C Tutorial - Pointers

CS 537 — Introduction to Operating Systems

The Stack

» The stack is the place where all local
variables are stored
— a local variable is declared in some scope
— Example

int x; // creates the variable x on the stack

» As soon as the scope ends, all local
variables declared in that scope end
—the variable name and its space are gone

—this happens implicitly — the user has no
control over it

The Heap

* The heap is an area of memory that the
user handles explicitly
— user requests and releases the memory
through system calls
—if a user forgets to release memory, it doesn’t
get destroyed
« it just uses up extra memory
+ A user maintains a handle on memory
allocated in the heap with a pointer

Pointers

+ A pointer is simply a local variable that
refers to a memory location on the heap

+ Accessing the pointer, actually references
the memory on the heap

Basic Idea

1200 1216
pointer
ending address
(on the stack) of data
starting address
/ of data
/
¥
1200

data
(on the heap)

Declaring Pointers

» Declaring a pointer is easy
— declared like regular variable except that an asterisk
(*) is placed in front of the variable
— example
int *x;
— using this pointer now would be very dangerous
« x points to some random piece of data

— declaring a variable does not allocate space on the
heap for it

« it simply creates a local variable (on the stack) that will is a
pointer

« use malloc() to actually request memory on the heap

malloc

* Prototype: int malloc(int size);
— function searches heap for size contiguous free bytes
— function returns the address of the first byte
— programmers responsibility to not lose the pointer
— programmers responsibility to not write into area past
the last byte allocated
+ Example: Key
P previously allocated
char *ptr;

ptr = malloc(4); // new allocation [E new allocation

2 3 4 5 6 7 8 910111213141516
Memory

free

 Prototype: int free(int ptr);
— releases the area pointed to by ptr
— ptr must not be null
« trying to free the same area twice will generate an error
. Example: free(ptr);

Key
@ allocated memory

D free memory

initial memory
p1

after free

Using a Pointer

» To access a piece of data through a pointer,
place an asterisk (*) before the pointer
— example
char *ptr = malloc(1);
*ptr =‘a’;
if(*ptr =="a’) { ... }
» Using the pointer without the asterisk actually
accesses the pointer value
— not the data the pointer is referencing

— this is a very common mistake to make when trying to
access data

sizeof() Function

» The sizeof() function is used to determine
the size of any data type
— prototype: int sizeof(data type);
—returns how many bytes the data type needs
- for example: sizeof(int) = 4, sizeof(char) = 1
—works for standard data types and user
defined data types (structures)

Simple Example

Stack

int main() {
int x, y;
int *z;
z = malloc(sizeof(int));

w N

y=5;
*z=3;
X="zZ+y;
free(z);

No o s

return 0;

Simple Example

1. Declare local variables x and y.

2. Declare local pointer z.

3. Allocate space on the heap for single integer. This step also
makes z point to that location (notice the address of the space on
the heap is stored in z's location on the stack.

4. Set the local variable y equal to 5.

5. Follow the pointer referenced by z to the heap and set that
location equal to 3.

6. Grab the value stored in the local variable y and follow the pointer
z to grab the value stored in the heap. Add these two together and
store the result in the local variable x.

7. Releases the memory on the heap (so another process can use it)
and sets the value in the z pointer variable equal to NULL. (this
step is not shown on the diagram)

Common Mistakes

» Using a pointer before allocating heap space
int *ptr;
*ptr=5;
+ Changing the pointer, not the value it references
int *ptr = malloc(sizeof(int));
ptr = 10; // sets value on stack to 10, not value on the heap
» Forgetting to free space on the heap (memory
leak)
int *p1 = malloc(sizeof(int));
int *p2 = malloc(sizeof(int));
p1=p2; // making p1 point to p2 is fine, but now you can't free
// the space originally allocated to p1

Learning to Use Pointers

+ DRAW PICTURES
—when first using pointers it is much easier to
draw pictures to learn what is happening
—remember that an asterisk (*) follows the
pointer
— no asterisk (*) refers to the actual pointer
variable on the stack

One More Example

#include <stdio.h>
#define MAX_LINE 80

int main() {
1 char *str = malloc(MAX_LINE * sizeof(char));

printf(“Enter your name:);

2 scanf("%s", str);
printf(“Your name is: %s\n”, str); @ Heap

3 free(str);

return 0;

One More Example

1. Inone line, declare the pointer variable (gets
placed on the stack), allocate memory on the
heap, and set the value of the pointer variable
equal to the starting address on the heap.

2. Read a value from the user into the space on
the heap. This is why scanf takes pointers as
the parameters passed in.

3. Release all the space on the stack pointed to
by str and set the value of the str pointer on
the stack equal to null. (step not shown)

Dereferencing

+ Pointers work because they deal with
addresses — not value

— an operator performs an action at the value
indicated by the pointer

—the value in the pointer is an address
» We can find the value of any variable by
dereferencing it

— simply put an ampersand (&) in front of the
variable and you now have the address of the
variable

Revisiting scanf()

 Prototype: int scanf(char* str, void*, void*, ...);
» What is void*?
- void* is similar to object in Java
— it can point at anything
+ Since the data types being passed into scanf
can be anything, we need to use void* pointers
+ If you want to scan a value into a local variable,
you need to pass the address of that variable

— this is the reason for the ampersand (&) in front of the
variable

1
2

scanf() Example

#include <stdio.h>

#define MAX_LINE 80

int main() {
char *student = malloc(char * sizeof(char));
int grade;

printf("Enter student's name: *);

scanf(“%s”, student);

printf("Enter student’s grade: “);

scanf(“%d", &grade);

printf(*%s received a %d\n”, student, grade);
free(student);

return 0;

scanf() Example

Stack

student

scanf() Example

In one line, declare the pointer variable (gets
placed on the stack), allocate memory on the
heap, and set the value of the pointer variable
equal to the starting address on the heap.
Create the local variable grade on the heap.
Read a value from the user into the space on
the heap — beginning at the address indicated
by the pointer variable on the stack.

