
1 File-System Interface

• Since main memory is usually too small to accommodate all the data
and programs permanently, the computer system must provide secondary
storage to back up main memory.

• The file system provides the mechanism for on-line storage of and (mul-
tiple) access to both data and programs residing on the disks.

• A file is a collection of related information defined by its creator.

• File Management System: Bridges the gap between low-level disk orga-
nization (an array of blocks) and the user’s views (a stream or collection
of records) (mapped).

– Some devices transfer a character or a block of characters at a
time.

– Some can be accessed only sequentially, others randomly.

– Some transfer data synchronously, others asynchronously.

– Some are dedicated, some shared.

– They can be read-only or read-write.

• Also includes tools outside the kernel; formatting, recovery, defrag,
consistency, backup utilities (system administration).

• In many ways, they are also the slowest major component of the com-
puter.

• Files are managed by the OS. How they are structured, named, accessed,
used, protected, and implemented are major topics in OS design.

• The file system consists of two distinct parts:

1. a collection of files; each storing related data,

2. a directory structure; which organizes and provides informa-
tion about all the files in the system.

• Objectives for a file management system;

– Provide a convenient naming system for files.

– Provide a standardized set of I/O interface routines and provide
access control for multiple users.

1

– Guarantee that the data in the file are valid. Minimize or eliminate
the potential for lost or destroyed data.

– Optimize performance.

– How do you keep one user from reading another’s data?

– How do you know which blocks are free?

1.1 File Concept

• Think of a disk as a linear sequence of fixed-size blocks and supporting
reading and writing of blocks.

• The OS abstracts from the physical properties of its storage devices to
define a logical storage unit, the file.

• A file is a named collection of related information that is recorded on
secondary storage, usually as a sequence of bytes, with two views:

– Logical (programmer) view, as the users see it (how they are used
and what properties they have.).

– Physical (OS) view, as it actually resides on secondary storage.

• The information in a file is defined by its creator. Commonly, files
represent programs (both source and object forms) and data.

– Data files may be numeric, alphabetic, alphanumeric, or binary.

– Files may be free form, such as text files, or may be formatted
rigidly.

• In general, a file is a sequence of bits, bytes, lines, or records, the
meaning of which is defined by the file’s creator and user.

• A file has a certain defined structure, which depends on its type.

– A text file is a sequence of characters organized into lines (and
possibly pages).

– A source file is a sequence of subroutines and functions, each of
which is further organized as declarations followed by executable
statements.

– An object file is a sequence of bytes organized into blocks under-
standable by the system’s linker.

– An executable file is a series of code sections that the loader can
bring into memory and execute.

2

1.1.1 File Attributes

• When a file is named, it becomes independent of the process, the user,
and even the system that created it. For instance, one user might create
the file example.c, and another user might edit that file by specifying
its name.

Figure 1: Some possible file attributes.

• The table of Fig. 1 shows some of the possibilities, but other ones also
exist. No existing system has all of these, but each one is present in
some system.

– The first four attributes relate to the file’s protection and tell who
may access it and who may not.

– The various times keep track of when the file was created, most
recently accessed and most recently modified.

– The current size tells how big the file is at present.

• A file’s attributes vary from one OS to another but typically consist of
these:

– Name.

3

– Identifier. This unique tag, usually a number, identifies the file
within the file system; it is the non-human-readable name for the
file.

– Type.

– Location. This information is a pointer to a device and to the
location of the file on that device.

– Size. The current size of the file (in bytes, words, or blocks) and
possibly the maximum allowed size are included in this attribute.

– Protection. Access-control information determines who can do
reading, writing, executing, and so on.

– Time, date, and user identification. This information may
be kept for creation, last modification, and last use.

• The information about all files is kept in the directory structure, which
also resides on secondary storage. Typically, a directory entry consists
of the file’s name and its unique identifier.

