1 OPERATING SYSTEMS LABORATORY
I - UNIX Tutorial - Additional

In this text, UNIX will be used controversial with Linux. This tutorial is
intended to make an introduction to the operating system concepts which
will be discussed in lecture hours.

e Understanding commands and processes

e when you enter a command it invokes a program. While this program
is running it is called a process. It is important to grasp that although
there is only one copy of a program held in the file system, any number
of processes can be invoked which run this program.

e when the operating system is started after a boot, a single process is
started. This process is the parent of all subsequent processes. Each
process created on the system has a unique number, known as its PID,
associated with it.

e when you login to the system a process is started to run your shell
program. Any processes that are started from within your shell - such
as entering a command - are the children of this process. A process can
have many children, but only one parent.

e Every computer has an operating system.The UNIX operating system
has three important features;
— kernel, (1.0.1)
— shell, (1.0.2)
— filesystem (1.0.3).

1.0.1 The Kernel

e As its name implies, the kernel is at the core of each UNIX system.

e Basically, the kernel is a large program that is loaded in whenever the
system is started up - referred to as a boot of the system, and it controls
the allocation of hardware resources from that point forward.

e The kernel knows what hardware resources are available (like the pro-
cessor(s), the on-board memory, the disk drives, network interfaces,
etc.), and it has the necessary programs to talk to all the devices con-
nected to it. It manages the entire resources of the system, presenting
them to you and every other user as a coherent system.

e You do not need to know anything about the kernel in order to use a
UNIX system. This information is provided for your information only.

e Location of the kernel file; the root directory contains both the
boot program and the file containing the kernel for the system. The
name of this kernel file varies from one manufacturer’s machine to an-
other. You can search for it as;
$ls -1 /boot/vmlinuz*

-rw-r-r— 1 root root 2359087 Sep 22 00:20 vmlinuz-2.4.26

In this example; Linux kernel is given, but a similar name can be found
for the other variants of UNIX.

1.0.2 The Shell

Display Intexpret
prompt conmand
\ Execute £/
conmand
Interpreter
doop

Figure 1: The shell

e Whenever you login to a Unix system you are placed in a program
called the shell. The shell is perhaps the most important program on
the UNIX system, from the end-user’s standpoint.

e The shell is your interface with the UNIX system, the middleman be-
tween you and the kernel. The shell acts as a command interpreter; it
takes each command and passes it to the operating system kernel to
be acted upon. It then displays the results of this operation on your
screen.

e The shell is a program that the UNIX kernel runs for you. Many basic
shell commands are actually subroutines built in to the shell program.
The commands that are not built in to the shell require the kernel to
start another process to run them.

Features provided by the shell; create an environment that
meets your needs, write shell scripts, define command aliases, ma-
nipulate the command history, automatically complete the com-
mand line, edit the command line, etc.

Special characters in UNIX; UNIX recognizes certain special
characters as command directives. If you use one of the UNIX
special characters in a command, make sure you understand what
it does. The special characters are:

/<>18% &*|{} and;

When creating files and directories on UNIX, it is safest to only use
the characters A-Z, a-z, 0-9, and the period, dash, and underscore
characters.

Getting help on UNIX; to access the on-line manuals, use the
man command, followed by the name of the command you need
help with. EXAMPLE: Type

* $man ls ; to see the manual page for the “Is” command.

* $man man; to get help on using the manual.

e Description of different types of shell; there are several different
shells available for Unix. You can use any one of these shells if they are
available on your system. And you can switch between the different

shells;

Bourne shell (sh),

C shell (csh),

TC shell (tcsh),

Korn shell (ksh),

Bourne Again SHell (bash).

Changing your shell; you can switch to another shell for the remainder
of your login session. To do this enter the shell command name at the
system prompt. For example:

$csh This switches you from your current shell to the C shell.

e The environment variables are passed to all programs that are not
built in to the shell, and may be consulted, or modified, by the pro-
gram. By convention, environment variables are given in upper case
letters. To view all the environment variables, use the command ;
$printenv
You can also view a particular environment variable using the echo
command:
$echo STERM
The above command echos the value of the TERM environment vari-
able to the standard output. Important environment variables

— TERM; environment variable defines the type of terminal that
you are using. Most UNIX systems have a database of terminal
types, and the capabilities of each terminal type.

