i

Dk
oA
M_ﬂ____

user space phy=ical memory space _____x"

Ingical ARMEsE sgane

Figure 1: Logical View of Segmentation (left) , User’s View of a Program

(right).

0.1

Segmentation

The most important problem with base-and-limits (see Fig. 77?) relo-
cation is that there is only one segment for each process

Segmentation generalizes the base-and-limits technique by allowing each
process to be split over several segments (i.e., multiple base-limits pairs)

Segment table maps 2-dimensional physical addresses (segment-number,
offset); each table entry has:

— base; contains starting physical address where segments reside in
memory

— limit specifies length of segment
Table entries are filled as new segments are allocated for the process

A segment is a region of contiguous memory. Although the segments
may be scattered in memory, each segment is mapped to a contiguous
region

Memory-management scheme that supports user view of memory (see

Fig. M)

Program is collection of segments. Segment a logical unit such as:
main program, procedure, function, method, object, local variables,

subrouting sl |
A0 |
segment J ".I {segment 0|
T oI 2400
| symbod
gagment 0 table
- [Limit | base
Syt Seomeit 4 Q) 1000 | 1404 = L |
| 400 | €300 A
mate ! 2| 400 | 4300
program ¢ 3| 1100 | 3200 | spamant 3=
/ 4| 1000 | 4700 | [Foer [
N ’ P sacpraen labde 4900
segment | segment 2 - anl
g q | segment 21
4700 I
lagical acdress space tsegmeant 4
5700
|
BA00 | 1
|segment 1
&700 - g
phvyscal memary

Figure 2: Example of Segmentation

global variables, common block, stack, symbol table, array (see Fig. B)

When a process is created, an empty segment table is inserted into the
process control block (PCB)

The segments are returned to the free segment pool when the process
terminates

Segmentation, as well as the base and limits approach, causes external
fragmentation (because they require contiguous physical memory) and
requires memory compaction

An advantage of the approach is that only a segment, instead of a whole
process, may be swapped to make room for the (new) process.

Like paging, use virtual addresses and use disk to make memory look
bigger that it really is

Segmentation can be implemented with or without paging

Segment-table base register (STBR) points to segment table’s location
in memory

edhar
gaginan 0
| qaez
data 1 |:l'l"[" | Tana |
L O} 20aps | 43082
rem— 1| aszs | sezaa | i
sacment Eabie
process & P |
~ O GaE|
Igicsl oy
procass A FRFIEL Sk
1 2FPE]
GO0 |
mtar data 2
GHESE]
sagm=an O
f 1 | ; | L
T Deaa |
daka 2 .‘-' :?.E?E". T -i..d'rjép 1 phyeical memory
[— 1| BaEs | Sn00a
sagmani tabia
precass
ozl rernory x
procass 7

Figure 3: Sharing of Segmentation

o Segment-table length register (STLR) indicates number of segments
used by a program , segment number s is legal if s < STLR

e Segmentation Architecture

— Relocation; dynamic, by segment table
— Sharing; shared segments, same segment number
— Allocation; first fit/best fit, external fragmentation

— Protection: with each entry in segment table: illegal segment,
read/write/execute privileges

— Protection bits associated with segments; code sharing at segment
level

— Since segments vary in length, memory allocation a dynamic storage-
allocation problem

0.1.1 Segmentation with Paging

e Advantages of Segmentation

— Different protection for different segments read-only status for
code

— Enables sharing of selected segments (see Fig. B)
— Easier to relocate segments than entire address space
— Enables sparse allocation of address space
e Disadvantages of Segmentation
— Still expensive/difficult to allocate contiguous memory to seg-
ments
— External fragmentation: Wasted memory

— Paging; Allocation easier, Reduces fragmentation
e Advantages of Paging

— Fast to allocate and free;

x Alloc: Keep free list of free pages and grab first page in list,
no searching by first-fit, best-fit

x Free: Add page to free list, no inserting by address or size
— Easy to swap-out memory to disk

x Page size matches disk block size
x Can swap-out only necessary pages
x Easy to swap-in pages back from disk

e Disadvantages of Paging

— Additional memory reference: Inefficient. Page table too large
to store as registers in MMU. Page tables kept in main memory.
MMU stores only base address of page table.

— Storage for page tables may be substantial

x Simple page table: Require entry for all pages in address
space. Even if actual pages are not allocated

« Partial solution: Base and bounds (limits) for page table.
Only processes with large address spaces need large page ta-
bles. Does not help processes with stack at top and heap at
bottom.