1.1.2 File Operations

• A file is an abstract data type. To define a file properly, we need to
consider the operations that can be performed on files.

• Six basic file operations. The OS can provide system calls to create,
write, read, reposition, delete, and truncate files.

– Creating a file. Two steps are necessary to create a file.

1. Space in the file system must be found for the file.

2. An entry for the new file must be made in the directory.

– Writing a file. To write a file, we make a system call specifying
both the name of the file and the information to be written to the
file. The system must keep a write pointer to the location in the
file where the next write is to take place. The write pointer must
be updated whenever a write occurs.

– Reading a file. To read from a file, we use a system call that
specifies the name of the file and where (in memory) the next block
of the file should be put. The system needs to keep a read pointer
to the location in the file where the next read is to take place.

∗ Because a process is usually either reading from or writing to
a file, the current operation location can be kept as a per-
process current-file-position pointer.

4

∗ Both the read and write operations use this same pointer,
saving space and reducing system complexity.

– Repositioning within a file. The directory is searched for the
appropriate entry, and the current-file-position pointer is repo-
sitioned to a given value. Repositioning within a file need not
involve any actual I/O. This file operation is also known as a file
seek.

– Deleting a file. To delete a file, we search the directory for
the named file. Having found the associated directory entry, we
release all file space, so that it can be reused by other files, and
erase the directory entry.

– Truncating a file. The user may want to erase the contents of a
file but keep its attributes. Rather than forcing the user to delete
the file and then recreate it, this function allows all attributes to
remain unchanged (except for file length) but lets the file be reset
to length zero and its file space released.

Figure 2: File operations.

• These six basic operations comprise the minimal set of required file
operations.

• These primitive operations can then be combined to perform other file
operations (i.e., copying).

• The OS keeps a small table, called the open-file table, containing in-
formation about all open files.

5

– When a file operation is requested, the file is specified via an index
into this table, so no searching is required.

– When the file is no longer being actively used, it is closed by the
process, and the OS removes its entry from the open-file table.

• Most systems require that the programmer open a file explicitly with
the open() system call before that file can be used.

– The open() operation takes a file name and searches the directory,
copying the directory entry into the open-file table.

– This call can also accept access-mode information (create, read-
only, read-write, append-only, and so on). This mode is checked
against the file’s permissions. If the request mode is allowed, the
file is opened for the process.

– The open() system call typically returns a pointer to the entry in
the open-file table. This pointer, not the actual file name, is used
in all I/O operations.

• The implementation of the open() and close() operations is more com-
plicated in an environment where several processes may open the file
at the same time. This may occur in a system where several different
applications open the same file at the same time.

• Typically, the OS uses two levels of internal tables:

1. A per-process table. The per-process table tracks all files that a
process has open. For instance, the current file pointer for each file
is found here. Access rights to the file and accounting information
can also be included.

2. A system-wide table. Each entry in the per-process table in
turn points to a system-wide open-file table. The system-wide ta-
ble contains process-independent information, such as the location
of the file on disk, access dates, and file size. Once a file has been
opened by one process, the system-wide table includes an entry
for the file.

• Typically, the open-file table also has an open count associated with
each file to indicate how many processes have e the file open.

– Each close() decreases this open count, and when the open count
reaches zero, the file is no longer in use, and the file’s entry is
removed from the open-file table.

6

• In summary, several pieces of information are associated with an open
file.

– File pointer.

– File-open count.

– Disk location of the file. The information needed to locate the
file on disk is kept in memory so that the system does not have
to read it from disk for each operation.

– Access rights. Each process opens a file in an access mode. This
information is stored on the per-process table so the OS can allow
or deny subsequent I/O requests.

• Some OSs provide facilities for locking an open file (or sections of a
file). File locks allow one process to lock a file and prevent other pro-
cesses from gaining access to it. File locks are useful for files that are
shared by several processes -for example, a system log file that can be
accessed and modified by a number of processes in the system.

