
Figure 1: Interrupt

0.1 Interrupts and Traps

• Consider the case when data is to be input from the outside world. One
approach is to execute a small code fragment to manage the transfer
of data in from the outside world e.g. a peripheral. But when should
this code fragment be run?

– In a polling system, the computer periodically executes (or polls)
the peripheral device of interest and inputs data when it is avail-
able. This means data can only be input if the peripheral device
is polled.

– In an interrupt driven system, the peripheral triggers the execu-
tion of the previously mentioned code fragment when it has data
ready. We say interrupt because the handling of this data transfer
interrupts normal program execution. The original task (blue) has
execution interrupted while a task switching occurs (green) and
then the interrupt service routine runs (red) to do I/O. Later, the
original task resumes.

– As the system has more than one peripheral, it will need more
than one interrupt service routine available. Generally, a separate
interrupt service routine (ISR) is provided for each peripheral that
needs to trigger some CPU activity so an array of function pointers
holds the start address of each of the ISRs provided i.e. void
(∗isr vectors[])().

– This trigger mechanism allows a computer response to an external
event – what about internal events? Most computers are also able
to trigger special event handling in software by executing a special
instruction called software interrupt or trap.

1

• The operating system gets the control of the CPU (which may be busy
waiting for an event or be in a busy loop) when either an external or
an internal event (or an exception) occurs.

– external events

∗ Character typed at console

∗ Completion of an I/O operation (controller is ready to do
more work)

∗ Timer: to make sure operating system eventually gets control.

∗ Hardware failure

∗ An interrupt is the notification of an (external) event that
occurs in a way that is asynchronous with the current activity
of the processor. Exact occurrence time of an interrupt is not
known and it is not predictable

– internal events

∗ System call

∗ Error item (e.g., arithmetic overflow, division by zero, illegal
instruction, addressing violation)

∗ Page fault, reference outside user’s memory space

∗ A trap is the notification of an (internal) event that occurs
while a program is executing, therefore is synchronous with
the current activity of the processor. Traps are immediate
and are usually predictable since they occur while executing
(or as a result of) a machine instruction.

• Interrupt Cycle

– Fetch next instruction

– Execute instruction

– Check for interrupt

– If no interrupts, fetch the next instruction

– If an interrupt is pending, divert to the interrupt handler

• Systems that generate interrupts have different priorities for various in-
terrupts; i.e., when two interrupts occur simultaneously, one is serviced
“before” the other.

2

Figure 2: Interrupt Cycle

– When a new “higher priority” interrupt occurs while lesser inter-
rupt is being serviced, the current handler is “suspended” until
the new interrupt is processed. This is called the “nesting of in-
terrupts.”

– When interruption of an interrupt handler is undesirable, other
interrupts can be “masked” (inhibited) temporarily

• Interrupt handling by “words”. When the CPU receives an interrupt,
it is forced to a different context (kernel’s) and the following occur:

– The current state of the CPU (PSW) is saved in some specific
location

– The interrupt information is stored in another specified location

– The CPU resumes execution at some other specific location–the
interrupt service routine

– After servicing the interrupt, the execution resumes at the saved
point of the interrupted program

– Although the details of the above differ from one machine to an-
other, the basic idea remains the same: the CPU suspends its
(current) execution and services the interrupt.

• Modern languages such as C++ and JAVA allow the programmer to
write their own exception handlers. You are writing a special function
that can return no result (since it is not so much “called” as “trig-
gered”); and the computing environment is allowing you to store the
start address of your exception handler in the array isr vectors[].

3

Figure 3: Interrupt Picture

• As the computer designers have total control over which event handlers
can be accessed by users and which ones are reserved for their use,
the exception handling mechanism is also a good way to allow a user
program to make a request for a resource from the operating system.
We will come across special operations such as a system call or monitor
call which are implemented by the exception handling mechanism and
provide controlled access to system resources.

0.1.1 Accessing OS Services

• The mechanism used to provide access to OS services (i.e., enter the
operating system and perform a “privileged operation”) is commonly
known as a system call. The (only) difference between a “procedure
call” and a “system call” is that a system call changes the execution
mode of the CPU (to supervisor mode) whereas a procedure call does
not.

• System call interface: A set of functions that are called by (user) pro-
grams to perform specific tasks. System call groups:

– Process control, fork(), exec(), wait(), abort()

– File manipulation, chmod(), link(), stat(), creat()

– Device manipulation, open(), close(), ioctl(), select()

– Information maintenance, time(), acct(), gettimeofday()

4

Figure 4: System Call

– Communications, socket(), accept(), send(), recv()

0.2 Operating System Components

An operating system generally consists of the following components:

• Process management

• (Disk) storage management

• Memory management

• I/O (device) management

• File systems

• Networking

• Protection

• User Interface

5

Figure 5: OS Architecture

0.3 Bootstrapping

• The process of initializing the computer and loading the operating sys-
tem is known as bootstrapping. This usually occurs when the computer
is powered-up or reset.

• The initial loading is done by a small program that usually resides in
non-volatile memory (e.g., EPROM). This in turn loads the OS from
an external device.

