C Programming Tutorial — Part I

CS 537 - Introduction to Operating Systems

Java and C Similarities

¢ C language syntax is very similar to Java
¢ These structures are identical in Java and C
— if statements
— switch/case statements
— while, do/while loops
— forloops
— standard operators
« arithmetic: +, -, *,/, %, ++,
« logical: I, &&,!, ==,
* bitwise: I, &, ", ~

Java and C Similarities

* The following similarities also exist
— both have functions
« Java calls them methods
— both have variables
* local and global only in C
— very similar data types in C
« short, int, long
« float, double
« unsigned short, unsigned int, unsigned long

Java and C Differences

¢ C has no classes
¢ All work in C is done in functions

» Variables may exist outside of any functions
— global variables

— seen by all functions declared after variable declaration

» First function to execute is main

Simple C Program

#include <stdio.h> // file including function declarations for standard I/O

int main() {
printf(“Hello World!\n); // prints a message with a carriage return
return 0; // return value of function - end of program

1

I/OinC

* There are many functions that retrieve
information or place information
— either to standard I/O or to files

¢ Introducing 2 standard functions
— printf: writes to standard output
— scanf: reads from the standard input

¢ Both of these functions require formatting
within the string using special characters

Simple I/O Example

#include <stdio.h>

int main() {

char ch;

printf(“Enter a character: “);

scanf(“%c”, &ch); //read a char from std input (pass-by-reference)

printf(*“Character read is: %c\n”, ch); // prints character to std output
/1 pass-by-value

return 0;

Common Codes for printf/scanf

character and strings

— %c - character

— %s - string (must pass a pointer to array of characters)
integers and long integers

— %d - integer

— %Id - long integer

— %x - hexidecimal integer

— %Ix - hexidecimal long integer

— %u - unsigned integer

— %lu - unsigned long integer
floating point or double

— %f - floating point in m.nnnnn

— %e - floating point in m.nnnnne+xx

there are more but you can look those up if needed

Global & Local Variables and Constants

Variables declared outside any scope are called global
— they can be used by any function declared after them
Local variables only exist within their scope
— must be declared at the very beginning of the scope
— stored on the stack
— destroyed when scope ends
Prefer not to use global variables if possible
— too many naming conflicts
— can be confusing to follow in large programs
Constants are usually declared globally
— use the const key word

Variable Example

#include <stdio.h>

const float PI =3.14; // declaring a constant
float radius; // declaring a global variable - should be done locally

int main() {
float area; // declaring local variable

printf(“Enter radius of a circle: «);

scanf(“%f”, &radius);

area = PI * radius * radius;

printf(*“Area of circle with radius %f is: %f\n”, radius, area);

return 0;

#define

* Many programmers using #define instead of
declaring variables as constants

 The entity being defined is called a “macro”
* #define is a precompile directive

— it replaces each instance of the macro in the
static code with its definition at compile time

#define Example

#include <stdio.h>

#define PI 3.14
#define perror(x) printf(“ERROR: %s\n”, x)

int main() {
float radius, area;

printf(“Enter radius of a circle: ©);
scanf(“%f", &radius);
if(radius <= 0)
perror(“non-positive radius™); // expand to macro at compile time
else {
area = PI * radius * radius; // change PI to 3.14 at compile time
printf(“Area of circle with radius %f is: %f\n”, radius, area);
}

return 0;

Functions

¢ Any non-trivial program will have multiple functions
* C functions look like methods in Java
* Functions have return types
— int, float, void, etc.
= Functions have unique names
« Functions have parameters passed into them
* Before a function can be used, it must be declared and/or
defined
— a function declaration alone is called a prototype

— prototypes can be in a separate header file or included in the file
their definition appears in

Function Example

#include <stdio.h>
#define PI 3.14
float calcArea(float): // prototype for function to be defined later

int main() {
float radius, area;

printf(“Enter radius of a circle: ©);

scanf(“%f", &radius);

area = calcArea(radius); // call function

printf(*Area of circle with radius %f is: %f\n”, radius, area);
return 0;

}

float calcArea(float radius) {
return PI * radius * radius;