1.1.3 An Example Program Using File System Calls

• A simple UNIX program that copies one file from its source file to a
destination file (see Fig. 3). The program has minimal functionality
and even worse error reporting.

copyfile abc xyz

• The copy loop. It starts by trying to read in 4 KB of data to buffer. It
does this by calling the library procedure read, which actually invokes
the read system call.

• The call to write outputs the buffer to the destination file.

• When the entire file has been processed, the first call beyond the end
of file will return 0 to rd count which will make it exit the loop. At
this point the two files are closed and the program exits with a status
indicating normal termination.

1.1.4 File Types

• A common technique for implementing file types is to include the type
as part of the file name (see Fig. 4).

7

Figure 3: A simple program to copy a file.

– The name is split into two parts -a name and an extension, usually
separated by a period character.

– In this way, the user and the OS can tell from the name alone
what the type of a file is.

• The system uses the extension to indicate the type of the file and the
type of operations that can be done on that file. Only a file with a
.com, .exe, or .bat extension can be executed, for instance.

• Application programs also use extensions to indicate file types in which
they are interested. For example, assemblers expect source files to have

8

Figure 4: Common file types.

an .asm extension, and the Microsoft Word word processor expects its
files to end with a .doc extension.

• Because these extensions are not supported by the OS, they can be
considered as “hints” to the applications that operate on them.

• Many file systems support names as long as 255 characters. Some
file systems distinguish between upper and lower case letters (Case
(in)sensitivity).

• Windows 95 and Windows 98 both use the MS-DOS file system, and
thus inherit many of its properties, such as how file names are con-
structed. In addition, Windows NT and Windows 2000 support the
MS-DOS file system and thus also inherit its properties. However, the
latter two systems also have a native file system (NTFS) that has dif-
ferent properties (such as file names in Unicode).

• Consider the Mac OS X OS. In this system, each file has a type, such
as TEXT (for text file) or APPL (for application).

– Each file also has a creator attribute containing the name of the
program that created it.

– This attribute is set by the OS during the create() call, so its use
is enforced and supported by the system.

9

• The UNIX system uses a crude magic number stored at the beginning
of some files to indicate roughly the type of the file -executable program,
batchfile (or shell script), PostScript file, and so on.

– Not all files have magic numbers, so system features cannot be
based solely on this information.

– UNIX does not record the name of the creating program, either.
UNIX does allow file-name-extension hints, but these extensions
are neither enforced nor depended on by the OS (interpreted by
tools); they are meant mostly to aid users in determining the type
of contents of the file.

– Extensions can be used or ignored by a given application, but that
is up to the application’s programmer.

– In contrast, Windows is aware of the extensions and assigns mean-
ing to them. Users (or processes) can register extensions with the
operating system (Interpreted by OS).

• UNIX also has character and block special files (Device Files).

– Character special files are related to input/output and used to
model serial I/O devices such as terminals, printers, and networks.

– Block special files are used to model disks.

• Other files are binary files, which just means that they are not ASCII
files. Usually, they have some internal structure known to programs
that use them (see Fig. 5).

• Every OS must recognize at least one file type; its own executable file.
A simple executable binary file taken from a version of UNIX is seen
in Fig. 5a .

– Although technically the file is just a sequence of bytes, the oper-
ating system will only execute a file if it has the proper format.

– It has five sections: header, text, data, relocation bits, and symbol
table.

– The header starts with a so-called magic number, identifying the
file as an executable file (to prevent the accidental execution of a
file not in this format).

– Then come the sizes of the various pieces of the file, the address
at which execution starts, and some flag bits.

10

(a) (b)

Header

Header

Header

Magic number

Text size

Data size

BSS size

Symbol table size

Entry point

Flags

Text

Data

Relocation

bits

Symbol

table

Object

module

Object

module

Object

module

Module

name

Date

Owner

Protection

Size����H
ea

de
r

Figure 5: (a) An executable file. (b) An archive.