— Internal fragmentation: Page size does not match allocation size

« How much memory is wasted (on average) per process?

*x Wasted memory grows with larger pages

e Combine Paging and Segmentation

4

— Structure

* Segments correspond to logical units: code, data, stack. Seg-
ments vary in size and are often large

* Each segment contains one or more (fixed-size) pages
— Two levels of mapping to make tables manageable (2 look-ups!)

x Page table for each segment
* Base (real address) and bound (size) for each page table

e Segments + Pages Advantages

— Advantages of Segments

x Supports sparse address spaces. If segment is not used, no
need for page table. Decreases memory required for page ta-
bles.

— Advantages of Paging

x Eliminate external fragmentation

x Segments to grow without any reshuffling
— Advantages of Both. Increases flexibility of sharing. Share at two
levels: Page or segment (entire page table)
e Segments + Pages Disadvantages
— Internal fragmentation increases. Last page of every segment in
every process
— Increases overhead of accessing memory
x Translation tables in main memory
x 1 or 2 overhead references for every real reference
— Large page tables

* Do not want to allocate page tables contiguously
x More problematic with more logical address bits

« Two potential solutions: Page the user page tables (multilevel
page table), Inverted page table
0.1.2 Segmentation with Paging: MULTICS

e MULTICS solved problems of external fragmentation and lengthy search
times by paging segments

logical addresm salactor | offzet

desoriptor labia
| i
| SeQment Gascriipion m— 4
= r .
Ninaar addmegs | directory | page offsmeat | page frame

l—’ Fhysical addrass

PagE cirectory paoe bl

: cHrentory antry ‘ —te page fable ety J

|
r Fy

page diractory
base fegasier

Figure 4: Intel 386 Address Translation

e Solution differs from pure segmentation: segment-table entry contains
not base address of segment, but base address of page table for this
segment

0.1.3 Segmentation with Paging: The Intel Pentium (see Fig. M)

e Intel 386 and later use segmentation with paging
e OS/2 uses full scheme

e Other OSes mostly only use pages; Linux, Windows NT and successors

1 INPUT/OUTPUT

1.1 Principles of I/O Hardware

e There exists a large variety of I/O devices:

— Many of the with different properties

— They seem to require different interfaces to manipulate and man-
age them

Table 1: Device I/O Port Locations on PCs (Partial).

I/O address range (hexadecimal) | Device
000-00F DMA Controller
020-021 Interrupt Controller
040-043 Timer
200-20F Game Controller
2F8-2FF Serial port (secondary)
320-32F Hard disk Controller
378-37F Parallel port
3D0-3DF Graphics Controller
3F0-3F7 Diskette drive Controller
3F8-3FF Serial port (primary)

e We don’t want a new interface for every device

e Diverse, but similar interfaces leads to code duplication
e Challenge: Uniform and efficient approach to 1/0O

e Common concepts

— port
— bus

— controller (host adapter)
e cach port is given a special address (see Table [II)

e communication, use an assembly instruction (high-level languages
only work with main memory) to read/write a port; e.g., OUT port,
reg: writes the value in CPU register reg to 1/O port port

e protection, users should have access to some I/O devices but not to
others

e 1/0 instructions control devices
e Devices have addresses, used by

— direct I/O instructions

— memory-mapped [/O

kernel

kernel |10 subsystem

zofhware

SCEl keyboard mouse PCl bus floppy ATAFI
device davice device sssw device device device
driver driver driver driver drivar driver
SC8I keybeard mouse PCl bus fiappy ATAP
device device device a8 device device device
controller | contreller | controller conlrallar controflar controfler
@
[}
- R T T D
a
= ATAPI
08l floppy-disk| | devicas
devices i el DRig s fhi s drives (ks
tapes,
drives)

Figure 5: A kernel I/O structure.

1.1.1 Device Controllers (see Fig. Bl

e [/0O devices have controllers; disk controller, monitor controller, etc.
e controller manipulates/interprets electrical signals to/from the device
e controller accepts commands from CPU or provides data to CPU

e controller and CPU communicate over I/O ports; control, status, input
and output registers

1.1.2 I/O Devices

e Categories of I/O Devices (by usage)

— Human readable

* Used to communicate with the user

x Printers, Video Display, Keyboard, Mouse
— Machine readable

* Used to communicate with electronic equipment

x Disk and tape drives, Sensors, Controllers, Actuators

— Communication

* Used to communicate with remote devices
x Ethernet, Modems, Wireless

e [/O system calls abstract device behaviors in generic classes (see Fig.

