
Figure 1: Example of non-preemptive SJF and example of preemptive SJF.

• Shortest Remaining Time Next (SRTF)

– preemptive version of the SJF

– if new process arrives with CPU burst length remaining time of
current executing process, preempt: Shortest-Remaining-Time-
First

0.1 Scheduling in Interactive Systems

• Round-Robin Scheduling (RR) (See Fig. 2)

– RR reduces the penalty that short jobs suffer with FCFS by pre-
empting running jobs periodically

– Scheduled thread is given a time slice

– The CPU suspends the current job when the reserved quantum

(time-slice) is exhausted

– The job is then put at the end of the ready queue if not yet
completed

– Advantages;

∗ no starvation

∗ Fair allocation of CPU across jobs
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Figure 2: An example to Round Robin.

∗ Low average waiting time when job lengths vary widely

– Disadvantages;

∗ Poor average waiting time when job lengths are identical;
Imagine 10 jobs each requiring 10 time slices, all complete
after about 100 time slices, even FCFS is better!

∗ The critical issue with the RR policy is the length of the quan-
tum. If it is too short, then the CPU will be spending more
time on context switching. Otherwise, interactive processes
will suffer

• Priority Scheduling (See Fig. 3)

– Each process is assigned a priority (e.g., a number)

– The ready list contains an entry for each process ordered by its
priority

– The process at the beginning of the list (highest priority) is picked
first

∗ Scheduler will always choose a thread of higher priority over
one of lower priority
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Figure 3: An example to Priority-based Scheduling.

∗ Implemented via multiple FCFS ready queues (one per prior-
ity)

– Lower-priority may suffer starvation

– A variation of this scheme allows preemption of the current process
when a higher priority process arrives

– Another variation of the policy adds an aging scheme where the
priority of a process increases as it remains in the ready queue;
hence, will eventually execute to completion

• Multiple Queues (See Fig. 4)

– Multi-Level Queue (MLQ) scheme solves the mix job problem
(e.g., batch, interactive, and CPU-bound) by maintaining sepa-
rate “ready” queues for each type of job class and apply different
scheduling algorithms to each

– Multi-level feedback queue

∗ this is a variation of MLQ where processes (jobs) are not per-
manently assigned to a queue when they enter the system
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Figure 4: Multi-level queue and Multi-level feedback queue (lower).

∗ In this approach, if a process exhausts its time quantum (i.e.,
it is CPU-bound), it is moved to another queue with a longer
time quantum and a lower priority

∗ The last level usually uses FCFS algorithm in this scheme

• Lottery Scheduling

– Implemented guaranteed access to resources is, in general, diffi-
cult!

– process gets “lottery tickets” for various resources

– more lottery tickets imply better access to resource

– Advantages: Simple, Highly responsive, Allows cooperating pro-
cesses/threads to implement individual scheduling policy (exchange
of tickets)

– Process A: 15% of CPU time, Process B: 25% of CPU time, Pro-
cess C: 5% of CPU time, Process D: 55% of CPU time How many
tickets should each process get to achieve this?
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0.2 Policy versus Mechanism

– Separate what is allowed to be done with how it is done; a pro-
cess knows which of its children threads are important and need
priority

– Scheduling algorithm parameterized; mechanism in the kernel

– Parameters filled in by user processes; policy set by user process

1 Deadlock

• Deadlock is defined as the permanent blocking of a set of processes
that compete for system resources, including database records or com-
munication lines

• Unlike other problems in multiprogramming systems, there is no effi-
cient solution to the deadlock problem in the general case

• Deadlock prevention, by design, is the “best” solution

• Deadlock occurs when a set of processes are in a wait state, because
each process is waiting for a resource that is held by some other waiting
process

• None will release what they hold until they get what they are waiting
for

• Therefore, all deadlocks involve conflicting resource needs by two or
more processes

• Example: Unordered Mutex; Two threads accessing two locks
Semaphore m[2] = {1, 1}; //binarysemaphore
Thread1 Thread2
m[0].P (); m[1].P ();
m[1].P (); m[0].P ();
//access shared data //access
m[1].V (); m[0].V ();
m[0].V (); m[1].V ();

• What happens if Thread1 grabs m[0] and Thread2 grabs m[1]? (P
means down operation and V means up operation)
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1.1 Resources

• Classification of resources–I, Two general categories of resources can
be distinguished:

– Reusable: something that can be safely used by one process at
a time and is not depleted by that use.

∗ Processes obtain resources that they later release for reuse by
others.

∗ Examples are processors, I/O channels, main and secondary
memory, files, specific I/O devices, databases, and semaphores.

∗ In case of two processes and two resources, deadlock occurs if
each process holds one resource and requests the other.

– Consumable: these can be created and destroyed.

∗ When a resource is acquired by a process, the resource ceases
to exist.