• Once loaded, how does the operating system know what to do next? It
waits for some event to occur: e.g., the user typing a command on the
keyboard.

• During “normal” operations of a computer system, some portions of the
operating system remain in main memory to provide services for crit-
ical operations, such as dispatching, interrupt handling, or managing
(critical) resources.

• These portions of the OS are collectively called the kernel.

Kernel = OS - transient components
remains comes and goes

6

0.4 System Structure

• An operating system is usually large and complex. Therefore, it should
be engineered carefully. Possible ways to structure an operating system:

– Simple, single-user, MS-DOS,MacOS, Windows

– Monolithic, multi-user, UNIX,Multics, OS/360

7

Figure 6: UNIN System initilization

– Layered,T.H.E. operating system

– Virtual machine, IBM VM/370

– Client/Server (microkernel), Chorus/MiX

0.5 Why Study Operating Systems?

• Build or modify real operating system.

• Tune application performance. Understanding the services offered by
an operating system will influence how you design applications.

• Administer and use system well. You will develop a better understand-
ing of the structure of modern computing systems, from the hardware
level through the operating system level and onto the applications level.

• Can apply techniques used in an OS to other areas;

– interesting, complex data structures

– conflict resolution

– concurrency

– resource management

8

Figure 7: OS Structures, MS-DOS, Unix, IBM VM/370, Chorus

• Challenge of designing large and complex systems

• Future decisions regarding operating systems will be based on more
secure knowledge.

• Curiosity: How the system works.

• For your Course Requirement!!

0.5.1 Problems in building OS

• Large Systems: 100k’s to millions of lines of code involving 100 to 1000
man-years of work

• Complex: Performance is important while there is conflicting needs of
different users, Cannot remove all bugs from such complex and large
software

• Behavior is hard to predict; tuning is done by guessing

9

1 Processes and Threads

Simple C example
Include text of header file in <> for system, user header name in “ ”
main program called “main”, with these argument types

#include <stdio.h>

int main(int argc, char *argv[])

{

int i;

for (i=0; i < argc; i++)

printf(‘‘command line argument [%d] = %s \n’’,

i, argv[i]);

}

Figure 8: System Calls

1.1 Processes

What is a Process

• talking about programs executing but what it is meant?

• At the very least, we are recognizing that some program code is resident
in memory and the CPU is fetching the instructions in this code and
executing them

10

Figure 9: A UNIX Process Context

• Of course, a running program contains data to manipulate in addition
to the instructions describing the manipulation. Therefore, there must
also be some memory holding data.

• We are starting to talk of processes or tasks or even jobs when referring
to the program code and data associated with any particular program

– a program in execution,

– an instance of a program running on a computer,

– a unit of execution characterised by a single, sequential thread of
execution,

– a current state an associated set of system resources (memory,
devices, files),

– process execution must progress in sequential fashion

• An operating system executes a variety of programs:

– Batch system, jobs

– Time-shared systems, user programs or tasks

• Keep track of the states of every process currently executed. make sure;
no process monopolises the CPU, no process starves

11

1.1.1 The Process Model

The operating system must know specific information about processes in
order to manage and control them. Such information is usually grouped into
two categories:

• process state information

– CPU registers (general purpose and special purpose); used by the
process will include:

∗ memory access registers such as a stack pointer and a heap
pointer, a stack frame pointer (points at a data block on the
stack holding data exchanged between caller and callee func-
tions),

∗ a processor status register, possibly a register to hold return
addresses,

– program counter; this is a pointer to the program memory (text)
location where the next instruction for this process resides

• process control information

– scheduling priority, this describes the rules enforced when deter-
mining access to a processor by this process, and can include the
identity of the “process ready to run” queue that this process is
placed in when it is ready to take CPU time

– resource use information, this information records the use of CPU
time, elapsed time, process identity number, user or account iden-
tity number, etc.

– I/O status information, this can include a list of I/O devices used
by the process, a list of open files and any buffers associated with
them

– memory allocated, this can describe the region of memory in use
(a base address and a size), the page tables (a description of which
pieces of memory are “mapped” into the single region used by the
process)

• This collection of process information is represented in the operating
system by a data structure element called process control block (PCB)
or a task control block. Consists of:

– An executable program (code), which is usually referred to as the
text section

12

– Associated data needed by the program (global data, stack)

∗ the global data variables and constants, which are usually
referred to as the data section

∗ the dynamic storage memory used to hold temporary variables
and pass function call arguments and results, usually referred
to as the stack

∗ the dynamic storage memory used by C++ new/delete oper-
ators and C calls to malloc()/free(), usually referred to as the
heap

– Execution context (or state) of the program;

∗ contents of data registers,

∗ program counter,

∗ stack pointer state (waiting on an event?),

∗ memory allocation,

∗ status of open files,

Figure 10: Process Control Block (PCB), Processes from main memory to
registers

13

1.1.2 Context Switch

• Switching between processes is termed a context switch. When the
CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process;

– process table keeps track of processes,

– context information stored in PCB,

– process suspended: register contents etc stored in PCB,

– process resumed: PCB contents loaded into registers

• Context-switch time is overhead; the system does no useful work while
switching.

