
Figure 1: Example of non-preemptive SJF and example of preemptive SJF.

• Shortest Remaining Time Next (SRTF)

– preemptive version of the SJF

– if new process arrives with CPU burst length remaining time of
current executing process, preempt: Shortest-Remaining-Time-
First

0.1 Scheduling in Interactive Systems

• Round-Robin Scheduling (RR) (See Fig. 2)

– RR reduces the penalty that short jobs suffer with FCFS by pre-
empting running jobs periodically

– Scheduled thread is given a time slice

– The CPU suspends the current job when the reserved quantum

(time-slice) is exhausted

– The job is then put at the end of the ready queue if not yet
completed

– Advantages;

∗ no starvation

∗ Fair allocation of CPU across jobs

1



Figure 2: An example to Round Robin.

∗ Low average waiting time when job lengths vary widely

– Disadvantages;

∗ Poor average waiting time when job lengths are identical;
Imagine 10 jobs each requiring 10 time slices, all complete
after about 100 time slices, even FCFS is better!

∗ The critical issue with the RR policy is the length of the quan-
tum. If it is too short, then the CPU will be spending more
time on context switching. Otherwise, interactive processes
will suffer

• Priority Scheduling (See Fig. 3)

– Each process is assigned a priority (e.g., a number)

– The ready list contains an entry for each process ordered by its
priority

– The process at the beginning of the list (highest priority) is picked
first

∗ Scheduler will always choose a thread of higher priority over
one of lower priority

2



Figure 3: An example to Priority-based Scheduling.

∗ Implemented via multiple FCFS ready queues (one per prior-
ity)

– Lower-priority may suffer starvation

– A variation of this scheme allows preemption of the current process
when a higher priority process arrives

– Another variation of the policy adds an aging scheme where the
priority of a process increases as it remains in the ready queue;
hence, will eventually execute to completion

• Multiple Queues (See Fig. 4)

– Multi-Level Queue (MLQ) scheme solves the mix job problem
(e.g., batch, interactive, and CPU-bound) by maintaining sepa-
rate “ready” queues for each type of job class and apply different
scheduling algorithms to each

– Multi-level feedback queue

∗ this is a variation of MLQ where processes (jobs) are not per-
manently assigned to a queue when they enter the system

3



Figure 4: Multi-level queue and Multi-level feedback queue (lower).

∗ In this approach, if a process exhausts its time quantum (i.e.,
it is CPU-bound), it is moved to another queue with a longer
time quantum and a lower priority

∗ The last level usually uses FCFS algorithm in this scheme

• Lottery Scheduling

– Implemented guaranteed access to resources is, in general, diffi-
cult!

– process gets “lottery tickets” for various resources

– more lottery tickets imply better access to resource

– Advantages: Simple, Highly responsive, Allows cooperating pro-
cesses/threads to implement individual scheduling policy (exchange
of tickets)

– Process A: 15% of CPU time, Process B: 25% of CPU time, Pro-
cess C: 5% of CPU time, Process D: 55% of CPU time How many
tickets should each process get to achieve this?

4



0.2 Policy versus Mechanism

– Separate what is allowed to be done with how it is done; a pro-
cess knows which of its children threads are important and need
priority

– Scheduling algorithm parameterized; mechanism in the kernel

– Parameters filled in by user processes; policy set by user process

1 Deadlock

• Deadlock is defined as the permanent blocking of a set of processes
that compete for system resources, including database records or com-
munication lines

• Unlike other problems in multiprogramming systems, there is no effi-
cient solution to the deadlock problem in the general case

• Deadlock prevention, by design, is the “best” solution

• Deadlock occurs when a set of processes are in a wait state, because
each process is waiting for a resource that is held by some other waiting
process

• None will release what they hold until they get what they are waiting
for

• Therefore, all deadlocks involve conflicting resource needs by two or
more processes

• Example: Unordered Mutex; Two threads accessing two locks
Semaphore m[2] = {1, 1}; //binarysemaphore
Thread1 Thread2
m[0].P (); m[1].P ();
m[1].P (); m[0].P ();
//access shared data //access
m[1].V (); m[0].V ();
m[0].V (); m[1].V ();

• What happens if Thread1 grabs m[0] and Thread2 grabs m[1]? (P
means down operation and V means up operation)

5



1.1 Resources

• Classification of resources–I, Two general categories of resources can
be distinguished:

– Reusable: something that can be safely used by one process at
a time and is not depleted by that use.

∗ Processes obtain resources that they later release for reuse by
others.

∗ Examples are processors, I/O channels, main and secondary
memory, files, specific I/O devices, databases, and semaphores.

∗ In case of two processes and two resources, deadlock occurs if
each process holds one resource and requests the other.

– Consumable: these can be created and destroyed.

∗ When a resource is acquired by a process, the resource ceases
to exist.

∗ Examples are interrupts, signals, messages, and information
in I/O buffers

∗ Deadlock may occur if a Receive message is blocking

∗ May take a rare combination of events to cause deadlock

• Classification of resources–II, One other taxonomy again identifies two
types of resources:

– Preemptable: these can be taken away from the process owning
it with no ill effects (needs save/restore). E.g., memory or CPU.

