
File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.1

Lecture 12
File System Implementation
Lecture Information

Ceng328 Operating Systems at May 11, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.2

Contents

1 File System Implementation
File-System Structure
File-System Implementation

Overview
Partitions and Mounting
Virtual File Systems

Allocation Methods
Contiguous Allocation
Linked Allocation
Indexed Allocation

Free-Space Management
Bit Vector
Linked List

Log-Structured File Systems

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.3

File-System Structure I

• Disks provide the bulk of secondary storage on which a file
system is maintained.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.3

File-System Structure I

• Disks provide the bulk of secondary storage on which a file
system is maintained.

• They have two characteristics that make them a
convenient medium for storing multiple files:

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.3

File-System Structure I

• Disks provide the bulk of secondary storage on which a file
system is maintained.

• They have two characteristics that make them a
convenient medium for storing multiple files:

1 A disk can be rewritten in place;

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.3

File-System Structure I

• Disks provide the bulk of secondary storage on which a file
system is maintained.

• They have two characteristics that make them a
convenient medium for storing multiple files:

1 A disk can be rewritten in place;
2 A disk can access directly any given block of information it

contains.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.3

File-System Structure I

• Disks provide the bulk of secondary storage on which a file
system is maintained.

• They have two characteristics that make them a
convenient medium for storing multiple files:

1 A disk can be rewritten in place;
2 A disk can access directly any given block of information it

contains.

• Rather than transferring a byte at a time, I/O transfers
between memory and disk are performed in units of
blocks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.3

File-System Structure I

• Disks provide the bulk of secondary storage on which a file
system is maintained.

• They have two characteristics that make them a
convenient medium for storing multiple files:

1 A disk can be rewritten in place;
2 A disk can access directly any given block of information it

contains.

• Rather than transferring a byte at a time, I/O transfers
between memory and disk are performed in units of
blocks.

• A file system poses two quite different design problems.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.3

File-System Structure I

• Disks provide the bulk of secondary storage on which a file
system is maintained.

• They have two characteristics that make them a
convenient medium for storing multiple files:

1 A disk can be rewritten in place;
2 A disk can access directly any given block of information it

contains.

• Rather than transferring a byte at a time, I/O transfers
between memory and disk are performed in units of
blocks.

• A file system poses two quite different design problems.
1 The first problem is defining how the file system should look

to the user.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.3

File-System Structure I

• Disks provide the bulk of secondary storage on which a file
system is maintained.

• They have two characteristics that make them a
convenient medium for storing multiple files:

1 A disk can be rewritten in place;
2 A disk can access directly any given block of information it

contains.

• Rather than transferring a byte at a time, I/O transfers
between memory and disk are performed in units of
blocks.

• A file system poses two quite different design problems.
1 The first problem is defining how the file system should look

to the user.
2 The second problem is creating algorithms and data

structures to map the logical file system onto the physical
secondary-storage devices.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.3

File-System Structure I

• Disks provide the bulk of secondary storage on which a file
system is maintained.

• They have two characteristics that make them a
convenient medium for storing multiple files:

1 A disk can be rewritten in place;
2 A disk can access directly any given block of information it

contains.

• Rather than transferring a byte at a time, I/O transfers
between memory and disk are performed in units of
blocks.

• A file system poses two quite different design problems.
1 The first problem is defining how the file system should look

to the user.
2 The second problem is creating algorithms and data

structures to map the logical file system onto the physical
secondary-storage devices.

• The file system itself is generally composed of many
different levels.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.4

File-System Structure II

• The structure shown in Fig 1 is an example of a
layered design.

Figure: Layered file system.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.4

File-System Structure II

• The structure shown in Fig 1 is an example of a
layered design.

Figure: Layered file system.

• Each level in the design uses the features of lower levels
to create new features for use by higher levels.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.5

File-System Structure III

• The lowest level, the I/O control , consists of device drivers
and interrupt handlers to transfer information between the
main memory and the disk system.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.5

File-System Structure III

• The lowest level, the I/O control , consists of device drivers
and interrupt handlers to transfer information between the
main memory and the disk system.

• The basic file system needs only to issue
generic commands to the appropriate device driver to read
and write physical blocks on the disk.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.5

File-System Structure III

• The lowest level, the I/O control , consists of device drivers
and interrupt handlers to transfer information between the
main memory and the disk system.

• The basic file system needs only to issue
generic commands to the appropriate device driver to read
and write physical blocks on the disk.

• The file-organization module knows about files and their
logical blocks, as well as physical blocks (mapping,
free-space management).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.5

File-System Structure III

• The lowest level, the I/O control , consists of device drivers
and interrupt handlers to transfer information between the
main memory and the disk system.

• The basic file system needs only to issue
generic commands to the appropriate device driver to read
and write physical blocks on the disk.

• The file-organization module knows about files and their
logical blocks, as well as physical blocks (mapping,
free-space management).

• Finally, the logical file system manages metadata
information.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.5

File-System Structure III

• The lowest level, the I/O control , consists of device drivers
and interrupt handlers to transfer information between the
main memory and the disk system.

• The basic file system needs only to issue
generic commands to the appropriate device driver to read
and write physical blocks on the disk.

• The file-organization module knows about files and their
logical blocks, as well as physical blocks (mapping,
free-space management).

• Finally, the logical file system manages metadata
information.

• Metadata includes all of the file-system structure except the
actual data (or contents of the files).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.5

File-System Structure III

• The lowest level, the I/O control , consists of device drivers
and interrupt handlers to transfer information between the
main memory and the disk system.

• The basic file system needs only to issue
generic commands to the appropriate device driver to read
and write physical blocks on the disk.

• The file-organization module knows about files and their
logical blocks, as well as physical blocks (mapping,
free-space management).

• Finally, the logical file system manages metadata
information.

• Metadata includes all of the file-system structure except the
actual data (or contents of the files).

• It maintains file structure via file-control blocks (FCB). A
FCB contains information about the file, including
ownership, permissions, and location of the file contents.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.5

File-System Structure III

• The lowest level, the I/O control , consists of device drivers
and interrupt handlers to transfer information between the
main memory and the disk system.

• The basic file system needs only to issue
generic commands to the appropriate device driver to read
and write physical blocks on the disk.

• The file-organization module knows about files and their
logical blocks, as well as physical blocks (mapping,
free-space management).

• Finally, the logical file system manages metadata
information.

• Metadata includes all of the file-system structure except the
actual data (or contents of the files).

• It maintains file structure via file-control blocks (FCB). A
FCB contains information about the file, including
ownership, permissions, and location of the file contents.

• Many file systems are in use today; ISO 9660, UNIX file
system (UFS), FAT, FAT32, NTFS, ext2, ext3, ext4.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.6

Overview I

• On disk, the file system may contain information about

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.6

Overview I

• On disk, the file system may contain information about
• how to boot an OS stored there,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.6

Overview I

• On disk, the file system may contain information about
• how to boot an OS stored there,
• the total number of blocks,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.6

Overview I

• On disk, the file system may contain information about
• how to boot an OS stored there,
• the total number of blocks,
• the number and location of free blocks,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.6

Overview I

• On disk, the file system may contain information about
• how to boot an OS stored there,
• the total number of blocks,
• the number and location of free blocks,
• the directory structure,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.6

Overview I

• On disk, the file system may contain information about
• how to boot an OS stored there,
• the total number of blocks,
• the number and location of free blocks,
• the directory structure,
• individual files.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.6

Overview I

• On disk, the file system may contain information about
• how to boot an OS stored there,
• the total number of blocks,
• the number and location of free blocks,
• the directory structure,
• individual files.

• Often the file system will contain some of the items shown
in Fig. 2.

Entire disk

Disk partitionPartition table

Files and directoriesRoot dirI-nodesSuperblock Free space mgmtBoot block

 MBR

Figure: A possible file system layout.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.7

Overview II

• Sector 0 of the disk is called the MBR (Master Boot
Record) and is used to boot the computer. The end of the
MBR contains the partition table.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.7

Overview II

• Sector 0 of the disk is called the MBR (Master Boot
Record) and is used to boot the computer. The end of the
MBR contains the partition table.

• One of the partitions in the table is marked as active.
When the computer is booted, the BIOS reads in and
executes the MBR.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.7

Overview II

• Sector 0 of the disk is called the MBR (Master Boot
Record) and is used to boot the computer. The end of the
MBR contains the partition table.

• One of the partitions in the table is marked as active.
When the computer is booted, the BIOS reads in and
executes the MBR.

• A boot control block (per volume) can contain
information needed by the system to boot an OS from that
volume.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.7

Overview II

• Sector 0 of the disk is called the MBR (Master Boot
Record) and is used to boot the computer. The end of the
MBR contains the partition table.

• One of the partitions in the table is marked as active.
When the computer is booted, the BIOS reads in and
executes the MBR.

• A boot control block (per volume) can contain
information needed by the system to boot an OS from that
volume.

• In UFS, it is called the boot block ;

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.7

Overview II

• Sector 0 of the disk is called the MBR (Master Boot
Record) and is used to boot the computer. The end of the
MBR contains the partition table.

• One of the partitions in the table is marked as active.
When the computer is booted, the BIOS reads in and
executes the MBR.

• A boot control block (per volume) can contain
information needed by the system to boot an OS from that
volume.

• In UFS, it is called the boot block ;
• In NTFS, it is the partition boot sector .

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.7

Overview II

• Sector 0 of the disk is called the MBR (Master Boot
Record) and is used to boot the computer. The end of the
MBR contains the partition table.

• One of the partitions in the table is marked as active.
When the computer is booted, the BIOS reads in and
executes the MBR.

• A boot control block (per volume) can contain
information needed by the system to boot an OS from that
volume.

• In UFS, it is called the boot block ;
• In NTFS, it is the partition boot sector .