– Beyond this header, executable files are typically divided into sub-
sections (the text and data of the program itself).

– Try the following commands:

readelf -S exe_file

objdump -h exe_file

• Second example of a binary file is an archive, also from UNIX (see Fig.
5b).

– It consists of a collection of library procedures (modules) compiled
but not linked.

– Each one is prefaced by a header telling its name, creation date,
owner, protection code, and size.

1.1.5 Internal File Structure

• Files can be structured in any of several ways. Three common possi-
bilities are depicted in Fig. 6.

– Stream of Bytes. The file in Fig. 6a is an unstructured sequence
of bytes. In effect, the operating system does not know or care
what is in the file. All it sees are bytes. Both UNIX and Windows
use this approach.

– Records. The first step up in structure is shown in Fig. 6b. A
file is a sequence of fixed-length records, each with some internal
structure.

11

(a) (b) (c)

1 Record

Ant Fox Pig

Cat Cow Dog Goat Lion Owl Pony Rat Worm

Hen Ibis Lamb

1 Byte

Figure 6: Three kinds of files. (a) Byte sequence. (b) Record sequence. (c)
Tree.

– Tree of Records. The third kind of file structure is shown in
Fig. 6c. In this organization, a file consists of a tree of records,
not necessarily all the same length, each containing a key field in
a fixed position in the record.

• Internally, locating an offset within a file can be complicated for the
OS.

• Disk systems typically have a well-defined block size determined by the
size of a sector. All disk I/O is performed in units of one block (physical
record), and all blocks are the same size.

• It is unlikely that the physical record size will exactly match the length
of the desired logical record. Packing a number of logical records into
physical blocks is a common solution to this problem.

• For example, the UNIX OS defines all files to be simply streams of
bytes. Each byte is individually addressable by its offset from the
beginning (or end) of the file. In this case, the logical record size is
1 byte. The file system automatically packs and unpacks bytes into
physical disk blocks -say, 512 bytes per block- as necessary.

• The file may be considered to be a sequence of blocks. All the basic
I/O functions operate in terms of blocks.

• Because disk space is always allocated in blocks, some portion of the
last block of each file is generally wasted. If each block were 512 bytes,
for example, then a file of 1,949 bytes would be allocated four blocks
(2,048 bytes); the last 99 bytes would be wasted.

12

• The waste incurred to keep everything in units of blocks (instead of
bytes) is internal fragmentation. All file systems suffer from inter-
nal fragmentation; the larger the block size, the greater the internal
fragmentation.

1.2 Access Methods

Files store information. When it is used, this information must be accessed
and read into computer memory. The information in the file can be accessed
in several ways.

1.2.1 Sequential Access

• The simplest access method is sequential access. Information in the
file is processed in order, one record after the other.

• This mode of access is by far the beginning current position most com-
mon; for example, editors and compilers usually access files in this
fashion.

• Reads and writes make up the bulk of the operations on a file.

– A read operation read next reads the next portion of the file and
automatically advances a file pointer, which tracks the I/O loca-
tion.

– Similarly, the write operation write next appends to the end of
the file and advances to the end of the newly written material
(the new end of file).

Figure 7: Sequential-access file.

• Sequential access, which is depicted in Fig. 7, is based on a tape model
of a file and works as well on sequential-access devices as it does on
random-access ones.

13

1.2.2 Direct (Random) Access

• Another method is direct access (or relative access).

• A file is made up of fixed-length logical records that allow programs to
read and write records rapidly in no particular order. Thus, we may
read block 14, then read block 53, and then write block 7. There are
no restrictions on the order of reading or writing for a direct-access file.

• The direct-access method is based on a disk model of a file, since disks
allow random access to any file block.

• Direct-access files are of great use for immediate access to large amounts
of information. Databases are often of this type.

• For the direct-access method, the file operations must be modified to
include the block number as a parameter.