Read a value from the user into the address
referred to by the address of grade.

Release all the space on the stack pointed to
by student and set the value of the student
pointer on the stack equal to null. (step not
shown)

Pointers and Functions

* One limitation of functions is that they only
return a single value
* S0 how to change multiple values in a
single function?
— pass in pointers
—now any changes that are made are made to
the address being referred to
— this changes the value for the calling function
as well as the called function

#include <stdio.h>

void swap(float*, float*);

int main() {
1 float *f1, *f2;
2 {1 = malloc(sizeof(float));
3 f2 = malloc(sizeof(float));

printf(“Enter two numbers: “);
5 scanf(“%f%f", f1, f2); // assume the user types 23 and 19
printf(“f1 = %f\tf2 = %An", *f1, *f2);
6 swap(f1, 12);
printf(“After swap: f1 = %f\tf2 = %f\n", *f1, *f2);
free(f1); free(f2);

return 0;

}

void swap(float* first, float* second) {
7 float tmp = *first;
8 “first = "second;
9 *second = tmp;

}

owap Example

wn =

B

Example

Declare a pointer, f1, on stack.

Declare a pointer, f2, on stack.

Allocate space on the heap for a float and place the
address in the pointer variable f1.

Allocate space on the heap for a float and place the
address in the pointer variable f2.

Read values from the user. Hand scanf() the pointers
f1 and f2 and the data gets put on the heap.

Call the swap function. This pushes a new entry in the
stack. Copy the value of the pointers f1 and f2 into first
and second.

Create a new local variable tmp. Follow the pointer of
first and place its value into temp.

Follow the pointer of second, grab the value, follow the
pointer of first, place grabbed value there.

Grab the value from tmp, follow the pointer of second,
place the grabbed value there.

Lists

Remember structures?

— structures together with pointers can be used
to make a list

Some of the data in a structure will contain

the information being stored

One of the fields in the structure will be a

pointer to the next structure in the list

Lists

Example of a structure used in a linked list

struct list_node {
char letter;
struct list_node *next;

}
The letter variable is the data to be stored
The next variable will point at the next
element in the list
—or NULL if there are no more elements

Lists

struct list_node struct list_node struct list_node

[w]

letter letter
next next

letter

next

1

#include <stdio.h>
#include <string.h>

typedef struct list_node {
char word[20];
struct list_node* next;
} list_node;

int main() {
list_node” head = NULL;
char str{20];

printf(“Enter a word: “);
scanf(“%s", str);
while(str[0] != ") {
list_node* tmp = (list_node*)malloc(sizeof(list_node));
strepy(tmp->word, str);
if(head) {tmp->next =tmp;}
else {tmp->next = NULL; }
head = tmp;

printf(“Enter a word: “);
scanf(“%s’", str);

return 0;

Example
Stage 0: empty list E'_‘“‘

head

struct list_node

roas (]

word

Stage 1: one element in list B I

next

struct list_node

= |

head word

Stage 2: multiple elements in list

next

struct list_node

[»]

word

)

next

10

2-D Pointers

+ To really make things confusing, you can have
pointers to pointers
— and pointers to pointers to pointers ...

+ This comes in handy whenever a 2-D array is
needed

— you can also declare 2-D arrays, but these go on the
stack

- if dynamic memory is needed, must use pointers
» Declaring a pointer to a pointer
— just put 2 asterisks (*) in front of the variable
— example
char **names;

2-D Pointers

» Basic idea

T

argv

* Up until now, main has been written
— int main() { ... }
» This is okay, but it's usually written
— int main(int arge, char** argv) { ... }
» argc
— number of command line arguments being passed in
« this counts the name of the program
e argv
— this is an array of strings — a 2-D character array
— each string represents one command line argument

11

Example

#include <stdio.h>

int main(int argc, char** argv) {
inti;

printf(*Number of arguments: %d\n”, argc);
for(i=0; i<argc; i++)
printf(“argument %d: %s”, i, argvli]);

return 0;

Example

+ Given the following command line
prompt> example —o option required

» The output of the sample program
Number of arguments: 4
argument 0: example
argument 1: -o
argument 2: option
argument 3: required

required

12

Creating a 2-D Array

« Assume a 2-D array of characters is needed
— this is basically an array of strings
« Assume 4 strings with a max of 80 chars
int main() {

char** names;
2 inti;

names = (char**)malloc(4 * sizeof(char*));
for(i=0; i<4; i++)
namesi] = (char*)malloc(80 * sizeof(char));

N

5 for(i=0; i<4; i++)
free(namesi]);
6 free(names);

return 0;

}

2-D Arrays

» Once you really understand this previous
example, you are well on your way to
understanding pointers

» Let's take a closer look at exactly what is
going on

2-D Arrays

Stack

80 chars wide

13

o

2-D Arrays

Create a pointer on the stack that will point to a
group of pointers

Create a local variable on the stack

Make names point to an array of 5 pointers to
characters. This array is located on the heap.
Go through each pointer in the array and make
it point at an 80 character array. Each of these
80 character arrays is also located on the heap
Freeing each of the 80 character arrays. (not
shown on diagram).

Free the array of pointers. (not shown on the
diagram)

14