• A volume control block (per volume) contains volume (or
partition) details, such as the number of blocks in the
partition, size of the blocks, freeblock count and free-block
pointers, and free FCB count and FCB pointers.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.7

Overview II

• Sector 0 of the disk is called the MBR (Master Boot
Record) and is used to boot the computer. The end of the
MBR contains the partition table.

• One of the partitions in the table is marked as active.
When the computer is booted, the BIOS reads in and
executes the MBR.

• A boot control block (per volume) can contain
information needed by the system to boot an OS from that
volume.

• In UFS, it is called the boot block ;
• In NTFS, it is the partition boot sector .

• A volume control block (per volume) contains volume (or
partition) details, such as the number of blocks in the
partition, size of the blocks, freeblock count and free-block
pointers, and free FCB count and FCB pointers.

• In UFS, this is called a superblock ;

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.7

Overview II

• Sector 0 of the disk is called the MBR (Master Boot
Record) and is used to boot the computer. The end of the
MBR contains the partition table.

• One of the partitions in the table is marked as active.
When the computer is booted, the BIOS reads in and
executes the MBR.

• A boot control block (per volume) can contain
information needed by the system to boot an OS from that
volume.

• In UFS, it is called the boot block ;
• In NTFS, it is the partition boot sector .

• A volume control block (per volume) contains volume (or
partition) details, such as the number of blocks in the
partition, size of the blocks, freeblock count and free-block
pointers, and free FCB count and FCB pointers.

• In UFS, this is called a superblock ;
• In NTFS, it is stored in the master file table .

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.8

Overview III

• Next might come information about free blocks in the file
system, for example in the form of a bitmap or a list of
pointers.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.8

Overview III

• Next might come information about free blocks in the file
system, for example in the form of a bitmap or a list of
pointers.

• A directory structure per file system is used to organize
the files.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.8

Overview III

• Next might come information about free blocks in the file
system, for example in the form of a bitmap or a list of
pointers.

• A directory structure per file system is used to organize
the files.

• In UFS, this includes file names and associated inode
numbers .

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.8

Overview III

• Next might come information about free blocks in the file
system, for example in the form of a bitmap or a list of
pointers.

• A directory structure per file system is used to organize
the files.

• In UFS, this includes file names and associated inode
numbers .

• In NTFS it is stored in the master file table .

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.8

Overview III

• Next might come information about free blocks in the file
system, for example in the form of a bitmap or a list of
pointers.

• A directory structure per file system is used to organize
the files.

• In UFS, this includes file names and associated inode
numbers .

• In NTFS it is stored in the master file table .

• After that might come the root directory, which contains
the top of the file system tree.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.8

Overview III

• Next might come information about free blocks in the file
system, for example in the form of a bitmap or a list of
pointers.

• A directory structure per file system is used to organize
the files.

• In UFS, this includes file names and associated inode
numbers .

• In NTFS it is stored in the master file table .

• After that might come the root directory, which contains
the top of the file system tree.

• Finally, the remainder of the disk typically contains all the
other directories and files.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.9

Overview IV

• A per-file FCB contains many details about the file,
including file permissions, ownership, size, and location of
the data blocks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.9

Overview IV

• A per-file FCB contains many details about the file,
including file permissions, ownership, size, and location of
the data blocks.

• In UFS, this is called the inode .

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.9

Overview IV

• A per-file FCB contains many details about the file,
including file permissions, ownership, size, and location of
the data blocks.

• In UFS, this is called the inode .
• In NTFS, this information is actually stored within the master

file table, which uses a relational database structure, with a
row per file.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.9

Overview IV

• A per-file FCB contains many details about the file,
including file permissions, ownership, size, and location of
the data blocks.

• In UFS, this is called the inode .
• In NTFS, this information is actually stored within the master

file table, which uses a relational database structure, with a
row per file.

• A typical FCB is shown in Fig. 3.

Figure: A typical file-control block.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.10

Overview V

• Some OSs, including UNIX, treat a directory exactly the
same as a file-one with a type field indicating that it is a
directory.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.10

Overview V

• Some OSs, including UNIX, treat a directory exactly the
same as a file-one with a type field indicating that it is a
directory.

• The operating structures of a file-system implementation
are summarized in Fig. 4.

Figure: In-memory file-system structures. (a) File open. (b) File read.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.11

Partitions and Mounting

• A disk can be sliced into multiple partitions, or a volume
can span multiple partitions on multiple disks (RAID).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.11

Partitions and Mounting

• A disk can be sliced into multiple partitions, or a volume
can span multiple partitions on multiple disks (RAID).

• Each partition can be either “raw”, containing no file
system (UNIX swap space can use a raw partition), or
“cooked”, containing a file system.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.11

Partitions and Mounting

• A disk can be sliced into multiple partitions, or a volume
can span multiple partitions on multiple disks (RAID).

• Each partition can be either “raw”, containing no file
system (UNIX swap space can use a raw partition), or
“cooked”, containing a file system.

• The root partition , which contains the OS kernel and
sometimes other system files, is mounted at boot time.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.11

Partitions and Mounting

• A disk can be sliced into multiple partitions, or a volume
can span multiple partitions on multiple disks (RAID).

• Each partition can be either “raw”, containing no file
system (UNIX swap space can use a raw partition), or
“cooked”, containing a file system.

• The root partition , which contains the OS kernel and
sometimes other system files, is mounted at boot time.

• Other volumes can be automatically mounted at boot or
manually mounted later, depending on the OS.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.11

Partitions and Mounting

• A disk can be sliced into multiple partitions, or a volume
can span multiple partitions on multiple disks (RAID).

• Each partition can be either “raw”, containing no file
system (UNIX swap space can use a raw partition), or
“cooked”, containing a file system.

• The root partition , which contains the OS kernel and
sometimes other system files, is mounted at boot time.

• Other volumes can be automatically mounted at boot or
manually mounted later, depending on the OS.

• Microsoft Windows-based systems mount each volume in
a separate name space, denoted by a letter and a colon
(F:).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.11

Partitions and Mounting

• A disk can be sliced into multiple partitions, or a volume
can span multiple partitions on multiple disks (RAID).

• Each partition can be either “raw”, containing no file
system (UNIX swap space can use a raw partition), or
“cooked”, containing a file system.

• The root partition , which contains the OS kernel and
sometimes other system files, is mounted at boot time.

• Other volumes can be automatically mounted at boot or
manually mounted later, depending on the OS.

• Microsoft Windows-based systems mount each volume in
a separate name space, denoted by a letter and a colon
(F:).

• On UNIX, file systems can be mounted at any directory.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.11

Partitions and Mounting

• A disk can be sliced into multiple partitions, or a volume
can span multiple partitions on multiple disks (RAID).

• Each partition can be either “raw”, containing no file
system (UNIX swap space can use a raw partition), or
“cooked”, containing a file system.

• The root partition , which contains the OS kernel and
sometimes other system files, is mounted at boot time.

• Other volumes can be automatically mounted at boot or
manually mounted later, depending on the OS.

• Microsoft Windows-based systems mount each volume in
a separate name space, denoted by a letter and a colon
(F:).

• On UNIX, file systems can be mounted at any directory.
• Mounting is implemented by setting a flag in the in-memory

copy of the inode for that directory.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.11

Partitions and Mounting

• A disk can be sliced into multiple partitions, or a volume
can span multiple partitions on multiple disks (RAID).

• Each partition can be either “raw”, containing no file
system (UNIX swap space can use a raw partition), or
“cooked”, containing a file system.

• The root partition , which contains the OS kernel and
sometimes other system files, is mounted at boot time.

• Other volumes can be automatically mounted at boot or
manually mounted later, depending on the OS.

• Microsoft Windows-based systems mount each volume in
a separate name space, denoted by a letter and a colon
(F:).

• On UNIX, file systems can be mounted at any directory.
• Mounting is implemented by setting a flag in the in-memory

copy of the inode for that directory.
• The flag indicates that the directory is a mount point.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.11

Partitions and Mounting

• A disk can be sliced into multiple partitions, or a volume
can span multiple partitions on multiple disks (RAID).

• Each partition can be either “raw”, containing no file
system (UNIX swap space can use a raw partition), or
“cooked”, containing a file system.

• The root partition , which contains the OS kernel and
sometimes other system files, is mounted at boot time.

• Other volumes can be automatically mounted at boot or
manually mounted later, depending on the OS.

• Microsoft Windows-based systems mount each volume in
a separate name space, denoted by a letter and a colon
(F:).

• On UNIX, file systems can be mounted at any directory.
• Mounting is implemented by setting a flag in the in-memory

copy of the inode for that directory.
• The flag indicates that the directory is a mount point.

• The mount table entry contains a pointer to the superblock
of the file system on that device.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.12

Virtual File Systems I

• How does an OS allow multiple types of file systems to be
integrated into a directory structure?

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.12

Virtual File Systems I

• How does an OS allow multiple types of file systems to be
integrated into a directory structure?

• An obvious but suboptimal method of implementing
multiple types of file systems is to write directory and file
routines for each type.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.12

Virtual File Systems I

• How does an OS allow multiple types of file systems to be
integrated into a directory structure?

• An obvious but suboptimal method of implementing
multiple types of file systems is to write directory and file
routines for each type.

• Instead, most OSs, including UNIX, use object-oriented
techniques to simplify, organize, and modularize the
implementation.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.12

Virtual File Systems I

• How does an OS allow multiple types of file systems to be
integrated into a directory structure?

• An obvious but suboptimal method of implementing
multiple types of file systems is to write directory and file
routines for each type.

• Instead, most OSs, including UNIX, use object-oriented
techniques to simplify, organize, and modularize the
implementation.

