
CENG328
Operating Systems

Laboratory I
Unix Tutorial

2Cankaya University
Department of Computer Engineering

2011

1. Login and Logout

● Logging in to a Unix system requires two
pieces of information:

● A username,
● And a password.

● When you sit down for a Linux session
(Ubuntu GNU/Linux in this case), you are
given a login prompt that looks like the
one on the right.

● Select or type your username at the login
prompt and press return key. The system
will then ask you for your password. After
typing your password, press return key
again.

● If you have typed your password correctly,
your desktop will be shown.

3Cankaya University
Department of Computer Engineering

2011

2. Commands

● This part of the laboratory manual will help
you learn the basic Unix commands. You
should exercise these commands in front
of a computer. Read a paragraph, then try
the given command.

● For your own benefit, do NOT copy & paste
the commands.

● You must first open a terminal application
from Applications › Accessories menu on
top of the screen. For the first command
date, see the image in the next slide.

4Cankaya University
Department of Computer Engineering

2011

3. Simple Commands

● date - displays the current date and time.
● whoami - displays the login name of the

current user.
● echo - tells the computer to retype the

string after echo. Try the following:

● echo This is a test

● echo $USER
Why the output is different now?
What is $USER?

● echo 2 + 2 = $((2+2))
What is the output of $((2+2))?

5Cankaya University
Department of Computer Engineering

2011

4. Working With Files

● cd <directory name> - (change directory) used for changing the current working directory. If
no directory names are given, then the working directory will be changed to home directory.

● pwd - (print working directory) tells in which directory we currently are.

● echo $HOME - Note that echo $HOME currently has exactly the same effect as pwd. Figure
out what your home directory is. What is $HOME?

● cat > dict
red: rojo
green: verde
blue: azul
<control-d>

● By <control-d> we mean: hold the control key down; while it is down press "d". We have just
used cat to create a short English to Spanish dictionary. This dictionary resides in the file dict.

● ls -l - lists the files and directories in the current directory. For the moment there is only one
file, namely dict.

● cat dict - shows us what is in the file dict.

6Cankaya University
Department of Computer Engineering

2011

4. Working With Files

● wc dict - counts words (and more). In the case at hand it tells us that dict contains 3 lines, 6
words, and 34 characters ("letters").

● grep green dict - looks for the word green in the file dict and displays the lines in which this
word appears. It gives us a way to search through files.

● sort dict - command does just what it says.

● sort dict > dict2 - Note the use of the "into" symbol ">". In our example it had the effect of
directing the output of the sort command from the screen to the file dict2.

● ls -l dict dict2 - be sure that dict2 was there.

● cat dict2 - be sure that the content is correct.

● rm dict2 - remove the file dict2.

7Cankaya University
Department of Computer Engineering

2011

5. Working With Directories

● mkdir letters - (make directory), create a new directory named letters.

● ls -l

● mv dict letters - (move), move the dict into the directory letters.

● ls -l letters/dict

● mv dict* letters - here the character * matches any sequence of characters, including the null
string. Thus files starting with dict would all be moved into letters.

● cd letters - (change directory), work inside the directory letters.

● ls -l dict

● cd - to go back to our home directory.

● ls -l - check what our home directory contains.

8Cankaya University
Department of Computer Engineering

2011

5. Working With Directories

● pwd

● cd letters

● pwd

● rm * - removes all files in the current directory

● cd .. - changes the current directory to the parent of the current one.

● rmdir letters - (remove directory), to remove a directory we first remove all the file in it, then
remove the directory.

● man - manual/help, to investigate other flags to the command you are interested in type:

● man <commandname>
● man ls - to investigate other flags, such as "which flags will display file size and

ownership?"
● To quit man simply type the letter q.

9Cankaya University
Department of Computer Engineering

2011

5. Working With Directories

● ls -l <filename> - will list the long directory list entry (which includes owner and permission
bits) and the group of a file. The output looks something like:

permission owner group filename
-rw-r----- 1 ozdogan ozdogan 65538 Feb 6 01:44 commands.html

● The Permission Bits;

● The first position (which is not set) specifies what type of file this is. If it were set, it
would probably be a d (for directory) or l (for link).

● The next nine positions are divided into three sets of binary numbers and determine
permissions for three different sets of people.

10Cankaya University
Department of Computer Engineering

2011

5. Working With Directories

● u g o
421 421 421
rw- r-- ---
6 4 0

● The file has "mode" 640.

● The first bits, set to "r + w" (4+2=6) in our example, specify the permissions for the user
who owns the files (u).

● The user who owns the file can read or write (which includes delete) the file.

● The next trio of bits, set to "r" (4) in our example, specify access to the file for other
users in the same group (g) as the group of the file.

● In this case the group is ug – all members of the ug group can read the file (print it out,
copy it, or display it using more).

● Finally, all other users (o) are given no access to the file.

11Cankaya University
Department of Computer Engineering

2011

5. Working With Directories

● u g o
421 421 421
rw- r-- ---
6 4 0

● One form of access which no one is given, even the owner, is "x" (for execute).

● This is because the file is not a program to be executed.

● It is probably a text file which would have no meaning to the computer. The x would
appear in the third position if it was an executable file.

● If you wanted to make the file readible to all other users, you could type:
chmod 644 filename or chmod o+r filename.