— PATH; variable contains the names of directories to be searched
for programs that correspond to command names. When you is-
sue a command to the shell, the shell searches sequentially through
each directory in the PATH list until it finds an executable pro-
gram with the command name you typed,

— USER; variable contains your username. Any time you access
a file or directory, the access permissions are checked against the
value of USER,

— HOME; variable contains the name of your home directory. When
you issue the cd command with no directory argument, you will
be placed in the directory defined in the HOME environment vari-
able. The HOME variable is also where the shell will look for the
user login scripts,

— EDITOR; variable is used by programs that must invoke a text
editor to provide the ability to edit or compose documents,

— HOST; environment variable contains the name of the host ma-
chine that is running your shell program. When you connect to
a remote host through telnet or ftp, the name of your host is re-
layed to the remote machine, so the administrators of the remote
machine can keep track of who is connecting, and from where.

e Setting environment and shell variables; the exact mechanism for
setting the environment and shell variables depends upon the type of
shell you're using;

— sh, or ksh; EDITOR=emacs;export EDITOR,

— csh; setenv EDITOR emacs.

e Summary of shell facilities; See table 1. The sign * means which is

Table 1: Summary of shell facilities

Facility

Bourne

C

TC

Korn

BASH

Explanation

command history No

Yes

Yes

Yes

Yes

(Allows previous
commands to be
saved, edited, and

reused)

command alias

Yes

Yes

Yes

Yes

(Allows the user to

rename commands)

shell scripts

Yes

Yes

Yes

Yes

(Allows the user to

shell programming)

filename completion No

Yes*

Yes

Yes*

Yes

(Allows automatic
completion of par-
tially typed file

name)

command line editing No

Yes

Yes*

Yes

(Allows the use of an
editor to modify the

command line text)

job control

Yes

Yes

Yes

Yes

(Allows processes to
be run in the back-

ground)

not the default setting for this shell.

1.0.3 UNIX file system

e All the stored information on a UNIX computer is kept in a filesystem.

e The place in the filesystem tree where you are located is called the
current working directory.

e Every item in the UNIX filesystem tree is either a file, or a directory.

e A directory is like a file folder. A directory contained within another
is called the child of the other. A directory in the filesystem tree may
have many children, but it can only have one parent.

e A file can hold information, but cannot contain other files, or directo-
ries. The file is the smallest unit in which information is stored.

e The UNIX file system has several important features.

— Different types of file; to you, the user, it appears as though there
is only one type of file in UNIX - the file which is used to hold
your information. In fact, the UNIX filesystem contains several
types of file.

x Ordinary files; this type of file is used to store your infor-
mation, such as some text you have written or an image you
have drawn. Files which you create belong to you - you are
said to "own” them - and you can set access permissions to
control which other users can have access to them. Any file
is always contained within a directory.

x Directories; a directory is a file that holds other files and
other directories. You can create directories in your home
directory to hold files and other sub-directories. Directories
which you create belong to you, too.

x Special files; this type of file is used to represent a real
physical device such as a printer, tape drive or terminal. It
may seem unusual to think of a physical device as a file, but
it allows you to send the output of a command to a device in
the same way that you send it to a file. For example:
$cat scream.au > /dev/audio
This sends the contents of the sound file scream.au to the file
/dev/audio which represents the audio device attached to the
system.

x Pipes; UNIX allows you to link two or more commands to-
gether using a pipe. The pipe acts as a temporary file which
only exists to hold data from one command until it is read by
another. The pipe takes the standard output from one com-
mand and uses it as the standard input to another command.
$ commandl | command2 | command3
The | (vertical bar) character is used to represent the pipeline
connecting the commands. With practice you can use pipes
to create complex commands by combining several simpler
commands together.

— Structure of the file system; the UNIX file system is organized as
a hierarchy of directories starting from a single directory called
root which is represented by a / (slash). Immediately below the
root directory are several system directories that contain infor-
mation required by the operating system. The standard system

directories are given below. Each one contains specific types of
file. The details may vary between different UNIX systems, but
these directories should be common to all.