• The use of these methods allows
very dissimilar file-system types to be implemented within
the same structure.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.12

Virtual File Systems I

• How does an OS allow multiple types of file systems to be
integrated into a directory structure?

• An obvious but suboptimal method of implementing
multiple types of file systems is to write directory and file
routines for each type.

• Instead, most OSs, including UNIX, use object-oriented
techniques to simplify, organize, and modularize the
implementation.

• The use of these methods allows
very dissimilar file-system types to be implemented within
the same structure.

• The file-system implementation consists of three major
layers, as depicted schematically in Fig. 5.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.12

Virtual File Systems I

• How does an OS allow multiple types of file systems to be
integrated into a directory structure?

• An obvious but suboptimal method of implementing
multiple types of file systems is to write directory and file
routines for each type.

• Instead, most OSs, including UNIX, use object-oriented
techniques to simplify, organize, and modularize the
implementation.

• The use of these methods allows
very dissimilar file-system types to be implemented within
the same structure.

• The file-system implementation consists of three major
layers, as depicted schematically in Fig. 5.

1 The first layer is the file-system interface, based on the
open(), read(), write(), and close() calls and on file
descriptors.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.13

Virtual File Systems II

Figure: Schematic view of a virtual file system.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.14

Virtual File Systems III

2 The second layer is called the virtual file system (VFS)
layer; it serves two important functions:

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.14

Virtual File Systems III

2 The second layer is called the virtual file system (VFS)
layer; it serves two important functions:

• It separates file-system-generic operations from their
implementation by defining a clean VFS interface.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.14

Virtual File Systems III

2 The second layer is called the virtual file system (VFS)
layer; it serves two important functions:

• It separates file-system-generic operations from their
implementation by defining a clean VFS interface.

• The VFS provides a mechanism for uniquely representing a
file throughout a network. The VFS is based on a
file-representation structure, called a vnode, that contains a
numerical designator for a network-wide unique file.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.14

Virtual File Systems III

2 The second layer is called the virtual file system (VFS)
layer; it serves two important functions:

• It separates file-system-generic operations from their
implementation by defining a clean VFS interface.

• The VFS provides a mechanism for uniquely representing a
file throughout a network. The VFS is based on a
file-representation structure, called a vnode, that contains a
numerical designator for a network-wide unique file.

• The VFS distinguishes local files from remote ones, and
local files are further distinguished according to their
file-system types.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.15

Allocation Methods

• The direct-access nature of disks allows us flexibility in the
implementation of files.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.15

Allocation Methods

• The direct-access nature of disks allows us flexibility in the
implementation of files.

• The main problem is how to allocate space to these files
so that disk space is utilized effectively and files can be
accessed quickly.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.15

Allocation Methods

• The direct-access nature of disks allows us flexibility in the
implementation of files.

• The main problem is how to allocate space to these files
so that disk space is utilized effectively and files can be
accessed quickly.

• Three major methods of allocating disk space are in wide
use:

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.15

Allocation Methods

• The direct-access nature of disks allows us flexibility in the
implementation of files.

• The main problem is how to allocate space to these files
so that disk space is utilized effectively and files can be
accessed quickly.

• Three major methods of allocating disk space are in wide
use:

1 contiguous ,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.15

Allocation Methods

• The direct-access nature of disks allows us flexibility in the
implementation of files.

• The main problem is how to allocate space to these files
so that disk space is utilized effectively and files can be
accessed quickly.

• Three major methods of allocating disk space are in wide
use:

1 contiguous ,
2 linked ,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.15

Allocation Methods

• The direct-access nature of disks allows us flexibility in the
implementation of files.

• The main problem is how to allocate space to these files
so that disk space is utilized effectively and files can be
accessed quickly.

• Three major methods of allocating disk space are in wide
use:

1 contiguous ,
2 linked ,
3 indexed .

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.16

Contiguous Allocation I

• Contiguous allocation requires that each file occupy a
set of contiguous blocks on the disk (see Fig. 6).

…

File A

(4 blocks)

File C

(6 blocks)

File B

(3 blocks)

File D

(5 blocks)

File F

(6 blocks)

File E

(12 blocks)

File G

(3 blocks)

(a)

…

(File A)

(File C)

File B 5 Free blocks 6 Free blocks

(File E)

(File G)

(b)

Figure: (a) Contiguous allocation of disk space for seven files.
(b) The state of the disk after files D and F have been removed.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.16

Contiguous Allocation I

• Contiguous allocation requires that each file occupy a
set of contiguous blocks on the disk (see Fig. 6).

…

File A

(4 blocks)

File C

(6 blocks)

File B

(3 blocks)

File D

(5 blocks)

File F

(6 blocks)

File E

(12 blocks)

File G

(3 blocks)

(a)

…

(File A)

(File C)

File B 5 Free blocks 6 Free blocks

(File E)

(File G)

(b)

Figure: (a) Contiguous allocation of disk space for seven files.
(b) The state of the disk after files D and F have been removed.

• Contiguous allocation of a file is defined by the
disk address and length (in block units) of the first block.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.17

Contiguous Allocation II

• Disk addresses define a linear ordering on the disk. With
this ordering,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.17

Contiguous Allocation II

• Disk addresses define a linear ordering on the disk. With
this ordering,

• accessing block b + 1 after block b normally requires no
head movement.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.17

Contiguous Allocation II

• Disk addresses define a linear ordering on the disk. With
this ordering,

• accessing block b + 1 after block b normally requires no
head movement.

• When head movement is needed (from the last sector of
one cylinder to the first sector of the next cylinder), the head
need only move from one track to the next.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.17

Contiguous Allocation II

• Disk addresses define a linear ordering on the disk. With
this ordering,

• accessing block b + 1 after block b normally requires no
head movement.

• When head movement is needed (from the last sector of
one cylinder to the first sector of the next cylinder), the head
need only move from one track to the next.

• Thus, the number of disk seeks required for accessing
contiguously allocated files is minimal.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.17

Contiguous Allocation II

• Disk addresses define a linear ordering on the disk. With
this ordering,

• accessing block b + 1 after block b normally requires no
head movement.

• When head movement is needed (from the last sector of
one cylinder to the first sector of the next cylinder), the head
need only move from one track to the next.

• Thus, the number of disk seeks required for accessing
contiguously allocated files is minimal.

• Contiguous allocation is widely used on CD-ROMs.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.17

Contiguous Allocation II

• Disk addresses define a linear ordering on the disk. With
this ordering,

• accessing block b + 1 after block b normally requires no
head movement.

• When head movement is needed (from the last sector of
one cylinder to the first sector of the next cylinder), the head
need only move from one track to the next.

• Thus, the number of disk seeks required for accessing
contiguously allocated files is minimal.

• Contiguous allocation is widely used on CD-ROMs.

• Here all the file sizes are known in advance and will never
change during subsequent use of the CD-ROM file
system.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.18

Contiguous Allocation III

• The directory entry for each file indicates the address of
the starting block and the length of the area allocated for
this file (see Fig. 7).

Figure: Contiguous allocation of disk space.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.19

Contiguous Allocation IV

• As files are allocated and deleted, the free disk space is
broken into little pieces.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.19

Contiguous Allocation IV

• As files are allocated and deleted, the free disk space is
broken into little pieces.

• External fragmentation exists whenever free space is
broken into chunks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.19

Contiguous Allocation IV

• As files are allocated and deleted, the free disk space is
broken into little pieces.

• External fragmentation exists whenever free space is
broken into chunks.

• It becomes a problem when the largest contiguous chunk is
insufficient for a request;

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.19

Contiguous Allocation IV

• As files are allocated and deleted, the free disk space is
broken into little pieces.

• External fragmentation exists whenever free space is
broken into chunks.

• It becomes a problem when the largest contiguous chunk is
insufficient for a request;

• Storage is fragmented into a number of holes, no one of
which is large enough to store the data.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.19

Contiguous Allocation IV

• As files are allocated and deleted, the free disk space is
broken into little pieces.

• External fragmentation exists whenever free space is
broken into chunks.

• It becomes a problem when the largest contiguous chunk is
insufficient for a request;

• Storage is fragmented into a number of holes, no one of
which is large enough to store the data.

• Compacting all free space into one contiguous space,
solves the fragmentation problem.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.19

Contiguous Allocation IV

• As files are allocated and deleted, the free disk space is
broken into little pieces.

• External fragmentation exists whenever free space is
broken into chunks.

• It becomes a problem when the largest contiguous chunk is
insufficient for a request;

• Storage is fragmented into a number of holes, no one of
which is large enough to store the data.

• Compacting all free space into one contiguous space,
solves the fragmentation problem.

• The cost of this compaction is time (could be severe).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.19

Contiguous Allocation IV

• As files are allocated and deleted, the free disk space is
broken into little pieces.

• External fragmentation exists whenever free space is
broken into chunks.

• It becomes a problem when the largest contiguous chunk is
insufficient for a request;

• Storage is fragmented into a number of holes, no one of
which is large enough to store the data.

• Compacting all free space into one contiguous space,
solves the fragmentation problem.

• The cost of this compaction is time (could be severe).

• Another problem with contiguous allocation is determining
how much space is needed for a file.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.19

Contiguous Allocation IV

• As files are allocated and deleted, the free disk space is
broken into little pieces.

• External fragmentation exists whenever free space is
broken into chunks.

• It becomes a problem when the largest contiguous chunk is
insufficient for a request;

• Storage is fragmented into a number of holes, no one of
which is large enough to store the data.

• Compacting all free space into one contiguous space,
solves the fragmentation problem.

• The cost of this compaction is time (could be severe).

• Another problem with contiguous allocation is determining
how much space is needed for a file.

• When the file is created, the total amount of space it will
need must be found and allocated.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.20

Contiguous Allocation V

• How does the creator (program or person) know the size
of the file to be created?