• The block number provided by the user to the OS is normally a relative
block number.

– A relative block number is an index relative to the beginning of
the file.

– Thus, the first relative block of the file is 0, the next is 1, and so
on, even though the actual absolute disk address of the block may
be 14703 for the first block and 3192 for the second.

• The use of relative block numbers allows the OS to decide where the file
should be placed (called the allocation problem) and helps to prevent

the user from accessing portions of the file system that may not be part

of her file.

• We can easily simulate sequential access on a direct-access file by simply
keeping a variable cp that defines our current position, as shown in Fig.
8. Simulating a direct-access file on a sequential-access file, however, is
extremely inefficient.

• Modern OSs have all their files are automatically random access.

1.2.3 Other Access Methods

• Other access methods can be built on top of a direct-access method.

• These methods generally involve the construction of an index for the file.

14

Figure 8: Simulation of sequential access on a direct-access file.

– To find a record in the file, we first search the index to learn
exactly which block contains the desired record

– and then use the pointer to access the file directly and to find the
desired record.

• This structure allows us to search a large file doing little I/O. But,
with large files, the index file itself may become too large to be kept in
memory.

• One solution is to create an index for the index file.

– The primary index file would contain pointers to secondary index
files, which would point to the actual data items.

– For example, IBM’s indexed sequential-access method (ISAM)
uses a small master index that points to disk blocks of a secondary
index. The file is kept sorted on a defined key.

– To find a particular item, we first make a binary search of the
master index, which provides the block number of the secondary
index.

– The secondary index blocks point to the actual file blocks. This
block is read in, and again a binary search is used to find the block
containing the desired record.

– Finally, this block is searched sequentially.

• In this way any record can be located from its key by at most two
direct-access reads (see Fig. 9)

1.3 Directory Structure

The file systems of computers, then, can be extensive. Some systems store
millions of files on terabytes of disk. To manage all these data, we need to
organize them. This organization involves the use of directories.

15

Figure 9: Example of index and relative files.

1.3.1 Storage Structure

• Sometimes, it is desirable to place multiple file systems on a disk or to
use parts of a disk for a file system and other parts for other things,
such as swap space or unformatted (raw) disk space.

• These parts are known variously as partitions, slices, or (in the IBM
world) minidisks.

• A file system can be created on each of these parts of the disk. We
simply refer to a chunk of storage that holds a file system as a volume.

• Each volume that contains a file system must also contain information
about the files in the system. This information is kept in entries in a
device directory or volume table of contents.

• The device directory (more commonly known simply as a directory)
records information-such as name, location, size, and type-for all files
on that volume. Figure 10 shows a typical file-system organization.

1.3.2 Directory Overview

• To keep track of files, file systems normally have directories or folders.
Usually, a directory is itself a file.

• The directory can be viewed as a symbol table that translates file names
into their directory entries.

• A typical directory entry contains information (attributes, location,
ownership) about a file.

16

Figure 10: A typical file-system organization.

• We want to be able

– to insert entries,

– to delete entries,

– to search for a named entry,

– to list all the entries in the directory.

• When considering a particular directory structure! we need to keep in
mind the operations that are to be performed on a directory:

– Search for a file. We need to be able to search a directory
structure to find the entry for a particular file.

– Create a file. New files need to be created and added to the
directory.

– Delete a file. When a file is no longer needed, we want to be
able to remove it from the directory.

– List a directory. We need to be able to list the files in a directory
and the contents of the directory entry for each file in the list.

– Rename a file. Because the name of a file represents its contents
to its users, we must be able to change the name when the contents
or use of the file changes.

– Traverse the file system. We may wish to access every directory
and every file within a directory structure. For reliability, it is
a good idea to save the contents and structure of the entire file
system at regular intervals (backup copy).

17

1.3.3 Single-Level Directory

• The simplest directory structure is the single-level directory. All files
are contained in the same directory, which is easy to support and un-
derstand (see Fig. 11).