12Cankaya University
Department of Computer Engineering

2011

5. Working With Directories

● rm -i filename - would return a prompt asking if you are certain you want to delete that file.

● du - display disk usage of the current directory and its subdirectories.

● du -s - display only total disk usage.

● du -s -k - some versions of UNIX, such as Solaris, need -k to report kilobytes.

● df - to examine what disks and partitions exist and are mounted.

● ps ux - to list your own processes.

● top - an interactive command that displays and periodically updates the top cpu processes,
ranked by raw cpu percentage. To quit top, simply type the letter q.

13Cankaya University
Department of Computer Engineering

2011

6. Compiling A C Program

● Lets assume there is a file named code1.c that we want to compile. We will do so using a
command line similar to this:

gcc -c code1.c - to compile

gcc -o code1 code1.o - to link. Suppose that you want the resulting program to be called
"code1"

gcc -o code1 code1.c - just use this command for combined action of compiling and linking.

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code1.c

14Cankaya University
Department of Computer Engineering

2011

6.1. Running The Resulting Program

● code1 - Once we created the program, we wish to run it. This is usually done by simply typing
its name. However, this requires that the current directory be in our PATH.

● PATH is an environment variable telling our Unix shell where to look for programs we’re
trying to run. To see your current PATH variable, type echo $PATH.

● ./code1 - In many cases, this directory is not placed in our PATH. This time we explicitly told
our Unix shell that we want to run the program from the current directory.

● However, yet one more obstacle could block our path - file permission flags.
ls -l code1
chmod u+rwx code1 - we set the permissions of the file properly. This means the user ('u')
should be given ('+') permissions read ('r'), write ('w') and execute ('x') to the file 'code1'.
ls -l code1

15Cankaya University
Department of Computer Engineering

2011

7. Compiling A Multi-Source C Program

● So we learned how to compile a single-source program properly. Yet, sooner or later you’ll
see that having all the source in a single file is rather limiting, for several reasons:

● As the file grows, compilation time tends to grow, and for each little change, the whole
program has to be re-compiled,

● It is very hard, if not impossible, that several people will work on the same project
together in this manner,

● Managing your code becomes harder. Backing out erroneous changes becomes nearly
impossible.

● The solution to this would be to split the source code into multiple files, each containing a set
of closely-related functions.

16Cankaya University
Department of Computer Engineering

2011

7. Compiling A Multi-Source C Program

● There are two possible ways to compile a multi-source C program.

● The first is to use a single command line to compile all the files. Suppose that we have a
program whose source is found in files code2.c, code3.c and code4.c. Analyze these files.
We could compile it this way:

gcc -o code2 code2.c code3.c code4.c

This will cause the compiler to compile each of the given files separately, and then link
them all together to one executable file named "code2".

● The problem with this way of compilation is that even if we only make a change in one of
the source files, all of them will be re-compiled when we run the compiler again. In order
to overcome this limitation, we could divide the compilation process into two phases -
compiling, and linking.

gcc -c code2.c
gcc -c code3.c
gcc -c code4.c
gcc -o code2 code2.o code3.o code4.o

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code2.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code3.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code4.c

17Cankaya University
Department of Computer Engineering

2011

7. Compiling A Multi-Source C Program

● The first 3 commands have each taken one source file, and compiled it into something called
"object file", with the same names, but with a ".o" suffix.

● It is the "-c" flag that tells the compiler only to create an object file, and not to generate a
final executable file just yet.

● The object file contains the code for the source file in machine language, but with some
unresolved symbols. For example, the "code2.o" file refers to a symbol named "func a", which
is a function defined in file "code3.c".

● Surely we cannot run the code like that. Thus, after creating the 3 object files, we use the 4th
command to link the 3 object files into one program.

● The linker (which is invoked by the compiler now) takes all the symbols from the 3 object files,
and links them together - it makes sure that when "func a" is invoked from the code in object
file "code2.o", the function code in object file "code3.o" gets executed.

● nm code2 - try this command and recognize the definitions for "func a" and "func b".

● Further more, the linker also links the standard C library into the program, in this case, to
resolve the "printf" symbol properly.

18Cankaya University
Department of Computer Engineering

2011

8. Exercises

● The UNIX shell is case-sensitive, meaning that an uppercase letter is not equivalent to the
same lower case letter (i.e., "A" is not equal to "a"). Most UNIX commands are lower case. Find
out the correct command for the followings:

● Changing to your home directory.

● Changing access permissions. Change the access permissions of a file or directory.

● Displaying current variables. Say, to display the value of PATH environment variable
(command export).

● Changing default access permissions. Use umask, first start with man umask.

● who | wc -l

● ps aux | grep 'your username' |sort +5 -6 | more

● cat dict | head -5 | tail -3

● grep 'your username' /etc/passwd

● man grep, man sort, man more, man head, man tail

19Cankaya University
Department of Computer Engineering

2011

8. Exercises

● man grep, man sort, man more, man head, man tail

● What is the relative pathname?

● When you execute a non built-in shell command, the shell asks the kernel to create a new
subprocess (called a "child" process) to perform the command. The child process exists
just long enough to execute the command. The shell waits until the child process finishes
before it will accept the next command. Explain why the exit (logout) procedure must be
built in to the shell.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