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.20

Contiguous Allocation V

• How does the creator (program or person) know the size
of the file to be created?

• If we allocate too little space to a file, we may find that the
file cannot be extended .

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.20

Contiguous Allocation V

• How does the creator (program or person) know the size
of the file to be created?

• If we allocate too little space to a file, we may find that the
file cannot be extended .

• Two possibilities then exist.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.20

Contiguous Allocation V

• How does the creator (program or person) know the size
of the file to be created?

• If we allocate too little space to a file, we may find that the
file cannot be extended .

• Two possibilities then exist.
• First, the user program can be terminated with an

appropriate error message. The user must then allocate
more space and run the program again.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.20

Contiguous Allocation V

• How does the creator (program or person) know the size
of the file to be created?

• If we allocate too little space to a file, we may find that the
file cannot be extended .

• Two possibilities then exist.
• First, the user program can be terminated with an

appropriate error message. The user must then allocate
more space and run the program again.

• The other possibility is to find a larger hole, copy the
contents of the file to the new space, and release the
previous space.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.20

Contiguous Allocation V

• How does the creator (program or person) know the size
of the file to be created?

• If we allocate too little space to a file, we may find that the
file cannot be extended .

• Two possibilities then exist.
• First, the user program can be terminated with an

appropriate error message. The user must then allocate
more space and run the program again.

• The other possibility is to find a larger hole, copy the
contents of the file to the new space, and release the
previous space.

• Even if the total amount of space needed for a file is
known in advance, preallocation may be inefficient.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.21

Linked Allocation I

• The second method for storing files is to keep each one as
a linked list of disk blocks, as shown in Fig. 8.

File A

Physical

block

Physical

block

4

0

7 2 10 12

File

block

0

File

block

1

File

block

2

File

block

3

File

block

4

File B

0

6 3 11 14

File

block

0

File

block

1

File

block

2

File

block

3

Figure: Storing a file as a linked list of disk blocks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.21

Linked Allocation I

• The second method for storing files is to keep each one as
a linked list of disk blocks, as shown in Fig. 8.

File A

Physical

block

Physical

block

4

0

7 2 10 12

File

block

0

File

block

1

File

block

2

File

block

3

File

block

4

File B

0

6 3 11 14

File

block

0

File

block

1

File

block

2

File

block

3

Figure: Storing a file as a linked list of disk blocks.

• Linked allocation solves all problems of contiguous
allocation.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.21

Linked Allocation I

• The second method for storing files is to keep each one as
a linked list of disk blocks, as shown in Fig. 8.

File A

Physical

block

Physical

block

4

0

7 2 10 12

File

block

0

File

block

1

File

block

2

File

block

3

File

block

4

File B

0

6 3 11 14

File

block

0

File

block

1

File

block

2

File

block

3

Figure: Storing a file as a linked list of disk blocks.

• Linked allocation solves all problems of contiguous
allocation.

• The disk blocks may be scattered anywhere on the disk.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.21

Linked Allocation I

• The second method for storing files is to keep each one as
a linked list of disk blocks, as shown in Fig. 8.

File A

Physical

block

Physical

block

4

0

7 2 10 12

File

block

0

File

block

1

File

block

2

File

block

3

File

block

4

File B

0

6 3 11 14

File

block

0

File

block

1

File

block

2

File

block

3

Figure: Storing a file as a linked list of disk blocks.

• Linked allocation solves all problems of contiguous
allocation.

• The disk blocks may be scattered anywhere on the disk.
• The directory contains a pointer to the first and last blocks

of the file.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.22

Linked Allocation II

For example, a file of five blocks might start at block 9 and
continue at block 16, then block 1, then block 10, and finally
block 25 (see Fig. 9).

Figure: Linked allocation of disk space.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.23

Linked Allocation III

• To create a new file, we simply create a new entry in the
directory.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.23

Linked Allocation III

• To create a new file, we simply create a new entry in the
directory.

• The pointer is initialized to nil (the end-of-list pointer value)
to signify an empty file.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.23

Linked Allocation III

• To create a new file, we simply create a new entry in the
directory.

• The pointer is initialized to nil (the end-of-list pointer value)
to signify an empty file.

• The size field is also set to O.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.23

Linked Allocation III

• To create a new file, we simply create a new entry in the
directory.

• The pointer is initialized to nil (the end-of-list pointer value)
to signify an empty file.

• The size field is also set to O.

• A write to the file causes the free-space management
system to find a free block, and this new block is written to
and is linked to the end of the file.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.23

Linked Allocation III

• To create a new file, we simply create a new entry in the
directory.

• The pointer is initialized to nil (the end-of-list pointer value)
to signify an empty file.

• The size field is also set to O.

• A write to the file causes the free-space management
system to find a free block, and this new block is written to
and is linked to the end of the file.

• To read a file, we simply read blocks by following the
pointers from block to block.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.23

Linked Allocation III

• To create a new file, we simply create a new entry in the
directory.

• The pointer is initialized to nil (the end-of-list pointer value)
to signify an empty file.

• The size field is also set to O.

• A write to the file causes the free-space management
system to find a free block, and this new block is written to
and is linked to the end of the file.

• To read a file, we simply read blocks by following the
pointers from block to block.

• No space is lost to disk fragmentation (except for internal
fragmentation in the last block).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.23

Linked Allocation III

• To create a new file, we simply create a new entry in the
directory.

• The pointer is initialized to nil (the end-of-list pointer value)
to signify an empty file.

• The size field is also set to O.

• A write to the file causes the free-space management
system to find a free block, and this new block is written to
and is linked to the end of the file.

• To read a file, we simply read blocks by following the
pointers from block to block.

• No space is lost to disk fragmentation (except for internal
fragmentation in the last block).

• The size of a file need not be declared when that file is
created. A file can continue to grow as long as free blocks
are available.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.23

Linked Allocation III

• To create a new file, we simply create a new entry in the
directory.

• The pointer is initialized to nil (the end-of-list pointer value)
to signify an empty file.

• The size field is also set to O.

• A write to the file causes the free-space management
system to find a free block, and this new block is written to
and is linked to the end of the file.

• To read a file, we simply read blocks by following the
pointers from block to block.

• No space is lost to disk fragmentation (except for internal
fragmentation in the last block).

• The size of a file need not be declared when that file is
created. A file can continue to grow as long as free blocks
are available.

• Consequently, it is never necessary to compact disk
space.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.24

Linked Allocation IV

• The major problem is that it can be used effectively only
for sequential-access files.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.24

Linked Allocation IV

• The major problem is that it can be used effectively only
for sequential-access files.

• To find the i th block of a file, we must start at the beginning
of that file and follow the pointers until we get to the i th block.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.24

Linked Allocation IV

• The major problem is that it can be used effectively only
for sequential-access files.

• To find the i th block of a file, we must start at the beginning
of that file and follow the pointers until we get to the i th block.

• Each access to a pointer requires a disk read, and some
require a disk seek.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.24

Linked Allocation IV

• The major problem is that it can be used effectively only
for sequential-access files.

• To find the i th block of a file, we must start at the beginning
of that file and follow the pointers until we get to the i th block.

• Each access to a pointer requires a disk read, and some
require a disk seek.

• Consequently, it is inefficient to support a direct-access
capability for linked-allocation files.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.24

Linked Allocation IV

• The major problem is that it can be used effectively only
for sequential-access files.

• To find the i th block of a file, we must start at the beginning
of that file and follow the pointers until we get to the i th block.

• Each access to a pointer requires a disk read, and some
require a disk seek.

• Consequently, it is inefficient to support a direct-access
capability for linked-allocation files.

• Another disadvantage is the space required for the
pointers.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.24

Linked Allocation IV

• The major problem is that it can be used effectively only
for sequential-access files.

• To find the i th block of a file, we must start at the beginning
of that file and follow the pointers until we get to the i th block.

• Each access to a pointer requires a disk read, and some
require a disk seek.

• Consequently, it is inefficient to support a direct-access
capability for linked-allocation files.

• Another disadvantage is the space required for the
pointers.

• If a pointer requires 4 bytes out of a 512-byte block, then
0.78 percent of the disk is being used for pointers, rather
than for information.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.24

Linked Allocation IV

• The major problem is that it can be used effectively only
for sequential-access files.

• To find the i th block of a file, we must start at the beginning
of that file and follow the pointers until we get to the i th block.

• Each access to a pointer requires a disk read, and some
require a disk seek.

• Consequently, it is inefficient to support a direct-access
capability for linked-allocation files.

• Another disadvantage is the space required for the
pointers.

• If a pointer requires 4 bytes out of a 512-byte block, then
0.78 percent of the disk is being used for pointers, rather
than for information.

• The usual solution to this problem is to collect blocks into
multiples, called clusters , and to allocate clusters rather
than blocks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.24

Linked Allocation IV

• The major problem is that it can be used effectively only
for sequential-access files.

• To find the i th block of a file, we must start at the beginning
of that file and follow the pointers until we get to the i th block.

• Each access to a pointer requires a disk read, and some
require a disk seek.

• Consequently, it is inefficient to support a direct-access
capability for linked-allocation files.

• Another disadvantage is the space required for the
pointers.

• If a pointer requires 4 bytes out of a 512-byte block, then
0.78 percent of the disk is being used for pointers, rather
than for information.

• The usual solution to this problem is to collect blocks into
multiples, called clusters , and to allocate clusters rather
than blocks.

• Yet another problem of linked allocation is reliability.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.24

Linked Allocation IV

• The major problem is that it can be used effectively only
for sequential-access files.

• To find the i th block of a file, we must start at the beginning
of that file and follow the pointers until we get to the i th block.

• Each access to a pointer requires a disk read, and some
require a disk seek.

• Consequently, it is inefficient to support a direct-access
capability for linked-allocation files.

