C Tutorial - Program Organization

CS 537 - Introduction to Operating Systems

Simple Compilation

¢ To compile a program in Unix, use gcc

« Example:
— prompt> gcc myProg.c

* The previous example compiles an executable file
called a.out

* To give the executable a different name, use the -0
option

¢ Another Example

— prompt> gcc myProg.c -o myProg

There are lots more command line options
— see the man pages

File Organization

» Sophisticated programs have multiple files

— program files (*.c)

= most of your code goes into these files
— header files (*.h)

* mostly prototypes and structure definitions
— object files

» compiled program files that are not linked

* have to be linked to become executable files
— make file

* always named Makefile

« responsible for building the entire program

Program Files

* This is what gets compiled
— includes all of the function definitions
— before a function can be used, it must be
declared
* prototypes

« these can either be declared in the program file or in
a header file

¢ Always followed with a .c extension

Program File Dependencies

Possible for a function defined in one program file
to be used in another
— the two (or more) program files must be linked
¢ The simple gcc compilation example shown
earlier automatically links your program to some
standard libraries
— that is why you don’t need to define scanfin your code
« If you want to link to non-standard libraries, you
must include them in the compilation command

— prompt> gcc myProg.c common.c -0 myProg

« this compiles both myProg.c and common.c and links them

together

Example

myProg.c

#include <stdio.h>
#include “common.h”

int main() {
int *x, *y;

x = (int*)malloc(sizeof(int));
y = (int*)malloc(sizeof(int));

common.c

void getNumber(int* num) {
printf(“Enter a number: *);
scanf(*%d”, num);

}

void print(char*s1, int nl,
char*s2, int n2) {

getNumber(x); printf(“%s: %d\n”, s, nl);

getNumber(y); printf(“%s: %d\n”, s2, n2);

print(“x”, *x, “y”, *y); }

swap(x, y);

Print(“x™, *x, “y", *y); void swap(int* nl, int* n2) {
int tmp = *nl;

return 0; #nl =¥n2;

*n2 = tmp;

}

Header Files

Often put all the prototypes for a specific program
file into a separate file

— call this the header file

— always ends in a .h extension

¢ Helps the program files look cleaner

* Allows prototypes of one program file to be easily
included in another program file
— remember, can’t use a function until declaring it

* Example
common.h
void getNumber(int*, int*);
void print(char*, int, char*, int);
void swap(int*, int¥);

Object Files

» Instead of compiling multiple files together, they
can be compiled separately into object files
— object files are not executable

— multiple object files can then be linked to form an
executable

— use the -c option of gcc to create object files
* Example
— prompt> gcc myProg.c -¢
— prompt> gcc common.c -C
« these two lines create myProg.o and common.o object files
— prompt> gcc myProg.o common.o -o myProg

* links myProg.o and common.o to create the executable myProg

gce

The gcc program is both a compiler and a
linker
— it can compile *.c files into object files using
the -c option
— it can link multiple object files (*.0) and create
an executable
* a.out by default
« some other name if the -o option is used

— it can both compile and link if multiple *.c files
are given on the same line

make

Obviously, for very large programs (with many
files), creating and linking all of the object files
could be very tedious

This process can be automated using make
Makefile

— this is a file that defines exactly how a program should
be compiled and linked

— it only compiles what needs compiling

+ if a file has not been modified since it was last compiled, it
won’t recompile it

Whenever you run make, it finds the Makefile file

— it then executes all the operations defined in Makefile

Makefile

The basic make file consists of targets,

rules, and commands

— target: name of the object to be built

— rules: which files, if modified, would require
this target to be re-built

— commands: how to rebuild a target if any of
objects listed in the rules have been changed

Example

rule
target ‘\ Makefile /

myProg: myProg.o common.o
gee myProg.o common.o -o myProg

myProg.o: myProg.c
gee myProg.c -¢

common.o: common.c common.h

gce common.c -¢

command

More on Maketfile

* To help simplify and generalize your make
file, variables can be used
— They are usually declared as all caps

— They are proceeded by a dollar sign ($) and
enclosed in parenthesis when used

* Comments can be included
— the line must start with a pound sign (#)
— entire line is ignored

Example Redone
Makefile

compiler
CC =gec
linker
LD =gcc
object files
OBIS = myProg.o common.o
myProg: $(OBJS)
$(LD) $(OBJS) -0 myProg
myProg.o: myProg.c
$(CC) myProg.c -¢

common.o: common.c common.h

$(CC) common.c -¢

More on make

¢ There are million and one options for make
¢ There are an equal number of uses
* Find a good book or web page to learn more

— what you have seen here should get you started