• Context switching can be critical to performance,

• Dealing with multiple processes is difficult;

– Synchronization ensure a process waiting for an I/O device re-
ceives the signal, signals may be lost or duplicated.

– Failed mutual exclusion attempt to use a shared resource at the
same time.

– Non-deterministic program operation; program should only de-
pend on input to it, not relying on common memory areas.

– Deadlocks.

• OS requirements for multiprogramming;

– Policy to determine which process to schedule (Scheduler).

– Mechanism to switch between processes (Low-level code that im-
plements the decision Dispatcher).

– Methods to protect processes from one another (memory system).

1.1.3 Dispatcher

• Dispatch Mechanism OS keeps system-wide list of processes. Each
process in one of three modes; Running: On the CPU (only one in
uniprocessor system), Ready: Waiting for the CPU, Blocked: Waiting
for I/O or synchronization with another thread. Dispatch loop:

14

Figure 11: CPU Switch From Process to Process

while (1) {

run a process for a while

stop process and save its state context-switch

load state of another process context-switch

}

• How does Dispatcher gain Control?

– must change from user mode to system mode; the CPU can only
do one thing at a time. While a user process is running, dispatcher
cannot run, thus the operating system may lose control

– two ways operating system gains control;

∗ Traps: Events internal to user process (System calls, Errors,
Page faults)

∗ Hardware interrupts: Events external to user process (Char-
acter typed at terminal, Completion of disk transfer, Control
given to OS interrupt service routine (ISR))

• Dispatcher must track state of process when not running; On every
trap or interrupt, save process state in Process Control Block (PCB)

1.1.4 Process Creation

• There are two ways of creating a new process:

15

– Build one from scratch:

∗ Load code and data into memory.

∗ Create (empty) a dynamic memory workspace (heap).

∗ Create and initialize the PCB (make look like context-switch).

∗ Make process known to dispatcher.

– Clone an existing one (e.g., Unix fork() syscall):

∗ Stop current process and save its state.

∗ Make a copy of code, data, dynamic memory workspace and
PCB.

∗ Make process known to dispatcher.

• Who creates the processes and how they are supported? Every operat-
ing system has a mechanism to create processes.

• in UNIX, the fork() system call is used to create processes. fork()
creates an identical copy of the calling process. After the fork(), the
parent continues running concurrently with its child competing equally
for the CPU. exec system call used after a fork to replace the process’
memory space with a new program.

cmd = readcmd();

pid = fork();

if (pid == 0) {

// Child process -- Setup environment here

// e.g., standard i/o, signals exec(cmd);

// exec doesn t return

} else {

// Parent process -- Wait for child to finish

wait(pid);

}

• in MS-DOS, the LOAD AND EXEC system call creates a child pro-
cess. This call suspends the parent until the child has finished execu-
tion, so the parent and child do not run concurrently

• Parent process create children processes, which, in turn create other
processes forming a tree of processes

• Resource sharing

– Parent and children share all resources.

16

– Children share subset of parent’s resources.

– Parent and child share no resources.

• Execution, once a parent creates a child process, a number of execution
possibilities exist:

– Parent and children execute concurrently.

– the parent may immediately enter a wait state for the child to
finish – on UNIX, see the man pages for {wait, waitpid, wait4,
wait3}.

– the parent could immediately terminate.

• If the parent happens to terminate before the child has returned its
value, then the child will become a zombie process and may be listed
as such in the process status list!

• Address space, once a parent creates a child process, a number of mem-
ory possibilities exist:

– the child can have a duplicate of the parent’s address space – as
each process continues to execute, their data spaces will presum-
ably diverge.

– the child can have a completely new program loaded into its ad-
dress space.

• If either process needs to run a different program, it can perform a call
to int execlp(const char *file, const char *arg, ...) where arguments
specify the executable file and optional run-time arguments which the
caller may wish to provide. See the man pages on fork and also {execl,
execlp, execle, exect, execv, execvp}.

• How does each process know whether it is the parent or child after a
fork? On BSD UNIX, fork() returns a value of 0 to the child process
and returns the process ID of the child process to the parent process.

1.1.5 Process Termination

• A process enters the exiting state for one of the following reasons:

– normal completion: Once a process executes its final instruction,
a call to exit() is made.

– abnormal termination: programming errors.

17

– run time.

– I/O.

– user intervention.

• Even if the user did not program in a call to exit(), the compiler will
have appended one to int main()

– The final result of the process from its int main() is returned to
the parent, with a call to wait() if necessary.

– Process’ resources are deallocated by operating system.

• Parent may terminate execution of children processes (abort)

– Child has exceeded allocated resources.

– Task assigned to child is no longer required.

– Parent is exiting

∗ Operating system does not allow child to continue if its parent
terminates.

∗ Cascading termination.

18

	Interrupts and Traps
	Accessing OS Services

	Operating System Components
	Bootstrapping
	System Structure
	Why Study Operating Systems?
	Problems in building OS

	Processes and Threads
	Processes
	The Process Model
	Context Switch
	Dispatcher
	Process Creation
	Process Termination