• Another disadvantage is the space required for the
pointers.

• If a pointer requires 4 bytes out of a 512-byte block, then
0.78 percent of the disk is being used for pointers, rather
than for information.

• The usual solution to this problem is to collect blocks into
multiples, called clusters , and to allocate clusters rather
than blocks.

• Yet another problem of linked allocation is reliability.
• What would happen if a pointer were lost or damaged?

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.24

Linked Allocation IV

• The major problem is that it can be used effectively only
for sequential-access files.

• To find the i th block of a file, we must start at the beginning
of that file and follow the pointers until we get to the i th block.

• Each access to a pointer requires a disk read, and some
require a disk seek.

• Consequently, it is inefficient to support a direct-access
capability for linked-allocation files.

• Another disadvantage is the space required for the
pointers.

• If a pointer requires 4 bytes out of a 512-byte block, then
0.78 percent of the disk is being used for pointers, rather
than for information.

• The usual solution to this problem is to collect blocks into
multiples, called clusters , and to allocate clusters rather
than blocks.

• Yet another problem of linked allocation is reliability.
• What would happen if a pointer were lost or damaged?
• A bug in the OS software or a disk hardware failure might

result in picking up the wrong pointer.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.25

Linked Allocation V

• An important variation on linked allocation is the use of a
file-allocation table (FAT) (MS-DOS and OS/2 OSs).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.25

Linked Allocation V

• An important variation on linked allocation is the use of a
file-allocation table (FAT) (MS-DOS and OS/2 OSs).

• An illustrative example is the FAT structure shown in Fig.
10 for a file consisting of disk blocks 217, 618, and 339.

Figure: File allocation table.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.26

Linked Allocation VI

• The FAT allocation scheme can result in a significant
number of disk head seeks, unless the FAT is cached.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.26

Linked Allocation VI

• The FAT allocation scheme can result in a significant
number of disk head seeks, unless the FAT is cached.

• The primary disadvantage of this method is that the entire
table must be in memory all the time to make it work.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.26

Linked Allocation VI

• The FAT allocation scheme can result in a significant
number of disk head seeks, unless the FAT is cached.

• The primary disadvantage of this method is that the entire
table must be in memory all the time to make it work.

• With a 20-GB disk and a 1-KB block size, the table needs
20 million entries.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.26

Linked Allocation VI

• The FAT allocation scheme can result in a significant
number of disk head seeks, unless the FAT is cached.

• The primary disadvantage of this method is that the entire
table must be in memory all the time to make it work.

• With a 20-GB disk and a 1-KB block size, the table needs
20 million entries.

• Each entry has to be a minimum of 3 bytes. For speed in
lookup, they should be 4 bytes.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.26

Linked Allocation VI

• The FAT allocation scheme can result in a significant
number of disk head seeks, unless the FAT is cached.

• The primary disadvantage of this method is that the entire
table must be in memory all the time to make it work.

• With a 20-GB disk and a 1-KB block size, the table needs
20 million entries.

• Each entry has to be a minimum of 3 bytes. For speed in
lookup, they should be 4 bytes.

• Thus the table will take up 60 MB or 80 MB of main memory
all the time.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.27

Indexed Allocation I
• In the absence of a FAT, linked allocation cannot support

efficient direct access, since the pointers to the blocks are
scattered with the blocks themselves all over the disk and
must be retrieved in order.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.27

Indexed Allocation I
• In the absence of a FAT, linked allocation cannot support

efficient direct access, since the pointers to the blocks are
scattered with the blocks themselves all over the disk and
must be retrieved in order.

• A data structure called an i-node (index-node), which lists
the attributes and disk addresses of the files blocks (see
Fig. 11).

File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block 6

Address of disk block 7

Address of block of pointers

Disk block

containing

additional

disk addresses

Figure: An example i-node.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.28

Indexed Allocation II
• Indexed allocation solves this problem by bringing all the

pointers together into one location: the index block.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.28

Indexed Allocation II
• Indexed allocation solves this problem by bringing all the

pointers together into one location: the index block.
• Each file has its own index block, which is an array of

disk-block addresses.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.28

Indexed Allocation II
• Indexed allocation solves this problem by bringing all the

pointers together into one location: the index block.
• Each file has its own index block, which is an array of

disk-block addresses.
• The i th entry in the index block points to the i th block of the

file. The directory contains the address of the index block
(see Fig. 12).

Figure: Indexed allocation of disk space.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.29

Indexed Allocation III

• To find and read the i th block, we use the pointer in the i th

index-block entry (paging scheme).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.29

Indexed Allocation III

• To find and read the i th block, we use the pointer in the i th

index-block entry (paging scheme).

• Given the i-node, it is then possible to find all the blocks of
the file.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.29

Indexed Allocation III

• To find and read the i th block, we use the pointer in the i th

index-block entry (paging scheme).

• Given the i-node, it is then possible to find all the blocks of
the file.

• The big advantage of this scheme over linked files using
an in-memory table is that the i-node need only be in
memory when the corresponding file is open.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.29

Indexed Allocation III

• To find and read the i th block, we use the pointer in the i th

index-block entry (paging scheme).

• Given the i-node, it is then possible to find all the blocks of
the file.

• The big advantage of this scheme over linked files using
an in-memory table is that the i-node need only be in
memory when the corresponding file is open.

• When the file is created, all pointers in the index block are
set to nil.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.29

Indexed Allocation III

• To find and read the i th block, we use the pointer in the i th

index-block entry (paging scheme).

• Given the i-node, it is then possible to find all the blocks of
the file.

• The big advantage of this scheme over linked files using
an in-memory table is that the i-node need only be in
memory when the corresponding file is open.

• When the file is created, all pointers in the index block are
set to nil.

• When a file is opened, the file system must take the file
name supplied and locate its disk blocks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.29

Indexed Allocation III

• To find and read the i th block, we use the pointer in the i th

index-block entry (paging scheme).

• Given the i-node, it is then possible to find all the blocks of
the file.

• The big advantage of this scheme over linked files using
an in-memory table is that the i-node need only be in
memory when the corresponding file is open.

• When the file is created, all pointers in the index block are
set to nil.

• When a file is opened, the file system must take the file
name supplied and locate its disk blocks.

• Let us consider how the path name /usr/ast/mbox is
looked up. The lookup process is illustrated in Fig. 13.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.30

Indexed Allocation IV

Root directory
I-node 6

is for /usr

Block 132

is /usr

directory

I-node 26

is for

/usr/ast

Block 406

is /usr/ast

directory

Looking up

usr yields

i-node 6

I-node 6

says that

/usr is in

block 132

/usr/ast

is i-node

26

/usr/ast/mbox

is i-node

60

I-node 26

says that

/usr/ast is in

block 406

1

1

4

7

14

9

6

8

.

..

bin

dev

lib

etc

usr

tmp

6

1

19

30

51

26

45

dick

erik

jim

ast

bal

26

6

64

92

60

81

17

grants

books

mbox

minix

src

Mode

size

times

132

Mode

size

times

406

Figure: The steps in looking up /usr/ast/mbox.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.31

Indexed Allocation V

• Indexed allocation supports direct access, without
suffering from external fragmentation.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.31

Indexed Allocation V

• Indexed allocation supports direct access, without
suffering from external fragmentation.

• Indexed allocation does suffer from wasted space,
however.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.31

Indexed Allocation V

• Indexed allocation supports direct access, without
suffering from external fragmentation.

• Indexed allocation does suffer from wasted space,
however.

• Consider a common case in which we have a file of only
one or two blocks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.31

Indexed Allocation V

• Indexed allocation supports direct access, without
suffering from external fragmentation.

• Indexed allocation does suffer from wasted space,
however.

• Consider a common case in which we have a file of only
one or two blocks.

• With linked allocation, we lose the space of only one pointer
per block.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.31

Indexed Allocation V

• Indexed allocation supports direct access, without
suffering from external fragmentation.

• Indexed allocation does suffer from wasted space,
however.

• Consider a common case in which we have a file of only
one or two blocks.

• With linked allocation, we lose the space of only one pointer
per block.

• With indexed allocation, an entire index block must be
allocated, even if only one or two pointers will be non-nil.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.31

Indexed Allocation V

• Indexed allocation supports direct access, without
suffering from external fragmentation.

• Indexed allocation does suffer from wasted space,
however.

• Consider a common case in which we have a file of only
one or two blocks.

• With linked allocation, we lose the space of only one pointer
per block.

• With indexed allocation, an entire index block must be
allocated, even if only one or two pointers will be non-nil.

• This point raises the question of
how large the index block should be.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.31

Indexed Allocation V

• Indexed allocation supports direct access, without
suffering from external fragmentation.

• Indexed allocation does suffer from wasted space,
however.

• Consider a common case in which we have a file of only
one or two blocks.

• With linked allocation, we lose the space of only one pointer
per block.

• With indexed allocation, an entire index block must be
allocated, even if only one or two pointers will be non-nil.

• This point raises the question of
how large the index block should be.

• Every file must have an index block, so we want the index
block to be as small as possible.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.31

Indexed Allocation V

• Indexed allocation supports direct access, without
suffering from external fragmentation.

• Indexed allocation does suffer from wasted space,
however.

• Consider a common case in which we have a file of only
one or two blocks.

• With linked allocation, we lose the space of only one pointer
per block.

• With indexed allocation, an entire index block must be
allocated, even if only one or two pointers will be non-nil.

• This point raises the question of
how large the index block should be.

• Every file must have an index block, so we want the index
block to be as small as possible.

• If the index block is too small, however, it will
not be able to hold enough pointers for a large file, and a
mechanism will have to be available to deal with this issue.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.31

Indexed Allocation V

• Indexed allocation supports direct access, without
suffering from external fragmentation.