« / ; The root of ALL files and directories

« /bin/ ; Executable system utilities, like Is, cp, rm

*

/boot/ ; The kernel program

*

/dev/ ; Where special device files are kept

*

/ete/ ; System configuration files and databases

*

/home/ ; Where the personal files and directories of all users
are kept

*

/lib/ ; Operating system and programming libraries
/lost+found/ ; Where the file system checker puts detached
files

Jusr/bin/ ; Additional user commands

*

*

*

/root/ ; The home directory of super user. The contents of
this directory is usually hidden for other users available on
the system.

*

/tmp/ ; System scratch files (all users can write here)

*

/usr/include/ ; Standard system header files

*

Jusr/lib/ ; More programming and system call libraries

*

Jusr/local/ ; Typically a place where local utilities go

* /usr/man ; The manual pages are kept here

— Home directory; any UNIX system can have many users on it at
any one time. As a user you are given a home directory in which
you are placed whenever you log on to the system. User’s home
directories are usually grouped together under a system directory
such as /home. A large UNIX system may have several hundred
users, with their home directories grouped in subdirectories ac-
cording to some schema such as their organizational department.

— Pathnames; every file and directory in the file system can be iden-
tified by a complete list of the names of the directories that are on
the route from the root directory to that file or directory. Each
directory name on the route is separated by a / (forward slash).
For example: /usr/bin/gcc. This gives the full pathname start-
ing at the root directory and going down through the directories
usr and bin to the file gce - the GNU ¢ compiler.

1.1 History of the UNIX operating system

UNIX is not one single operating system, it is a family of operating systems.
Different computer manufacturers produce their own versions of UNIX. Al-
though these are mostly similar, there are small differences which can cause
problems. The most obvious examples are the layout of the file system and
the exact format of certain commands.

The first version of UNIX was created in 1969 by Kenneth Thompson and
Dennis Ritchie, system engineers at AT&T’s Bell Labs, in an effort to provide
a multiuser, multitasking system for use by programmers. The philosophy
behind the design of UNIX was to provide simple, yet powerful utilities that
could be pieced together in a flexible manner to perform a wide variety
of tasks. It went through many revisions and gained in popularity until
1977, when it was first made commercially available by Interactive Systems
Corporation.

At the same time a team from the University of California at Berkeley
was working to improve UNIX. In 1977 it released the first Berkeley Soft-
ware Distribution, which became known as BSD. Over time this won favor
through innovations such as the C shell.

Meanwhile the AT&T version was developing in different ways. The 1978
release of Version 7 included the Bourne Shell for the first time. By 1983 com-
mercial interest was growing and Sun Microsystems produced a UNIX work-
station. System V appeared, directly descended from the original AT&T
UNIX and the prototype of the more widely used variant today.

1.1.1 Modern variants of UNIX

There are two main versions of UNIX in use today: System V and BSD.
System V is the more popular of the two.

From a user’s perspective they are very similar and you are unlikely to
have difficulty unless you use more than one type of system. In this case you
might notice differences in the structure of the file system or in how certain
commands behave.

1.2 Debugging C/C++ Programs Using gdb
1.2.1 Creating Debug-Ready Code

e Normally, when we write a program, we want to be able to debug it

— that is, test it using a debugger that allows running it step by
step,

— setting a break point before a given command is executed,

— looking at contents of variables during program execution, and so
on.

e In order for the debugger to be able to relate between the executable
program and the original source code, we need to tell the compiler to
insert information to the resulting executable program that’ll help the
debugger. This information is called ”debug information”. In order to
add that to our program, lets compile it differently:
$gcc -g codel.c -o codel
The 7-g” flag tells the compiler to use debug info, and is recognized by
mostly any compiler out there.

e You will note that the resulting file is much larger than that created
without usage of the ”-g” flag.

e The difference in size is due to the debug information. We may still
remove this debug information using the strip command, like this:
$strip codel
You’ll note that the size of the file now is even smaller than if we didn’t
use the ”-g” flag in the first place. This is because even a program com-
piled without the ”-g” flag contains some symbol information (function
names, for instance), that the strip command removes. You may want
to read strip’s manual page (man strip) to understand more about
what this command does.