∗ Examples are interrupts, signals, messages, and information
in I/O buffers

∗ Deadlock may occur if a Receive message is blocking

∗ May take a rare combination of events to cause deadlock

• Classification of resources–II, One other taxonomy again identifies two
types of resources:

– Preemptable: these can be taken away from the process owning
it with no ill effects (needs save/restore). E.g., memory or CPU.

– Non-preemptable: cannot be taken away from its current owner
without causing the computation to fail. E.g., printer or floppy
disk.

• Deadlocks occur when sharing reusable and non-preemptable resources

1.2 Introduction to Deadlocks

1.2.1 Conditions for Deadlock (See Fig. 5)

• Four conditions that must hold for a deadlock to be possible:

– 1. Mutual exclusion: processes require exclusive control of its
resources (not sharing), only one process may use a resource at a
time
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Figure 5: An example to Deadlock.

– 2. Hold and wait: process may wait for a resource while holding
others

– 3. No preemption: process will not give up a resource until it
is finished with it. Also, processes are irreversible: unable to
reset to an earlier state where resources not held

– 4. Circular wait: each process in the chain holds a resource
requested by another, there exists set {P0, P1, . . ., P

n
} of waiting

processes such that P0 waiting for resource held by P1, P1 waiting
for resource held by P2, . . ., P

n−1 waiting for resource held by P
n
,

P
n

waiting for resource held by P0

• If any one of the necessary conditions is prevented a deadlock need not
occur. For example:

– Systems with only simultaneously shared resources cannot dead-
lock; Negates mutual exclusion.

– Systems that abort processes which request a resource that is in
use; Negates hold and wait.

– Preemptions may be possible if a process does not use its resources
until it has acquired all it needs; Negates no preemption.

– Transaction processing systems provide checkpoints so that pro-
cesses may back out of a transaction; Negates irreversible process.

– Systems that prevent, detect, or avoid cycles; Negates circular

wait. Often, the preferred solution.
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Figure 6: Resource Allocation Graphs, in the right one, either P2 or P4

could relinquish a resource allowing P1 or P3 (which are currently blocked)
to continue.

1.2.2 Deadlock Modeling (See Fig. 6)

• Cycle is a necessary condition for a deadlock

• But when dealing with multiple unit resources –not sufficient

• A knot must exist–a cycle with no non-cycle outgoing path from any
involved node

• At the moment assume that:

– a process halts as soon as it waits for one resource,

– processes can wait for only one resource at a time

• In general, four strategies are used for dealing with deadlocks:

– Ignore (The Ostrich Algorithm): stick your head in the sand
and pretend there is no problem at all.

– Prevention: design a system in such a way that the possibility
of deadlock is excluded a priori (e.g., compile-time/statically, by
design)

– Avoidance: make a decision dynamically checking whether the
request will, if granted, potentially lead to a deadlock or not (e.g.,
run-time/dynamically, before it happens)
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– Detection and Recovery: let the deadlock occur and detect
when it happens, and take some action to recover after the fact
(e.g., run-time/dynamically, after it happens)

1.3 The Ostrich Algorithm

• Different people react to this strategy in different ways:

– Mathematicians: find deadlock totally unacceptable, and say
that it must be prevented at all costs.

– Engineers: ask how serious it is, and do not want to pay a penalty
in performance and convenience.

• The UNIX approach is just to ignore the problem on the assumption
that most users would prefer an occasional deadlock, to a rule restrict-
ing user access to only one resource at a time

• The problem is that the prevention price is high, mostly in terms of
putting inconvenient restrictions on processes

1.4 Deadlock Detection and Recovery

• This technique does not attempt to prevent deadlocks; instead, it lets
them occur

• The system detects when this happens, and then takes some action to
recover after the fact (i.e., is reactive)

• With deadlock detection, requested resources are granted to processes
whenever possible

• Periodically, the operating system performs an algorithm that allows
it to detect the circular wait condition

• A check for deadlock can be made as frequently as resource request, or
less frequently, depending on how likely it is for a deadlock to occur

• Checking at each resource request has two advantages: It leads to early
detection, and the algorithm is relatively simple because it is based on
incremental changes to the state of the system

• On the other hand, such frequent checks consume considerable proces-
sor time
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Figure 7: An example of how deadlock occurs and how it can be avoided.
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• Once the deadlock algorithm has successfully detected a deadlock, some
strategy is needed for recovery

• There are various ways:

– Recovery through Preemption; In some cases, it may be possible
to temporarily take a resource away from its current owner and
give it to another.

– Recovery through Rollback ; If it is known that deadlocks are
likely, one can arrange to have processes checkpointed periodically.
For example, can undo transactions, thus free locks on database
records. This often requires extra software functionality.

– Recovery through Termination; The most trivial way to break a
deadlock is to kill one or more processes. One possibility is to kill
a process in the cycle. Warning! Irrecoverable losses or erroneous

results may occur, even if this is the least advanced process.
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