• Indexed allocation does suffer from wasted space,
however.

• Consider a common case in which we have a file of only
one or two blocks.

• With linked allocation, we lose the space of only one pointer
per block.

• With indexed allocation, an entire index block must be
allocated, even if only one or two pointers will be non-nil.

• This point raises the question of
how large the index block should be.

• Every file must have an index block, so we want the index
block to be as small as possible.

• If the index block is too small, however, it will
not be able to hold enough pointers for a large file, and a
mechanism will have to be available to deal with this issue.

• Mechanisms for this purpose include the followings.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.32

Indexed Allocation VI
• Linked scheme . An index block is normally one disk

block.To allow for large files, we can link together several
index blocks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.32

Indexed Allocation VI
• Linked scheme . An index block is normally one disk

block.To allow for large files, we can link together several
index blocks.

• For example, an index block might contain a small header
giving the name of the file and a set of the first 100
disk-block addresses.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.32

Indexed Allocation VI
• Linked scheme . An index block is normally one disk

block.To allow for large files, we can link together several
index blocks.

• For example, an index block might contain a small header
giving the name of the file and a set of the first 100
disk-block addresses.

• The next address (the last word in the index block) is nil (for
a small file) or is a pointer to another index block (for a large
file).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.32

Indexed Allocation VI
• Linked scheme . An index block is normally one disk

block.To allow for large files, we can link together several
index blocks.

• For example, an index block might contain a small header
giving the name of the file and a set of the first 100
disk-block addresses.

• The next address (the last word in the index block) is nil (for
a small file) or is a pointer to another index block (for a large
file).

• Multilevel index . A variant of the linked representation is
to use a first-level index block to point to a set of
second-level index blocks, which in turn point to the file
blocks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.32

Indexed Allocation VI
• Linked scheme . An index block is normally one disk

block.To allow for large files, we can link together several
index blocks.

• For example, an index block might contain a small header
giving the name of the file and a set of the first 100
disk-block addresses.

• The next address (the last word in the index block) is nil (for
a small file) or is a pointer to another index block (for a large
file).

• Multilevel index . A variant of the linked representation is
to use a first-level index block to point to a set of
second-level index blocks, which in turn point to the file
blocks.

• To access a block, the OS uses the first-level index to find a
second-level index block and then uses that block to find the
desired data block.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.32

Indexed Allocation VI
• Linked scheme . An index block is normally one disk

block.To allow for large files, we can link together several
index blocks.

• For example, an index block might contain a small header
giving the name of the file and a set of the first 100
disk-block addresses.

• The next address (the last word in the index block) is nil (for
a small file) or is a pointer to another index block (for a large
file).

• Multilevel index . A variant of the linked representation is
to use a first-level index block to point to a set of
second-level index blocks, which in turn point to the file
blocks.

• To access a block, the OS uses the first-level index to find a
second-level index block and then uses that block to find the
desired data block.

• This approach could be continued to a third or fourth level,
depending on the desired maximum file size.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.32

Indexed Allocation VI
• Linked scheme . An index block is normally one disk

block.To allow for large files, we can link together several
index blocks.

• For example, an index block might contain a small header
giving the name of the file and a set of the first 100
disk-block addresses.

• The next address (the last word in the index block) is nil (for
a small file) or is a pointer to another index block (for a large
file).

• Multilevel index . A variant of the linked representation is
to use a first-level index block to point to a set of
second-level index blocks, which in turn point to the file
blocks.

• To access a block, the OS uses the first-level index to find a
second-level index block and then uses that block to find the
desired data block.

• This approach could be continued to a third or fourth level,
depending on the desired maximum file size.

• With 4096-byte blocks, we could store 1024 4-byte pointers
in an index block.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.32

Indexed Allocation VI
• Linked scheme . An index block is normally one disk

block.To allow for large files, we can link together several
index blocks.

• For example, an index block might contain a small header
giving the name of the file and a set of the first 100
disk-block addresses.

• The next address (the last word in the index block) is nil (for
a small file) or is a pointer to another index block (for a large
file).

• Multilevel index . A variant of the linked representation is
to use a first-level index block to point to a set of
second-level index blocks, which in turn point to the file
blocks.

• To access a block, the OS uses the first-level index to find a
second-level index block and then uses that block to find the
desired data block.

• This approach could be continued to a third or fourth level,
depending on the desired maximum file size.

• With 4096-byte blocks, we could store 1024 4-byte pointers
in an index block.

• Two levels of indexes allow 1048576 data blocks and a file
size of up to 4 GB.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.33

Indexed Allocation VII

• Combined scheme . Another alternative, used in the UFS
(UNIX File System), is to keep the first, say, 15 pointers of
the index block in the file’s inode.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.33

Indexed Allocation VII

• Combined scheme . Another alternative, used in the UFS
(UNIX File System), is to keep the first, say, 15 pointers of
the index block in the file’s inode.

• The first 12 of these pointers point to direct blocks ; that is,
they contain addresses of blocks that contain data of the file.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.33

Indexed Allocation VII

• Combined scheme . Another alternative, used in the UFS
(UNIX File System), is to keep the first, say, 15 pointers of
the index block in the file’s inode.

• The first 12 of these pointers point to direct blocks ; that is,
they contain addresses of blocks that contain data of the file.

• If the block size is 4 KB, then up to 48 KB of data can be
accessed directly.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.33

Indexed Allocation VII

• Combined scheme . Another alternative, used in the UFS
(UNIX File System), is to keep the first, say, 15 pointers of
the index block in the file’s inode.

• The first 12 of these pointers point to direct blocks ; that is,
they contain addresses of blocks that contain data of the file.

• If the block size is 4 KB, then up to 48 KB of data can be
accessed directly.

• The next three pointers point to indirect blocks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.33

Indexed Allocation VII

• Combined scheme . Another alternative, used in the UFS
(UNIX File System), is to keep the first, say, 15 pointers of
the index block in the file’s inode.

• The first 12 of these pointers point to direct blocks ; that is,
they contain addresses of blocks that contain data of the file.

• If the block size is 4 KB, then up to 48 KB of data can be
accessed directly.

• The next three pointers point to indirect blocks.
• The first points to a single indirect block , which is an index

block containing not data but the addresses of blocks that do
contain data.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.33

Indexed Allocation VII

• Combined scheme . Another alternative, used in the UFS
(UNIX File System), is to keep the first, say, 15 pointers of
the index block in the file’s inode.

• The first 12 of these pointers point to direct blocks ; that is,
they contain addresses of blocks that contain data of the file.

• If the block size is 4 KB, then up to 48 KB of data can be
accessed directly.

• The next three pointers point to indirect blocks.
• The first points to a single indirect block , which is an index

block containing not data but the addresses of blocks that do
contain data.

• The second points to a double indirect block , which
contains the address of a block that contains the addresses of
blocks that contain pointers to the actual data blocks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.33

Indexed Allocation VII

• Combined scheme . Another alternative, used in the UFS
(UNIX File System), is to keep the first, say, 15 pointers of
the index block in the file’s inode.

• The first 12 of these pointers point to direct blocks ; that is,
they contain addresses of blocks that contain data of the file.

• If the block size is 4 KB, then up to 48 KB of data can be
accessed directly.

• The next three pointers point to indirect blocks.
• The first points to a single indirect block , which is an index

block containing not data but the addresses of blocks that do
contain data.

• The second points to a double indirect block , which
contains the address of a block that contains the addresses of
blocks that contain pointers to the actual data blocks.

• The last pointer contains the address of a triple indirect block.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.33

Indexed Allocation VII

• Combined scheme . Another alternative, used in the UFS
(UNIX File System), is to keep the first, say, 15 pointers of
the index block in the file’s inode.

• The first 12 of these pointers point to direct blocks ; that is,
they contain addresses of blocks that contain data of the file.

• If the block size is 4 KB, then up to 48 KB of data can be
accessed directly.

• The next three pointers point to indirect blocks.
• The first points to a single indirect block , which is an index

block containing not data but the addresses of blocks that do
contain data.

• The second points to a double indirect block , which
contains the address of a block that contains the addresses of
blocks that contain pointers to the actual data blocks.

• The last pointer contains the address of a triple indirect block.

• Under this method, the number of blocks that can be
allocated to a file exceeds the amount of space addressable
by the 4-byte file pointers used by many OSs (32-bit file
pointer: 4 GB).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.33

Indexed Allocation VII

• Combined scheme . Another alternative, used in the UFS
(UNIX File System), is to keep the first, say, 15 pointers of
the index block in the file’s inode.

• The first 12 of these pointers point to direct blocks ; that is,
they contain addresses of blocks that contain data of the file.

• If the block size is 4 KB, then up to 48 KB of data can be
accessed directly.

• The next three pointers point to indirect blocks.
• The first points to a single indirect block , which is an index

block containing not data but the addresses of blocks that do
contain data.

• The second points to a double indirect block , which
contains the address of a block that contains the addresses of
blocks that contain pointers to the actual data blocks.

• The last pointer contains the address of a triple indirect block.

• Under this method, the number of blocks that can be
allocated to a file exceeds the amount of space addressable
by the 4-byte file pointers used by many OSs (32-bit file
pointer: 4 GB).

• Many UNIX implementations now support up to 64-bit file
pointers (terabytes).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.34

Indexed Allocation VIII

A UNIX inode is shown in Fig. 14.

Figure: The UNIX inode.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.35

Bit Vector I

• Frequently, the free-space list is implemented as a bit
map or bit vector .

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.36

Bit Vector II

• Keeping it in main memory is possible for smaller disks but
not necessarily for larger ones.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.36

Bit Vector II

• Keeping it in main memory is possible for smaller disks but
not necessarily for larger ones.