1.2.2 Creating Optimized Code

o After we created a program and debugged it properly, we normally
want it to compile into an efficient code, and the resulting file to be as
small as possible.

e The compiler can help us by optimizing the code, either for speed (to
run faster), or for space (to occupy a smaller space), or some combina-
tion of the two. The basic way to create an optimized program would
be like this:
$gcc -O codel.c -0 codel
The 7-O” flag tells the compiler to optimize the code. This also means
the compilation will take longer, as the compiler tries to apply various
optimization algorithms to the code.

This optimization is supposed to be conservative, in that it ensures
us the code will still perform the same functionality as it did when
compiled without optimization.

Usually can define an optimization level by adding a number to the
7-O” flag. The higher the number - the better optimized the result-
ing program will be, and the slower the compiler will complete the
compilation.

1.2.3 Getting Extra Compiler Warnings

Normally the compiler only generates error messages about erroneous
code that does not comply with the C standard, and warnings about
things that usually tend to cause errors during runtime.

However, we can usually instruct the compiler to give us even more
warnings, which is useful to improve the quality of our source code,
and to expose bugs that will really bug us later.

With gcc, this is done using the "-W” flag. For example, to get the
compiler to use all types of warnings it is familiar with, we’ll use a
command line like this:

$gcc -Wall codel.c -o codel

This will first annoy us - we’ll get all sorts of warnings that might seem
irrelevant.

However, it is better to eliminate the warnings than to eliminate the
usage of this flag. Usually, this option will save us more time than
it will cause us to waste, and if used consistently, we will get used to
coding proper code without thinking too much about it.

One should also note that some code that works on some architecture
with one compiler, might break if we use a different compiler, or a
different system, to compile the code on. When developing on the first
system, we’ll never see these bugs, but when moving the code to a
different platform, the bug will suddenly appear. Also, in many cases
we eventually will want to move the code to a new system, even if we
had no such intentions initially.

10

1.2.4 Compiling A Single-Source ”C++” Program

e Now that we saw how to compile C programs, the transition to C++

programs is rather simple. All we need to do is use a C++ compiler,
in place of the C compiler we used so far.

e So, if our program source is in a file named codel.cc ('cc’ to denote

C++ code. Some programmers prefer a suffix of 'C’ for C++ code),
we will use a command such as the following:
$g++ codel.cc -o codel

1.2.5 Getting a Deeper Understanding - Compilation Steps

Now that we’'ve learned that compilation is not just a simple process, lets
try to see what is the complete list of steps taken by the compiler in order
to compile a C program.

1.

Driver - what we invoked as ”"gcc”. This is actually the "engine”, that
drives the whole set of tools the compiler is made of. We invoke it, and
it begins to invoke the other tools one by one, passing the output of
each tool as an input to the next tool.

C Pre-Processor - normally called "cpp”. It takes a C source file,

and handles all the pre-processor definitions (#include files, #define
macros, conditional source code inclusion with #ifdef, etc.) You can
invoke it separately on your program, usually with a command like:
$gcc -E codel.c

Try this and see what the resulting code looks like.

. The C Compiler - normally called "cc1”. This is the actual compiler,

that translates the input file into assembly language. As you saw, we
used the ”-¢” flag to invoke it, along with the C Pre-Processor, (and
possibly the optimizer too, read on), and the assembler.

. Optimizer - sometimes comes as a separate module and sometimes as

the found inside the compiler module. This one handles the optimiza-
tion on a representation of the code that is language-neutral. This way,
you can use the same optimizer for compilers of different programming
languages.

. Assembler - sometimes called ”as”. This takes the assembly code gen-

erated by the compiler, and translates it into machine language code
kept in object files. With gcc, you could tell the driver to generated

11

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code1.cc

only the assembly code, by a command like:
$gcc -S codel.c

6. Linker-Loader - This is the tool that takes all the object files (and
C libraries), and links them together, to form one executable file, in a
format the operating system supports. A Common format these days is
known as "ELF”. On SunOs systems, and other older systems, a format
named "a.out” was used. This format defines the internal structure of
the executable file - location of data segment, location of source code
segment, location of debug information and so on.