)

e Device-driver layer hides I/O-controller differences from kernel
e Devices vary in many dimensions

— character-stream or block
— sequential or random-access
— sharable or dedicated

— speed of operation

— read-write, read only, or write only
e Block and Character Devices; Block devices include disk drive

— commands include read, write, seek
— raw [/O or file-system access
— file system maps location i onto block + offset

— memory-mapped file access possible
e Character devices include keyboard, mouse, serial port

— commands include get, put

— libraries layered on top allow line editing

1.1.3 Characteristics (see Table 2]) and Differences in I/O Devices

e Application

— Disk used to store files requires file management software

— Disk used to store virtual memory pages needs special hardware
and software to support it

— Terminal used by system administrator may have a higher priority
e Complexity of control;

— Unit of transfer; Data may be transferred as a stream of bytes for
a terminal or in larger blocks for a disk

Table 2: Characteristics of I/O Devices

aspect

variation

example

data transfer mode

character, block

terminal, disk

access method

sequential, random

modem, CD-ROM

transfer schedule

synchronous, asynchronous

tape, keyboard

sharing

dedicated, sharable

tape, keyboard

device speed

latency, seek time, transfer
rate, delay between opera-
tions

I/O direction

read only, write only, read-
write

CD-ROM, graphics
controller, disk

— Data representation; Encoding schemes

— Error conditions; Devices respond to errors differently

e Blocking; process suspended until 1/O completed

— Easy to use and understand

— Insufficient for some needs

e Nonblocking; I/O call returns as much as available

— user interface, data copy (buffered 1/0)

— implemented via multi-threading code for I/O call

— returns quickly with count of bytes transferred

e Asynchronous; process runs while /O executes

— difficult to use

— I/O subsystem signals process when I/O completed, e.g., call-
backs: pointer to completion code

1.1.4 Evolution of the I/O Function (see Fig. [6])

e Processor directly controls a peripheral device. Example: CPU controls
a flip-flop to implement a serial line

e Controller or I/O module is added

— Processor uses programmed [/O without interrupts

10

Serial Serial
Line Line
Bus Bus
Interrupt Interrupt
Line 2 : Line
———* UART [—*
Serial Serial
Line Line
Bus Bus
Interrupt Interrupt -
Line Line
scsl [———— i Myringt ——————*
Controller Controller
SCsli Network
Cable
Bus Cable Bus

Figure 6: Evolution of the I/O Function

— Processor does not need to handle details of external devices
— Example: A Universal Asynchronous Receiver Transmitter

« CPU simply reads and writes bytes to I/O controller
« 1/O controller responsible for managing the signalling

Controller or I/O module with interrupts. Processor does not spend
time waiting for an I/O operation to be performed

Direct Memory Access

— Blocks of data are moved into memory without involving the pro-
Cessor

— Processor involved at beginning and end only

I/O module has a separate processor. Example: SCSI controller, con-
troller CPU executes SCSI program code out of main memory

I/O processor

— I/0O module has its own local memory, internal bus, etc.
— It is a computer in its own right.

— Example: Myrinet Multi-gigabit Network Controller

11

Two address One address space Two address spaces

OXFFFF... Memory
1/O ports
0]]
(a) (b) (c)

Figure 7: a) Separate I/O and memory space. b) Memory-mapped 1/O. c)
Hybrid.

1.1.5 Memory-Mapped I/0O (see Fig. [1)

e Separate /O and memory space

— 1/O controller registers appear as I/O ports

— Accessed with special I/O instructions
e Memory-mapped 1/0O

— Controller registers appear as memory

— Use normal load/store instructions to access
e Hybrid; x86 has both ports and memory mapped 1/0O

e Bus Architectures (see Fig. B)

CPU reads and writes of memory
go over this high-bandwidth bus

|

CPU Memory| l{e] CPU Memory| /0

L T] L I T

N\]

\ All add| \ N This memory port is
e ey Bus to allow I/O devices

and |/0) go here access to memory

@) (b)

Figure 8: a) A single-bus architecture. b) A dual-bus memory architecture.

12

1. device driver is told 1o
transler disk data to
bulier at addrass X CPU
. DA controller transfers 2. device driver tells disk
bytes to buffer X, controller to transfer C
INGIBAsng memory bytas fram disk to buftar
address and decreasing al address X
CuntlC=0
when C =0, DMA DMA/busfinterrupt | ! X
interrupts CPU to signal controller j—,GPUmB_!Tl@IK '}?J-.{ﬁ FIEMTIEY buffer
transfer completion
& PCI bus

3. disk controlier initiates
CA transfer

4, disk contraller sends
each byte to DMA
controlier

IDE disk controller

))
S,

Figure 9: The Process to Perform DMA Transfer.