• A 1.3-GB disk with 512-byte blocks would need a bit map
of over 332 KB to track its free blocks, although clustering
the blocks in groups of four reduces this number to over 83
KB per disk
(1.3 ∗ 1020 ∗ 1024 ∗ 1024/512/8/1.024 = 332.8 KB).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.36

Bit Vector II

• Keeping it in main memory is possible for smaller disks but
not necessarily for larger ones.

• A 1.3-GB disk with 512-byte blocks would need a bit map
of over 332 KB to track its free blocks, although clustering
the blocks in groups of four reduces this number to over 83
KB per disk
(1.3 ∗ 1020 ∗ 1024 ∗ 1024/512/8/1.024 = 332.8 KB).

• A 40-GB disk with 1-KB blocks requires over 5 MB to store
its bit map
(40 ∗ 1020 ∗ 1024 ∗ 1024/1024/8/1.024 = 5.12 MB).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.36

Bit Vector II

• Keeping it in main memory is possible for smaller disks but
not necessarily for larger ones.

• A 1.3-GB disk with 512-byte blocks would need a bit map
of over 332 KB to track its free blocks, although clustering
the blocks in groups of four reduces this number to over 83
KB per disk
(1.3 ∗ 1020 ∗ 1024 ∗ 1024/512/8/1.024 = 332.8 KB).

• A 40-GB disk with 1-KB blocks requires over 5 MB to store
its bit map
(40 ∗ 1020 ∗ 1024 ∗ 1024/1024/8/1.024 = 5.12 MB).

• A 500-GB disk with a 1-KB block and a 32-bit (4 bytes)
disk block number, we need 488 million bits for the map,
which requires just under 60000 1-KB blocks to store
((500x109/1KB)/1024/8).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.37

Linked List I
• Another approach to free-space management is to link

together all the free disk blocks, keeping a pointer to the
first free block in a special location on the disk and caching
it in memory.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.37

Linked List I
• Another approach to free-space management is to link

together all the free disk blocks, keeping a pointer to the
first free block in a special location on the disk and caching
it in memory.

• This first block contains a pointer to the next free disk
block, and so on. In our earlier example (Section 1);

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.37

Linked List I
• Another approach to free-space management is to link

together all the free disk blocks, keeping a pointer to the
first free block in a special location on the disk and caching
it in memory.

• This first block contains a pointer to the next free disk
block, and so on. In our earlier example (Section 1);

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.37

Linked List I
• Another approach to free-space management is to link

together all the free disk blocks, keeping a pointer to the
first free block in a special location on the disk and caching
it in memory.

• This first block contains a pointer to the next free disk
block, and so on. In our earlier example (Section 1);

Figure: Linked free-space list on disk.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.37

Linked List I
• Another approach to free-space management is to link

together all the free disk blocks, keeping a pointer to the
first free block in a special location on the disk and caching
it in memory.

• This first block contains a pointer to the next free disk
block, and so on. In our earlier example (Section 1);

Figure: Linked free-space list on disk.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.37

Linked List I
• Another approach to free-space management is to link

together all the free disk blocks, keeping a pointer to the
first free block in a special location on the disk and caching
it in memory.

• This first block contains a pointer to the next free disk
block, and so on. In our earlier example (Section 1);

Figure: Linked free-space list on disk.

• We would keep a pointer to
block 2 as the first free
block.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.37

Linked List I
• Another approach to free-space management is to link

together all the free disk blocks, keeping a pointer to the
first free block in a special location on the disk and caching
it in memory.

• This first block contains a pointer to the next free disk
block, and so on. In our earlier example (Section 1);

Figure: Linked free-space list on disk.

• We would keep a pointer to
block 2 as the first free
block.

• Block 2 would contain a
pointer to block 3,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.37

Linked List I
• Another approach to free-space management is to link

together all the free disk blocks, keeping a pointer to the
first free block in a special location on the disk and caching
it in memory.

• This first block contains a pointer to the next free disk
block, and so on. In our earlier example (Section 1);

Figure: Linked free-space list on disk.

• We would keep a pointer to
block 2 as the first free
block.

• Block 2 would contain a
pointer to block 3,

• which would point to block
4,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.37

Linked List I
• Another approach to free-space management is to link

together all the free disk blocks, keeping a pointer to the
first free block in a special location on the disk and caching
it in memory.

• This first block contains a pointer to the next free disk
block, and so on. In our earlier example (Section 1);

Figure: Linked free-space list on disk.

• We would keep a pointer to
block 2 as the first free
block.

• Block 2 would contain a
pointer to block 3,

• which would point to block
4,

• which would point to block
5,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.37

Linked List I
• Another approach to free-space management is to link

together all the free disk blocks, keeping a pointer to the
first free block in a special location on the disk and caching
it in memory.

• This first block contains a pointer to the next free disk
block, and so on. In our earlier example (Section 1);

Figure: Linked free-space list on disk.

• We would keep a pointer to
block 2 as the first free
block.

• Block 2 would contain a
pointer to block 3,

• which would point to block
4,

• which would point to block
5,

• which would point to block
8, and so on (see Fig. 15).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.38

Linked List II

Keeping it in main memory;

• With a 1-KB block and a 32-bit (4 bytes) disk block
number, each block on the free list holds the numbers of
255 free blocks. (1KB/32-bit=256; one slot is needed for
the pointer to the next block. The number of blocks that
could be addressed:232

≃ 4.3x109).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.38

Linked List II

Keeping it in main memory;

• With a 1-KB block and a 32-bit (4 bytes) disk block
number, each block on the free list holds the numbers of
255 free blocks. (1KB/32-bit=256; one slot is needed for
the pointer to the next block. The number of blocks that
could be addressed:232

≃ 4.3x109).

• A 500-GB disk, which has about 488 million
(500x109/1KB) disk blocks . To store all these addresses
at 255 per block requires about 1.9 million blocks
(500x109/1KB/255). Generally, free blocks are used to
hold the free list, so the storage is essentially free.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.38

Linked List II

Keeping it in main memory;

• With a 1-KB block and a 32-bit (4 bytes) disk block
number, each block on the free list holds the numbers of
255 free blocks. (1KB/32-bit=256; one slot is needed for
the pointer to the next block. The number of blocks that
could be addressed:232

≃ 4.3x109).

• A 500-GB disk, which has about 488 million
(500x109/1KB) disk blocks . To store all these addresses
at 255 per block requires about 1.9 million blocks
(500x109/1KB/255). Generally, free blocks are used to
hold the free list, so the storage is essentially free.

• It is not surprising that the bitmap requires less space
(60000 blocks), since it uses 1 bit per block, versus 32 bits
in the linked list model. Only if the disk is nearly full (i.e.,
has few free blocks) will the linked list scheme require
fewer blocks than the bitmap.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.39

Linked List III

(a) (b)

Free disk blocks: 16, 17, 18

A bitmapA 1-KB disk block can hold 256

32-bit disk block numbers

86

234

897

422

140

223

223

160

126

142

141

1001101101101100

0110110111110111

1010110110110110

0110110110111011

1110111011101111

1101101010001111

0000111011010111

1011101101101111

1100100011101111

0111011101110111

1101111101110111

230

162

612

342

214

160

664

216

320

180

482

42

136

210

97

41

63

21

48

262

310

516

Figure: (a) Storing the free list on a linked list. (b) A bitmap.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.40

Log-Structured File Systems I

• The one parameter that is not improving and bounds is
disk seek time.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.40

Log-Structured File Systems I

• The one parameter that is not improving and bounds is
disk seek time.

• The idea that drove the LFS (the Log-structured File
System) design is that disk caches are increasing rapidly.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.40

Log-Structured File Systems I

• The one parameter that is not improving and bounds is
disk seek time.

• The idea that drove the LFS (the Log-structured File
System) design is that disk caches are increasing rapidly.

• Consequently, it is now possible to satisfy a very
substantial fraction of all read requests directly from the
file system cache, with no disk access needed.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.40

Log-Structured File Systems I

• The one parameter that is not improving and bounds is
disk seek time.

• The idea that drove the LFS (the Log-structured File
System) design is that disk caches are increasing rapidly.

• Consequently, it is now possible to satisfy a very
substantial fraction of all read requests directly from the
file system cache, with no disk access needed.

• Most disk accesses will be writes. In most file systems,
writes are done in very small chunks.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.40

Log-Structured File Systems I

• The one parameter that is not improving and bounds is
disk seek time.

• The idea that drove the LFS (the Log-structured File
System) design is that disk caches are increasing rapidly.

• Consequently, it is now possible to satisfy a very
substantial fraction of all read requests directly from the
file system cache, with no disk access needed.

• Most disk accesses will be writes. In most file systems,
writes are done in very small chunks.

• Small writes are highly inefficient, since a 50-µsec disk
write is often preceded by a 10-msec seek and a 4-msec
rotational delay.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.40

Log-Structured File Systems I

• The one parameter that is not improving and bounds is
disk seek time.

• The idea that drove the LFS (the Log-structured File
System) design is that disk caches are increasing rapidly.

• Consequently, it is now possible to satisfy a very
substantial fraction of all read requests directly from the
file system cache, with no disk access needed.

• Most disk accesses will be writes. In most file systems,
writes are done in very small chunks.

• Small writes are highly inefficient, since a 50-µsec disk
write is often preceded by a 10-msec seek and a 4-msec
rotational delay.

• With these parameters, disk efficiency drops to a fraction
of 1 percent.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.40

Log-Structured File Systems I

• The one parameter that is not improving and bounds is
disk seek time.

• The idea that drove the LFS (the Log-structured File
System) design is that disk caches are increasing rapidly.

• Consequently, it is now possible to satisfy a very
substantial fraction of all read requests directly from the
file system cache, with no disk access needed.

• Most disk accesses will be writes. In most file systems,
writes are done in very small chunks.