As you see, the compilation is split in to many different phases. Not all
compiler employs exactly the same phases, and sometimes (e.g. for C++
compilers) the situation is even more complex. But the basic idea is quite
similar - split the compiler into many different parts, to give the programmer
more flexibility, and to allow the compiler developers to re-use as many mod-
ules as possible in different compilers for different languages (by replacing
the preprocessor and compiler modules), or for different architectures (by
replacing the assembly and linker-loader parts).

The explanations given here are specific to the "gdb” debugger, since
there are no real standards regarding the activation and usage of debuggers,
but once you know what features to expect from a debugger, it’s not too
hard to adapt your knowledge to different debuggers.

1.2.6 Invoking the ”gdb” Debugger

e Before invoking the debugger. make sure you compiled your program
(all its modules, as well as during linking) with the ”-g” flag.

e Compile the debugme.c program, and then invoke "gdb” to debug it:
$gcc -g debugme.c -o debugme
$gdb debugme
Note that we run the program from the same directory it was compiled
in, otherwise gdb won’t find the source file, and thus won’t be able to
show us where in the code we are at a given point. It is possible to ask
gdb to search for extra source files in some directory after launching it,
but for now, it’s easier to just invoke it from the correct directory.

1.2.7 Running A Program Inside The Debugger

e Once we invoked the debugger, we can run the program using the
command "run”.

12

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/debugme.c

e If the program requires command line parameters (like our debugme
program does), we can supply them to the "run” command of gdb. For
example:

(gdb) run ”hello, world” ”goodbye, world”

e Note that we used quotation marks to denote that "hello, world” is
a single parameter, and not to separate parameters (the debugger as-
sumes white-space separates the parameters).

1.2.8 Setting Breakpoints

e The problem with just running the code is that it keeps on running
until the program exits, which is usually too late. For this, breakpoints
are introduced.

e A break point is a command for the debugger to stop the execution of
the program before executing a specific source line.

e We can set break points using two methods:

1. Specifying a specific line of code to stop in:
(gdb) break debugme.c:9
Will insert a break point right before checking the command line
arguments in our program.

2. Specifying a function name, to break every time it is being called:
(gdb)break main
this will set a break point right when starting the program (as the
function "main” gets executed automatically on the beginning of
any C or C++ program).

1.2.9 Stepping A Command At A Time

e So lets see, we've invoked gdb, then typed:
(gdb break main
(gdb)run ”hello, world” ”goodbye, world”

e Then the debugger gave something like the following:
Starting program: /mnt/usb/home/ozdogan/cfiles/debugme ”hello,world”
”goodbye, world”
Breakpoint 1, main (arge=3, argv=0xbffff054) at debugme.c:16
16 if (arge j 2) { /* 2 - 1 for program name (argv[0]) and one for a
param. */
(gdb)

13

Now we want to start running the program slowly, step by step. There
are two options for that:

1. "next” - causes the debugger to execute the current command, and
stop again, showing the next command in the code to be executed.

2. "step” - causes the debugger to execute the current command, and
if it is a function call - break at the beginning of that function.
This is useful for debugging nested code.

e Now is your time to experiment with these options with our debug
program, and see how they work. It is also useful to read the debuggers
help, using the command "help break” and ”help breakpoints” to learn
how to set several breakpoints, how to see what breakpoints are set,
how to delete breakpoints, and how to apply conditions to breakpoints
(i.e. make them stop the program only if a certain expression evaluates
to “true” when the breakpoint is reached).

1.2.10 Printing Variables And Expressions

e Without being able to examine variables contents during program exe-
cution, the whole idea of using a debugger is quite lost. You can print
the contents of a variable with a command like this:

(gdb) print i

And then you’ll get a message like:

$1 =0

which means that ”i” contains the number 70”.

e Note that this requires ”i” to be in scope, or you'll get a message such
as:

No symbol ”i” in current context.

e For example, if you break inside the ”print_string” function and try to
print the value of ”7i”, you’ll get this message. You may also try to print
more complex expressions, like ”i*2” or "argv[3]”, or "argv]argc|”, and
SO on.

e In fact, you may also use type casts, call functions found in the program.
Again, this is a good time to try this out.

1.2.11 Examining The Function Call Stack

e Once we got into a break-point and examined some variables, we might
also wish to see "where we are”.