— A single-bus architecture; if the computer has a single bus, having
everyone look at every address is straightforward

— A dual-bus memory architecture; the trend in modern personal
computers is to have a dedicated high—speed memory bus. This
bus is tailored for optimize memory performance, with no com-
promises for the sake of slow I/O devices. Pentium systems even
have three external buses (memory, PCI, ISA)

1.1.6 Direct Memory Access (DMA)

e Takes control of the bus from the CPU to transfer data to and from
memory over the system bus

e Cycle stealing is used to transfer data on the system bus
e The instruction cycle is suspended so data can be transferred

e The CPU pauses one bus cycle, CPU Cache can hopefully avoid such
pauses

e Reduced number of interrupts occur, No expensive context switches
e Cycle stealing causes the CPU to execute more slowly; Still more effi-

cient than CPU doing transfer itself

13

e The CPU cache can hide some bus transactions
e Number of required busy cycles can be cut by

— integrating the DMA and I/O functions

— Path between DMA module and I/O module that does not include
the system bus

e The Process to Perform DMA Transfer (see Fig. M)

. device driver is told to transfer disk data to buffer at address X

N =

. device driver tells disk controller to transfer C bytes from disk to
buffer at address X

3. disk controller initiates DMA transfer
4. disk controller sends each byte to DMA controller

5. DMA controller transfers bytes to buffer X, increasing memory
address and decreasing C until C=0

6. when C=0, DMA interrupts CPU to signal transfer completion

1.1.7 Interrupts Revisited (see Fig. Q)

Interrupt 1. Device is finished

CPU 3 CPU acks controller

interrupt L@ Disk
2. Controller

5 L% Clock
X — , Printer
[S temat_]

\ 1

[T

It

—

Figure 10: How interrupts happen. The connections between devices and
interrupt controller actually use interrupt lines on the bus rather than dedi-
cated wires.

e CPU interrupt request line triggered by 1/0O device
e Interrupt handler receives interrupts

e Maskable to ignore or delay some interrupts

14

e Interrupt vector to dispatch interrupt to correct handler based on pri-
ority some unmaskable

e Interrupt mechanism also used for exceptions, traps

1.2 Principles of I/O Software

Issue Read
command

PU — VO
Isstte Read PLU = LD

—* command o Do something
Read status 10 nodule i~ Telse
/0 — CPU

Read siatus
of D
module 0 — CPU

=== Inierrupt

Erpor
condition
Error
conaman

10 — CPU Yatie Feid PU — DMA
10— CPLT block command Do something
1o 1O madule else
Jortesand PU — memory
into memory || Write word oy
into memory FU ey Read status = == Interrupt
of DMA
module DMA — CPU

Next instruction

MNext instruction Next instrue tion

Figure 11: a) Programmed I/O. b) Interrupt-Driven I/O. ¢) Direct Memory
Access.

1.2.1 Programmed I/O (see Fig. [Ih)

e Also called polling, or busy waiting

I/O module (controller) performs the action, not the processor

Sets appropriate bits in the I/O status register

No interrupts occur

Processor checks status until operation is complete; Wastes CPU cycles

15

1.2.2 Interrupt-Driven I/O (see Fig. [[Ib)

e Processor is interrupted when 1/O module (controller) ready to ex-
change data

e Processor is free to do other work
e No needless waiting

e Consumes a lot of processor time because every word read or written
passes through the processor

1.2.3 Direct Memory Access (see Fig. [ITk)

e Transfers a block of data directly to or from memory
e An interrupt is sent when the task is complete

e The processor is only involved at the beginning and end of the transfer

16

	Segmentation
	Segmentation with Paging
	Segmentation with Paging: MULTICS
	Segmentation with Paging: The Intel Pentium (see Fig. 4)

	INPUT/OUTPUT
	Principles of I/O Hardware
	Device Controllers (see Fig. 5)
	I/O Devices
	Characteristics (see Table 2) and Differences in I/O Devices
	Evolution of the I/O Function (see Fig. 6)
	Memory-Mapped I/O (see Fig. 7)
	Direct Memory Access (DMA)
	Interrupts Revisited (see Fig. 10)

	Principles of I/O Software
	Programmed I/O (see Fig. 11a)
	Interrupt-Driven I/O (see Fig. 11b)
	Direct Memory Access (see Fig. 11c)