Figure 11: Single-level directory.

• On early personal computers, this system was common, in part because
there was only one user. The world’s first supercomputer, the CDC
6600, also had only a single directory for all files, even though it was
used by many users at once.

• A single-level directory has significant limitations, when the number of
files increases or when the system has more than one user.

• Since all files are in the same directory, they must have unique names. If
two users call their data file test, then the unique-name rule is violated.

• Even a single user on a single-level directory may find it difficult to
remember the names of all the files as the number of files increases.

1.3.4 Two-Level Directory

• The standard solution to limitations of single-level directory is to create
a separate directory for each user.

• In the two-level directory structure, each user has his own user file
directory (UFD). The UFDs have similar structures, but each lists
only the files of a single user.

• When a user job starts or a user logs in, the system’s master file
directory (MFD) is searched.

• The MFD is indexed by user name or account number, and each entry
points to the UFD for that user (see Fig. 12).

• when a user refers to a particular file, only his own UFD is searched
(create a file, delete a file?).

18

Figure 12: Two-level directory structure.

• Although the two-level directory structure solves the name-collision
problem, it still has disadvantages.

• This structure effectively isolates one user from another.

• Isolation is an advantage when the users are completely independent
but is a disadvantage when the users want to cooperate on some task
and to access one another’s files.

• A two-level directory can be thought of as a tree, or an inverted tree,
of height 2.

– The root of the tree is the MFD.

– Its direct descendants are the UFDs.

– The descendants of the UFDs are the files themselves. The files
are the leaves of the tree.

• Specifying a user name and a file name defines a path in the tree from
the root (the MFD) to a leaf (the specified file).

• Thus, a user name and a file name define a path name. To name a file
uniquely, a user must know the path name of the file desired.

• Additional syntax is needed to specify the volume of a file. For instance,
in MS-DOS a volume is specified by a letter followed by a colon. Thus,
a file specification might be

C:\userb\test

1.3.5 Tree-Structured Directories

• Once we have seen how to view a two-level directory as a two-level
tree, the natural generalization is to extend the directory structure to
a tree of arbitrary height (see Fig. 13).

19

Figure 13: Tree-structured directory structure.

• This generalization allows users to create their own subdirectories and
to organize their files accordingly.

• A tree is the most common directory structure. The tree has a root
directory, and every file in the system has a unique path name.

• A directory is simply another file, but it is treated in a special way. All
directories have the same internal format.

• One bit in each directory entry defines the entry

– as a file (0),

– as a subdirectory (1).

• Path names can be of two types: absolute and relative

1. An absolute path name begins at the root and follows a path down
to the specified file, giving the directory names on the path.

2. A relative path name defines a path from the current directory.

• With a tree-structured directory system, users can be allowed to access,
in addition to their files, the files of other users.

– For example, user B can access a file of user A by specifying its
path names.

– User B can specify either an absolute or a relative path name.

– Alternatively, user B can change her current directory to be user
A’s directory and access the file by its file names.

20

1.3.6 Acyclic-Graph Directories

• The acyclic graph is a natural generalization of the tree-structured
directory scheme.

• The common subdirectory should be shared. A shared directory or file
will exist in the file system in two (or more) places at once.

• A tree structure prohibits the sharing of files or directories. An acyclic
graph (a graph with no cycles) allows directories to share subdirecto-
ries and files (see Fig. 14).

Figure 14: Acyclic-graph directory structure.

• The same file or subdirectory may be in two different directories.

• It is important to note that a shared file (or directory) is not the same
as two copies of the file.

– With two copies, each programmer can view the copy rather than
the original, but if one programmer changes the file, the changes
will not appear in the other’s copy.

– With a shared file, only one actual file exists, so any changes made
by one person are immediately visible to the other.

• A common way, exemplified by many of the UNIX systems, is to create
a new directory entry called a link.

• A link is effectively a pointer to another file or subdirectory.