• Small writes are highly inefficient, since a 50-µsec disk
write is often preceded by a 10-msec seek and a 4-msec
rotational delay.

• With these parameters, disk efficiency drops to a fraction
of 1 percent.

• While the writes can be delayed, doing so exposes the file
system to serious consistency problems if a crash occurs
before the writes are done.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.41

Log-Structured File Systems II

• From this reasoning, the LFS designers decided to
re-implement the UNIX file system in such a way as to
achieve the full bandwidth of the disk.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.41

Log-Structured File Systems II

• From this reasoning, the LFS designers decided to
re-implement the UNIX file system in such a way as to
achieve the full bandwidth of the disk.

• The basic idea is to structure the entire disk as a log.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.41

Log-Structured File Systems II

• From this reasoning, the LFS designers decided to
re-implement the UNIX file system in such a way as to
achieve the full bandwidth of the disk.

• The basic idea is to structure the entire disk as a log.

• The logging algorithms have been also applied
successfully to the problem of consistency checking.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.41

Log-Structured File Systems II

• From this reasoning, the LFS designers decided to
re-implement the UNIX file system in such a way as to
achieve the full bandwidth of the disk.

• The basic idea is to structure the entire disk as a log.

• The logging algorithms have been also applied
successfully to the problem of consistency checking.

• The resulting implementations are known as log-based
transaction-oriented (or journaling) file systems.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.41

Log-Structured File Systems II

• From this reasoning, the LFS designers decided to
re-implement the UNIX file system in such a way as to
achieve the full bandwidth of the disk.

• The basic idea is to structure the entire disk as a log.

• The logging algorithms have been also applied
successfully to the problem of consistency checking.

• The resulting implementations are known as log-based
transaction-oriented (or journaling) file systems.

• Such file systems are actually in use (NTFS, ext3,
ReiserFS).

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.41

Log-Structured File Systems II

• From this reasoning, the LFS designers decided to
re-implement the UNIX file system in such a way as to
achieve the full bandwidth of the disk.

• The basic idea is to structure the entire disk as a log.

• The logging algorithms have been also applied
successfully to the problem of consistency checking.

• The resulting implementations are known as log-based
transaction-oriented (or journaling) file systems.

• Such file systems are actually in use (NTFS, ext3,
ReiserFS).

• Recall that a system crash can cause inconsistencies
among on-disk file system data structures, such as
directory structures, free-block pointers, and free FCB
pointers.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.42

Log-Structured File Systems III

• A typical operation, such as file create, can involve many
structural changes within the file system on the disk.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.42

Log-Structured File Systems III

• A typical operation, such as file create, can involve many
structural changes within the file system on the disk.

• Directory structures are modified,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.42

Log-Structured File Systems III

• A typical operation, such as file create, can involve many
structural changes within the file system on the disk.

• Directory structures are modified,
• FCBs are allocated,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.42

Log-Structured File Systems III

• A typical operation, such as file create, can involve many
structural changes within the file system on the disk.

• Directory structures are modified,
• FCBs are allocated,
• Data blocks are allocated,

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.42

Log-Structured File Systems III

• A typical operation, such as file create, can involve many
structural changes within the file system on the disk.

• Directory structures are modified,
• FCBs are allocated,
• Data blocks are allocated,
• The free counts for all of these blocks are decreased.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.42

Log-Structured File Systems III

• A typical operation, such as file create, can involve many
structural changes within the file system on the disk.

• Directory structures are modified,
• FCBs are allocated,
• Data blocks are allocated,
• The free counts for all of these blocks are decreased.

• These changes can be interrupted by a crash, and
inconsistencies among the structures can result.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.42

Log-Structured File Systems III

• A typical operation, such as file create, can involve many
structural changes within the file system on the disk.

• Directory structures are modified,
• FCBs are allocated,
• Data blocks are allocated,
• The free counts for all of these blocks are decreased.

• These changes can be interrupted by a crash, and
inconsistencies among the structures can result.

• For example, the free FCB count might indicate that an
FCB had been allocated, but the directory structure might
not point to the FCB.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.42

Log-Structured File Systems III

• A typical operation, such as file create, can involve many
structural changes within the file system on the disk.

• Directory structures are modified,
• FCBs are allocated,
• Data blocks are allocated,
• The free counts for all of these blocks are decreased.

• These changes can be interrupted by a crash, and
inconsistencies among the structures can result.

• For example, the free FCB count might indicate that an
FCB had been allocated, but the directory structure might
not point to the FCB.

• The consistency check may not be able to recover the
structures, resulting in loss of files and even entire
directories.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.42

Log-Structured File Systems III

• A typical operation, such as file create, can involve many
structural changes within the file system on the disk.

• Directory structures are modified,
• FCBs are allocated,
• Data blocks are allocated,
• The free counts for all of these blocks are decreased.

• These changes can be interrupted by a crash, and
inconsistencies among the structures can result.

• For example, the free FCB count might indicate that an
FCB had been allocated, but the directory structure might
not point to the FCB.

• The consistency check may not be able to recover the
structures, resulting in loss of files and even entire
directories.

• The solution to this problem is to apply log-based recovery
techniques to file-system metadata updates.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.42

Log-Structured File Systems III

• A typical operation, such as file create, can involve many
structural changes within the file system on the disk.

• Directory structures are modified,
• FCBs are allocated,
• Data blocks are allocated,
• The free counts for all of these blocks are decreased.

• These changes can be interrupted by a crash, and
inconsistencies among the structures can result.

• For example, the free FCB count might indicate that an
FCB had been allocated, but the directory structure might
not point to the FCB.

• The consistency check may not be able to recover the
structures, resulting in loss of files and even entire
directories.

• The solution to this problem is to apply log-based recovery
techniques to file-system metadata updates.

• Both NTFS and the Veritas (improved UFS) file system
use this method, and it is an optional addition to UFS on
Solaris 7 and beyond.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.43

Log-Structured File Systems IV

• Fundamentally, all metadata changes are written
sequentially to a log. Each set of operations for performing
a specific task is a transaction .

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.43

Log-Structured File Systems IV

• Fundamentally, all metadata changes are written
sequentially to a log. Each set of operations for performing
a specific task is a transaction .

• The log may be in a separate section of the file system or
even on a separate disk.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.43

Log-Structured File Systems IV

• Fundamentally, all metadata changes are written
sequentially to a log. Each set of operations for performing
a specific task is a transaction .

• The log may be in a separate section of the file system or
even on a separate disk.

• If the system crashes, the log file will contain zero or more
transactions.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.43

Log-Structured File Systems IV

• Fundamentally, all metadata changes are written
sequentially to a log. Each set of operations for performing
a specific task is a transaction .

• The log may be in a separate section of the file system or
even on a separate disk.

• If the system crashes, the log file will contain zero or more
transactions.

• Any transactions it contains were not completed to the file
system, even though they were committed by the OS, so
they must now be completed.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.43

Log-Structured File Systems IV

• Fundamentally, all metadata changes are written
sequentially to a log. Each set of operations for performing
a specific task is a transaction .

• The log may be in a separate section of the file system or
even on a separate disk.

• If the system crashes, the log file will contain zero or more
transactions.

• Any transactions it contains were not completed to the file
system, even though they were committed by the OS, so
they must now be completed.

• The transactions can be executed from the pointer until the
work is complete so that the file-system structures remain
consistent.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.43

Log-Structured File Systems IV

• Fundamentally, all metadata changes are written
sequentially to a log. Each set of operations for performing
a specific task is a transaction .

• The log may be in a separate section of the file system or
even on a separate disk.

• If the system crashes, the log file will contain zero or more
transactions.

• Any transactions it contains were not completed to the file
system, even though they were committed by the OS, so
they must now be completed.

• The transactions can be executed from the pointer until the
work is complete so that the file-system structures remain
consistent.

• The only problem occurs when a transaction was aborted
-that is, was not committed before the system crashed.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.43

Log-Structured File Systems IV

• Fundamentally, all metadata changes are written
sequentially to a log. Each set of operations for performing
a specific task is a transaction .

• The log may be in a separate section of the file system or
even on a separate disk.

• If the system crashes, the log file will contain zero or more
transactions.

• Any transactions it contains were not completed to the file
system, even though they were committed by the OS, so
they must now be completed.

• The transactions can be executed from the pointer until the
work is complete so that the file-system structures remain
consistent.

• The only problem occurs when a transaction was aborted
-that is, was not committed before the system crashed.

• Any changes from such a transaction that were applied to
the file system must be undone, again preserving the
consistency of the file system.

File System
Implementation

Dr. Cem Özdo ğan

File System
Implementation
File-System Structure

File-System Implementation

Overview

Partitions and Mounting

Virtual File Systems

Allocation Methods

Contiguous Allocation

Linked Allocation

Indexed Allocation

Free-Space Management

Bit Vector

Linked List

Log-Structured File
Systems

12.43

Log-Structured File Systems IV

• Fundamentally, all metadata changes are written
sequentially to a log. Each set of operations for performing
a specific task is a transaction .

• The log may be in a separate section of the file system or
even on a separate disk.

• If the system crashes, the log file will contain zero or more
transactions.

• Any transactions it contains were not completed to the file
system, even though they were committed by the OS, so
they must now be completed.

• The transactions can be executed from the pointer until the
work is complete so that the file-system structures remain
consistent.

• The only problem occurs when a transaction was aborted
-that is, was not committed before the system crashed.

• Any changes from such a transaction that were applied to
the file system must be undone, again preserving the
consistency of the file system.

• This recovery is all that is needed after a crash, eliminating
any problems with consistency checking.

	File System Implementation
	File-System Structure
	File-System Implementation
	Allocation Methods
	Free-Space Management
	Log-Structured File Systems