– Non-preemptable: cannot be taken away from its current owner
without causing the computation to fail. E.g., printer or floppy
disk.

• Deadlocks occur when sharing reusable and non-preemptable resources

1.2 Introduction to Deadlocks

1.2.1 Conditions for Deadlock (See Fig. 5)

• Four conditions that must hold for a deadlock to be possible:

– 1. Mutual exclusion: processes require exclusive control of its
resources (not sharing), only one process may use a resource at a
time

6



Figure 5: An example to Deadlock.

– 2. Hold and wait: process may wait for a resource while holding
others

– 3. No preemption: process will not give up a resource until it
is finished with it. Also, processes are irreversible: unable to
reset to an earlier state where resources not held

– 4. Circular wait: each process in the chain holds a resource
requested by another, there exists set {P0, P1, . . ., P

n
} of waiting

processes such that P0 waiting for resource held by P1, P1 waiting
for resource held by P2, . . ., P

n−1 waiting for resource held by P
n
,

P
n

waiting for resource held by P0

• If any one of the necessary conditions is prevented a deadlock need not
occur. For example:

– Systems with only simultaneously shared resources cannot dead-
lock; Negates mutual exclusion.

– Systems that abort processes which request a resource that is in
use; Negates hold and wait.

– Preemptions may be possible if a process does not use its resources
until it has acquired all it needs; Negates no preemption.

– Transaction processing systems provide checkpoints so that pro-
cesses may back out of a transaction; Negates irreversible process.

– Systems that prevent, detect, or avoid cycles; Negates circular

wait. Often, the preferred solution.

7



Figure 6: Resource Allocation Graphs, in the right one, either P2 or P4

could relinquish a resource allowing P1 or P3 (which are currently blocked)
to continue.

1.2.2 Deadlock Modeling (See Fig. 6)

• Cycle is a necessary condition for a deadlock

• But when dealing with multiple unit resources –not sufficient

• A knot must exist–a cycle with no non-cycle outgoing path from any
involved node

• At the moment assume that:

– a process halts as soon as it waits for one resource,

– processes can wait for only one resource at a time

• In general, four strategies are used for dealing with deadlocks:

– Ignore (The Ostrich Algorithm): stick your head in the sand
and pretend there is no problem at all.

– Prevention: design a system in such a way that the possibility
of deadlock is excluded a priori (e.g., compile-time/statically, by
design)

– Avoidance: make a decision dynamically checking whether the
request will, if granted, potentially lead to a deadlock or not (e.g.,
run-time/dynamically, before it happens)

8



– Detection and Recovery: let the deadlock occur and detect
when it happens, and take some action to recover after the fact
(e.g., run-time/dynamically, after it happens)

1.3 The Ostrich Algorithm

• Different people react to this strategy in different ways:

– Mathematicians: find deadlock totally unacceptable, and say
that it must be prevented at all costs.

– Engineers: ask how serious it is, and do not want to pay a penalty
in performance and convenience.

• The UNIX approach is just to ignore the problem on the assumption
that most users would prefer an occasional deadlock, to a rule restrict-
ing user access to only one resource at a time

• The problem is that the prevention price is high, mostly in terms of
putting inconvenient restrictions on processes

1.4 Deadlock Detection and Recovery

• This technique does not attempt to prevent deadlocks; instead, it lets
them occur

• The system detects when this happens, and then takes some action to
recover after the fact (i.e., is reactive)

• With deadlock detection, requested resources are granted to processes
whenever possible

• Periodically, the operating system performs an algorithm that allows
it to detect the circular wait condition

• A check for deadlock can be made as frequently as resource request, or
less frequently, depending on how likely it is for a deadlock to occur

• Checking at each resource request has two advantages: It leads to early
detection, and the algorithm is relatively simple because it is based on
incremental changes to the state of the system

• On the other hand, such frequent checks consume considerable proces-
sor time

9



Figure 7: An example of how deadlock occurs and how it can be avoided.

10



• Once the deadlock algorithm has successfully detected a deadlock, some
strategy is needed for recovery

• There are various ways:

– Recovery through Preemption; In some cases, it may be possible
to temporarily take a resource away from its current owner and
give it to another.

– Recovery through Rollback ; If it is known that deadlocks are
likely, one can arrange to have processes checkpointed periodically.
For example, can undo transactions, thus free locks on database
records. This often requires extra software functionality.

– Recovery through Termination; The most trivial way to break a
deadlock is to kill one or more processes. One possibility is to kill
a process in the cycle. Warning! Irrecoverable losses or erroneous

results may occur, even if this is the least advanced process.

11


	Scheduling in Interactive Systems
	Policy versus Mechanism
	Deadlock
	Resources
	Introduction to Deadlocks
	Conditions for Deadlock (See Fig. 5)
	Deadlock Modeling (See Fig. 6)

	The Ostrich Algorithm
	Deadlock Detection and Recovery