14

e That is, what function is being executed now, which function called
it, and so on. This can be done using the where command. At the
gdb command prompt, just type "where”, and you’ll see something like
this:

#0 main (argc=3, argv=0xbffff054) at debugme.c:16
This means the currently executing function is "main”, at file "de-
bugme.c”, line 23.

e We also see which arguments each function had received. If there were
more functions in the call chain, we’d see them listed in order. This
list is also called ”a stack trace”, since it shows us the structure of the
execution stack at this point in the program’s life.

e Just as we can see contents of variables in the current function, we can
see contents of variables local to the calling function, or to any other
function on the stack. For example, if we want to see the contents of
variable ”i” in function "main”, we can type the following two com-
mands:

(gdb) frame 1

(gdb) print i

The ”frame” command tells the debugger to switch to the given stack
frame (’0” is the frame of the currently executing function). At that
stage, any print command invoked will use the context of that stack
frame.

e Of-course, if we issue a "step” or "next” command, the program will
continue at the top frame, not at the frame we requested to see.

e After all, the debugger cannot "undo” all the calls and continue from
there.

1.2.12 Attaching To an Already Running Process

e [t might be that we’ll want to debug a program that cannot be launched
from the command line. This may be because the program is launched
from some system daemon (such as a CGI program on the web), and
we are too lazy to make it possible to run it directly from the command
line. Or perhaps the program takes very long time to run its initializa-
tion code, and starting it with a debugger attached to it will cause this
startup time to be much much longer.

e In order to do that, we will launch the debugger in this way:
$gdb debugme 9561

15

Here we assume that ”"debugme” is the name of the program executed,
and that 9561 is the process id (PID) of the process we want to debug.

e What happens is that gdb first tries looking for a ”core” file named
795617, and when it won’t find it, it’ll assume the supplied number is
a process ID, and try to attach to it.

e [f there process executes exactly the same program whose path we gave
to gdb (not a copy of the file. it must be the exact same file that the
process runs), it’ll attach to the program, pause its execution, and will
let us continue debugging it as if we started the program from inside
the debugger.

e Doing a "where” right when we get gdb’s prompt will show us the stack
trace of the process, and we can continue from there.

e Once we exit the debugger, It will detach itself from the process, and
the process will continue execution from where we left it.

1.2.13 Debugging A Crashed Program

e A core file contains the memory image of a process, and (assuming
the program within the process contains debug info) its stack trace,
contents of variables, and so on.

e A program is normally set to generate a core file containing its memory
image when it crashes due to signals such as SEGV or BUS.

e Provided that the shell invoking the program was not set to limit the
size of this core file, we will find this file in the working directory of the
process (either the directory from which it was started, or the directory
it last switched to using the chdir system call).

e Once we get such a core file, we can look at it by issuing the following
command:
$gdb /path/to/program/debugme core
This assumes the program was launched using this path, and the core
file is in the current directory. If it is not, we can give the path to the
core file.

e When we get the debugger’s prompt (assuming the core file was suc-
cessfully read), we can issue commands such as "print”, "where” or
"frame X”.

16

e We can not issue commands that imply execution (such as "next”, or
the invocation of function calls).

e In some situations, we will be able to see what caused the crash. One
should note that if the program crashed due to invalid memory address
access, this will imply that the memory of the program was corrupt,
and thus that the core file is corrupt as well, and thus contains bad
memory contents, invalid stack frames, etc.

e Thus, we should see the core file’s contents as one possible past, out of
many probable pasts.

17

	OPERATING SYSTEMS LABORATORY I - UNIX Tutorial - Additional
	The Kernel
	The Shell
	UNIX file system

	History of the UNIX operating system
	Modern variants of UNIX

	Debugging C/C++ Programs Using gdb
	Creating Debug-Ready Code
	Creating Optimized Code
	Getting Extra Compiler Warnings
	Compiling A Single-Source "C++" Program
	Getting a Deeper Understanding - Compilation Steps
	Invoking the "gdb" Debugger
	Running A Program Inside The Debugger
	Setting Breakpoints
	Stepping A Command At A Time
	Printing Variables And Expressions
	Examining The Function Call Stack
	Attaching To an Already Running Process
	Debugging A Crashed Program