21

• When a reference to a file is made, we search the directory. If the
directory entry is marked as a link, then the name of the real file is
included in the link information.

• We resolve the link by using that path name to locate the real file.
Links are easily identified by their format in the directory entry and
are effectively named indirect pointers.

• Another common approach to implementing shared files is simply to
duplicate all information about them in both sharing directories. Thus,
both entries are identical and equal.

• A link is clearly different from the original directory entry; thus, the
two are not equal. A major problem with duplicate directory entries is
maintaining consistency when a file is modified.

• Several problems must be considered carefully for an acyclic-graph di-
rectory structure.

– A file may now have multiple absolute path names. Consequently,
distinct file names may refer to the same file.

– Another problem involves deletion. When can the space allocated
to a shared file be deallocated and reused?

∗ One possibility is to remove the file whenever anyone deletes
it, but this action may leave dangling pointers to the now
nonexistent file.

∗ Worse, if the remaining file pointers contain actual disk ad-
dresses, and the space is subsequently reused for other files,
these dangling pointers may point into the middle of other
files.

• In a system where sharing is implemented by symbolic links, this situ-
ation is somewhat easier to handle.

– The deletion of a link need not affect the original file; only the
link is removed.

– If the file entry itself is deleted, the space for the file is deallocated,
leaving the links dangling.

• We can leave the links until an attempt is made to use them. At that
time, we can determine that the file of the name given by the link does
not exist and can fail to resolve the link name; the access is treated
just as with any other illegal file name.

22

• In the case of UNIX, symbolic links are left when a file is deleted, and
it is up to the user to realize that the original file is gone or has been
replaced. Microsoft Windows (all flavours) uses the same approach.

• Another approach to deletion is to preserve the file until all references
to it are deleted. To implement this approach, we must have some
mechanism for determining that the last reference to the file has been
deleted. The trouble with this approach is the variable and potentially
large size of the file-reference list.

• However, we really do not need to keep the entire list -we need to keep
only a count of the number of references.

– Adding a new link or directory entry increments the reference
count;

– Deleting a link or entry decrements the count.

– When the count is 0, the file can be deleted; there are no remaining
references to it.

• The UNIX OS uses this approach for non-symbolic links (or hard
links), keeping a reference count in the file information block (or in-
ode).

• Most OSs that support a hierarchical directory system have two special
entries in every directory, “.” and “..”, generally pronounced “dot”
and “dotdot”. Dot refers to the current directory; dotdot refers to its
parent. To see how these are used, consider the UNIX file tree of Fig.
15.

1.4 File-System Mounting

• Just as a file must be opened before it is used, a file system must be
mounted before it can be available to processes on the system.

• The mount procedure is straightforward. The OS is given the name of
the device and the mount point -the location within the file structure
where the file system is to be attached.

• Typically, a mount point is an empty directory. Next, the OS verifies
that the device contains a valid file system.

• Finally, the OS notes in its directory structure that a file system is
mounted at the specified mount point.

23

Root directory

bin etc lib usr

ast

jim

tmp

jim

bin

etc

lib

usr

tmp

/

ast
/usr/jim

lib

lib

dict.

Figure 15: A UNIX directory tree.

• This scheme enables the OS to traverse its directory structure, switch-
ing among file systems as appropriate.

• To illustrate file mounting, consider the file system depicted in Fig.
16, where the triangles represent sub-trees of directories that are of
interest. At this point, only the files on the existing file system can be
accessed.

Figure 16: File system. (a) Existing system. (b) Unmounted volume.

• Figure 17 shows the effects of mounting the volume residing on /dev/disk
over /users.

24

Figure 17: Mount point.

1.5 File Sharing

We explored the motivation for file sharing and some of the difficulties in-
volved in allowing users to share files. Such file sharing is very desirable for
users who want to collaborate and to reduce the effort required to achieve a
computing goal.

