fields

— May contain an exhaustive index that contains one entry for every
record in the main file

— May contain a partial index
— Update:

* Same size record; good

* Variable size; good
— Retrieval:

x Single record; good
% Subset; good (Assuming the selecting attribute is indexed on)

x Exhaustive; okay

e The Direct, or Hashed File

12

FRoo'(directory

[~—Root directory

Figure 10: (a) Single-Level Directory Systems (b) Two-Level Directory Sys-
tems (c) Hierarchical Directory Systerms.

— Key field required for each record

— Key maps directly or via a hash mechanism to an address within
the file

— Directly access a block at a the known address
— Update:

* Same size record; good

« Variable size; No (Fixed sized records used)

— Retrieval:

* Single record; excellent
* Subset; poor

x Exhaustive; poor

1.2 Directories

e A directory is a symbol table, which can be searched for information
about the files. Also, it is the fundamental way of organizing files.
Usually, a directory is itself a file

e A typical directory entry contains information (attributes, location,
ownership) about a file. Directory entries are added as files are created,
and are removed when files are deleted.

e Provides mapping between file names and the files themselves
e Goals in Organization of Directory
— Efficiency; locate file quickly

— Naming; convenient to users,

13

. —~—Root directory

atar | Al oAt

SOUT

b 5

o T
[]
]

greciry | el |

.'."'}l al

o l B | A | (=) l MR]-’«‘.‘"J'A"}}l

I

|

b d

Y

oG | U‘-«U}'l o J Lo I

|M(\-‘lf|e\ri 18 | i

st | ol | soal .|_.1|1 | Lagt

Kest |

j=ar Lo
""El-lu"r’l at | b | a |.\es! |

Mase
file
Ereciony

s T] a2

T
i wwerd | psard

“Se,

S T

|
!

)

4| |

| |5]

[]

7= =

h

Figure 11: Example to (a) Single-Level Directory Systems (b) Two-Level
Directory Systems (c¢) Hierarchical Directory Systems.

* 2 users can use same name for different files

* Same file can have several different names

— Grouping; logical grouping of files by attributes, (e.g., all Java
programs, all games, ...)

e Single-Level Directory Systems (see Figs. [[OJITI)

e Two—Level Directory Systems (see Figs. T[Tl

List of entries, one for each file

Sequential file with the name of the file serving as the key

Provides no help in organizing the files

Forces user to be careful not to use the same name for two different

files

One directory for each user and a master directory

Master directory contains entry for each user; Provides access con-
trol information

Each user directory is a simple list of files for that user

Still provides no help in structuring collections of files

14

e Hierarchical, or Tree-Structured Directory Systems (see Figs. [[OJITI)

— Files can be located by following a path from the root, or master,
directory down various branches; This is the absolute pathname
for the file

— Can have several files with the same file name as long as they have
unique path names

1.2.1 Path Names

Always specifying the absolute pathname for a file is tedious!

Introduce the idea of a working directory; Files are referenced relative
to the working directory

e Example: cwd = /home/dizin, profile = /home/dizin/.profile

Absolute pathname; A path specified from the root of the file system
to the file

e A Relative pathname; A pathname specified from the cwd

Note: *.” (dot) and ‘..” (dotdot) refer to current and parent directory

— Example: cwd = /home/dizin
— ../../etc/passwd

— /etc/passwd

— ../dizin/../.././etc/passwd

— Are all the same file

1.2.2 File Sharing

e In multiuser system, allow files to be shared among users
e Two issues

— Access rights. Allowing users to share files raises a major issue:
protection. A general approach is to provide controlled access to
files through a set of operations such as read, write, delete, list,
and append. Then permit users to perform one or more opera-
tions. One popular protection mechanism is a condensed version
of access list, where the system recognizes three classifications of
users with each file and directory: user, group, other

15

Management of simultaneous access

e Access Rights

None

x User may not know of the existence of the file
x User is not allowed to read the user directory that includes
the file

Knowledge; User can only determine that the file exists and who
its owner is

Execution; The user can load and execute a program but cannot
copy it

Reading; The user can read the file for any purpose, including
copying and execution

Appending; The user can add data to the file but cannot modify
or delete any of the file’s contents

Updating; The user can modify, deleted, and add to the file’s data.
This includes creating the file, rewriting it, and removing all or
part of the data

Changing protection; User can change access rights granted to
other users

Deletion; User can delete the file
Owners

x Has all rights previously listed

x May grant rights to others using the following classes of users;
Specific user, User groups, All for public files

total 1704

drwxr-x--- 3 user group 4096 Oct 14 08:13 .

drwxr-x--- 3 user group 4096 Oct 14 08:14 ..
drwxr-x--- 2 user group 4096 Oct 14 08:12 backup
“IW-r———-- 1 user group 141133 Oct 14 08:13 eniac3.jpg
“IW-r———-- 1 user group 1580544 Oct 14 08:13 wkll.ppt

First letter: file type

* d for directories

x - for regular files

Three user categories; user, group, and other

16

— Three access rights per category; read, write, and execute
— drwxrwzrrwx; user group other

— Execute permission for directory? Permission to access files in the
directory

— To list a directory requires read permissions
— What about drwxr-x—x 7
— Problematic example

x A owns file foo.bar

x A wishes to keep his file private

x Inaccessible to the general public

x A wishes to give B read and write access

x A wishes to give C readonly access
x PP

e Management of Simultaneous Access
— Most Oses provide mechanisms for users to manage concurrent
access to files; Example: lockf(), flock() system calls
— Typically
x User may lock entire file when it is to be updated
* User may lock the individual records during the update

— Mutual exclusion and deadlock are issues for shared access

17

	File Systems
	Files
	File Naming
	File Structure; From OS's perspective
	File Types
	File Access
	File Attributes(see Fig. 4)
	File Operations
	An Example Program Using File System Calls (see Fig. 6)
	Memory--Mapped Files (see Fig. 7)
	File Organization and Access; Programmer's Perspective

	Directories
	Path Names
	File Sharing