Arrays

» Like Java, C has arrays
— they are declared slightly different
— indexes still go from 0 to size-1
* C arrays have some major differences from Java
— if you try to access an index outside of the array, C will
probably let you
— C arrays are kept on the stack
« this limits the maximum size of an array
— size of a C array must be statically declared
* no using variables for the size

Declaring Arrays

* Legal array declarations
int scores[20];
#define MAX_LINE 80
char linefMAX_LINE]; // place 80 inside [] at compile time

¢ Illegal array declaration
int x = 10;
float nums[x]; // using variable for array size

Initializing Arrays

¢ Legal initializations
int scores[S]={ 2,-3,10,0,4 }:

char name[20] = { “Jane Doe” };

int totals[5];
int i;
for(i=0; i<5: i++)
totals[i] = 0;
char linefMAX_LINE];
scanf(“%s”, line);
* TIllegal initialization
int scores[S];
scores = { 2,-3,10,0,4 };

More on Arrays

* Accessing arrays
— exactly like Java except:
* no .length parameter in array
= remember, no bounds checking
» Using arrays in functions
— arrays can be passed as parameters to functions
— arrays are always passed-by-reference

« the address of the first element is passed

 any changes made to array in the called function are
seen in the calling function
— this is the difference from pass-by-value

Array Example

#include <stdio.h>

#define NUM_STUDENTS 70

void setNums(int nums[], int size) {
int i;

for(i=0; i<size; i++) {
printf(“Enter grade for student %d: “, i)
scanf(“%d”, &nums[i]);

int main() {
int gradesINUM_STUDENTS];

setNums(grades, NUM_STUDENTS);
return 0;

Strings

* In C, strings are just an array of characters

* Because strings are so common, C provides a
standard library for dealing with them
— to use this library, include the following:

« #include <string.h>

» This library provides means of copying strings,
counting characters in string, concatenate strings,
compare strings, etc.

* By convention, all strings are terminated by the
null character (\0)

— regardless of the size of the character array holding the
string

Common String Mistakes

¢ C does not allow standard operators to be
used on strings
— strl < str2 does not compare the two strings
« it does compare the starting address of each string
— strl == str2 does not return true if the two
strings are equal

« it only returns true if the starting address of each
string is the same

— str3 = strl + str2 does not combine the two
strings and store them in the third
« it adds the starting addresses of each string

Common String Functions

int strlen(char str[]);
— counts the number of characters up to (but not counting) the null
character and returns this number
int strepy(char strTo[], char strFrom[]);
— copies the string in strFrom to the string in strTo
— make sure strTo is at least as big as strFrom
int strcat(char strTo[], char strFrom);
— copies the string in strFrom to the end of str'To
— again, make sure strTo is large enough to hold additional chars
int stremp(char strl[], char str2[]);
— compares string 1 to string 2
— return values are as follows
« less than 0 if strl is lexicographically less than str2
e Qif strl is identical to str2
« greater than 0 if strl is lexicographically greater than str2

Structures

C does not have classes

However, C programmers can create their
own data types

— called structures

Structures allow a programmer to place a
group of related variables into one place

Creating a Structure

Use the keyword struct to create a structure
Example of creating a structure
struct foo {
char student[30];
int grades[7];
float endingGrade;
IH
Variables can now be created of the type struct foo
Example of creating a structure variable
int main() {
struct foo myStruct;

Notice that the struct keyword is part of the new data type
name

Using Structures

* To access any of the member variables
inside the structure:

— use the structure variable name, a period, and
the member variable name

* When passed to a function, a structure is
passed by value
— just like any other data type

Example Using Structures

int main() {
struct foo myStruct;

strepy(myStruct.student, “John Doe™);
for(i=0; i<7; i++)

myStruct.grades[i] = 0;
myStruct.endGrade = 0;

typedef

* It can be hassle to always type struct foo

* C provides a way for you to give
“nicknames”
— it is the keyword typedef

* Simply put typedef in front of the data type
and then follow it with the “nickname”

Examples of typedef

Using typedef with a standard data type
typdef unsigned long ulong_t
Using typedef with a structure declaration
typdef struct foo {
char student[30];
int grades[7];
float endingGrade;
} Foo;
Now whenever an unsigned long is needed, just type
ulong t
‘Whenever a struct foo is needed, just type Foo

10