1.5.1 Multiple Users

• When an OS accommodates multiple users, the issues of file sharing,
file naming, and file protection become pre-eminent.

• To implement sharing and protection, the system must maintain more
file and directory attributes than are needed on a single-user system.

• Most systems have evolved to use the concepts of file (or directory)
owner (or user) and group.

– The owner is the user who can change attributes and grant access
and who has the most control over the file.

– The group attribute defines a subset of users who can share access
to the file.

– For example, the owner of a file on a UNIX system can issue all
operations on a file, while members of the file’s group can exe-
cute one subset of those operations, and all other users can exe-
cute another subset of operations.

• Exactly which operations can be executed by group members and other
users is definable by the file’s owner.

25

• The owner and group IDs of a given file (or directory) are stored with
the other file attributes.

• when a user requests an operation on a file, the user ID can be compared

with the owner attribute to determine if the requesting user is the owner
of the file.

• Likewise, the group IDs can be compared. The result indicates which
permissions are applicable. The system then applies those permissions
to the requested operation and allows or denies it.

1.6 Protection

• When information is stored in a computer system, we want to keep
it safe from physical damage (reliability) and improper access
(protection).

• Reliability is generally provided by duplicate copies of files (copy disk
files to tape).

• File systems can be damaged by hardware problems (such as errors in
reading or writing), power surges or failures, head crashes, dirt, tem-
perature extremes, and vandalism. Files may be deleted accidentally.
Bugs in the file-system software can also cause file contents to be lost.

1.6.1 Types of Access

• The need to protect files is a direct result of the ability to access files.

– Systems that do not permit access to the files of other users do
not need protection.

– Alternatively, we could provide free access with no protection.

• Both approaches are too extreme for general use. What is needed is
controlled access.

• Several different types of operations may be controlled:

– Read.

– Write.

– Execute. Load the file into memory and execute it.

– Append. Write new information at the end of the file.

26

– Delete.

– List. List the name and attributes of the file.

• Other operations, such as renaming, copying, and editing the file, may
also be controlled. These higher-level functions may be implemented
by a system program that makes lower-level system calls.

1.6.2 Access Control

• The most common approach to the protection problem is to make access
dependent on the identity of the user.

• The most general scheme to implement identity-dependent access is
to associate with each file and directory an access-control list (ACL)
specifying user names and the types of access allowed for each user.

• This approach has the advantage of enabling complex access method-
ologies. The main problem with access lists is their length. If we want
to allow everyone to read a file, we must list all users with read access.

• This technique has two undesirable consequences:

– Constructing such a list may be a tedious and unrewarding task,
especially if we do not know in advance the list of users in the
system.

– The directory entry, previously of fixed size, now needs to be of
variable size, resulting in more complicated space management.

• These problems can be resolved by use of a condensed version of the
access list. To condense the length of the access-control list, many
systems recognize three classifications of users in connection with each
file:

– Owner. The user who created the file is the owner.

– Group. A set of users who are sharing the file and need similar
access is a group, or work group.

– Universe. All other users in the system constitute the universe.

• With this more limited protection classification, only three fields are
needed to define protection. Often, each field is a collection of bits, and
each bit either allows or prevents the access associated with it.

27

• For example, the UNIX system defines three fields of 3 bits each−rwx,
where r controls read access, w controls write access, and x controls
execution.

• In this scheme, nine bits per file are needed to record protection infor-
mation.

28

	File-System Interface
	File Concept
	File Attributes
	File Operations
	An Example Program Using File System Calls
	File Types
	Internal File Structure

	Access Methods
	Sequential Access
	Direct (Random) Access
	Other Access Methods

	Directory Structure
	Storage Structure
	Directory Overview
	Single-Level Directory
	Two-Level Directory
	Tree-Structured Directories
	Acyclic-Graph Directories

	File-System Mounting
	File Sharing
	Multiple Users

	Protection
	Types of Access
	Access Control

