0.1 UNIX System initialization and Bootstrapping
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Figure 1: UNIX System initialization

e Once the kernel boots, we have a running Linux system. It isn’t very
usable, since the kernel doesn’t allow direct interactions with “user
space”.

e So, the system runs one program: init. This program is responsible
for everything else and is regarded as the father of all processes.

e The kernel then retires to its rightful position as system manager han-
dling “kernel space” (see Fig. [1).

e The process of initializing the computer and loading the operating sys-
tem is known as bootstrapping (see Fig. 2).

e Some portions of the operating system remain in main memory to pro-
vide services for critical operations, such as dispatching, interrupt han-
dling, or managing (critical) resources.

e These portions of the OS are collectively called the kernel.

Kernel = OS - transient components
remains comes and goes



System Startup

s On powerup
— everything in gystem is in random, unpredictable stae
— special hardware citenit raises RESET pin of CPU
® seis the program counter w0 O TITI)
— this address is mapped 1o ROM (Read-Only Memory)
+ BIOS (Basic Input/Output Sticam)
— sot of programs stoted in ROM
— some O8’s use only these programs
= MSDOS
— many modem sysiems use these programs to load other system

PrOgamsS
* Windows, Unix, Linux

BIOS

* General operations perfoermed by BIOS
1y find and test hardware devices
- POST (Power-On Self-Testy
2)initialize hardware devices
- creates a table of installed devices
3) find boot sector
- may be on floppy, hard drive, or CD-ROM
4) load boot seetor into memory location 0x00007¢00
5) sets the program counter 1o Ox00007¢00
- starts executing code at that address

Boot Loader

Small program stored in boot sector
Loaded by BIOS at location 0x00007¢0

« Configure a basic file system to allow
system to read from disk

« Loads kernel into memory

* Also loads another program that will begin
kernel initialization

Initial Kernel Program

+ Determines amount of RAM in system
— uses A BIOS function o do this

+ Configures hardware devices
= video card, mouse, disks, etc.
— BIOS may have done this but usually redo it
= portability
+ Switches the CPU from real to protected mode
— teal mode: fixed segment sizes, | MB memory addtessing, ad no
SESMETL PHOLECoN
— protected mode: variable segment sizes. 4 GB memory
addressing, and provides segment protoction
+ Initializes paging (virtual memory)

Final Kernel Initialization

* Sets up page tables and segment descriptor tables

- these are used by virtual memory and segmentation
hardware (more on this later)

+ Sets up interrupt vector and enables interrupts
+ Tnitializes all other kernel data structures
* Creates initial process and starts it running

— init in Linux

- gmss (Session Manager SubSystem) in NT

Figure 2: Booting the computer.



0.2

0.3

The Operating System Zoo

Mainframe operating systems

Server operating systems
Multiprocessor operating systems
Personal computer operating systems
Handheld operating systems
Embedded operating systems

Sensor node operating systems
Real-time operating systems

Smart card operating systems

Operating System Concepts

Most operating systems provide certain basic concepts and abstractions such
as processes, address spaces, and files that are central to understanding them.
e Processes

A key concept in all operating systems is the process. A process is
basically a program in execution.

Associated with each process is its address space, a list of memory
locations from 0 to some maximum, which the process can read and
write. The address space contains the executable program, the pro-
gram’s data and its stack.

Also associated with each process is a set of resources, commonly in-
cluding registers (program counter, stack pointer, ..), a list of open
files, outstanding alarms, lists of related processes, and all the other
information needed to run the program.

A process is fundamentally a container that holds all the information
needed to run a program.

In many operating systems, all the information about each process,
other than the contents of its own address space, is stored in a table
called the process table, which is an array (or linked list) of structures,
one for each process currently in existence.



e if a process can create one or more other processes (referred to as child
processes) and these processes in turn can create child processes, we
quickly arrive at the process tree structure of Fig.

e Related processes that are cooperating to get some job done often need
to communicate with one another and synchronize their activities. This
communication is called interprocess communication.

Figure 3: A process tree. Process A created two child processes, B and C.
Process B created three child processes, D, E, and F.

e Address spaces

e In a very simple operating system, only one program at a time is in the
memory. To run second program, the first one has to be removed and
the second one placed in memory. Single Tasking System.

— Simple to implement, Only one process attempting use resources.

Few security risks.
Poor utilization of the CPU and other resources.
i.e., MS-DOS

e More sophisticated operating systems allow multiple programs to be
in memory at the same time. To keep them from interfering with one
another (and with OS), some kind of protection mechanism is needed.
Multi Tasking System.

— Very complex.

— Serious security issues, how to protect one program from another
sharing the same memory.

— Much higher utilization of system resources.
— i.e., Unix, Windows NT



e Each process has some set of addresses it can use, typically running
from 0 up to some maximum.

e On many computers addresses are 32 or 64 bits, giving an address space
of 232 or 254 bytes, respectively.

o Virtual Memory: The OS keeps part of the address space in main mem-
ory and part on disk and shuttles pieces back and forth betweenthem
as needed.

o [iles

e A major function of the OS is to hide the peculiarities of the disks and
other I/O devices and present the user/programmer with a nice, clean
abstract model of device-independent files.

e To provide a place to keep files, most OS have the concept of a direc-
tory as a way of grouping files together (see Fig. ).
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Figure 4: A file system for a university department.

e The process and file hierarchies both are organized as trees, but the
similarity stops there;



— Process hierarchies are not very deep,
— Process hierarchies are typically short-lived,
— Ownership and protection also differs for processes and files.

e Every file within the directory hierarchy can be specified by giving its
path name from the top of the directory hierarchy, the root direc-
tory.

— Absolute path
— Relative path

e Before a file can be read or written, it must be opened, at which time

the permissions are checked. A°f the access is permitted, the system

returns a small integer called a file descriptor to use a subsequent
operations.

e Mounting: Consider the situation of Fig. [5a. Before the mount call
(system call), the root file system, on the hard disk, and a second
file system, on a CD-ROM, are separate and unrelated.

Root CD-ROM

@)

Figure 5: (a) Before mounting, the files on the CD-ROM are not accessible.
(b) After mounting, they are part of the file hierarchy.

e Another important concept in UNIX is the special file. Special files
are provided in order to make I/O devices look like files. That way,
they can be read and written using the same system calls as are used
for reading and writing files.

— Block special files are used to model devices that consist of a
collection of randomly addressable blocks, such as disks.



— Character special files are used to model printers, modems,
and other devices that accept or output character stream.

— /dev is the directory. /dev/lp might be the printer (once called
the line printer).

e Input/Output

e Many kinds of input and output devices exist, including keyboards,
monitors, printers, and so on. It is up to the OS to manage these
devices.

e Consequently, every OS has an I/O subsystem for managing its 1/O
devices.

— Some of the I/O software is device independent, that is, applies
to many or all I/O devices equally well.
— Other parts of it, such as device drivers, are specific to particular

I/O devices.

e Protection

e It is up to the OS to manage the system security so that files are only
accessible to authorized users.

e Files in UNIX are protected by assigning each one a 9-bit binary pro-
tection code.

— Three bit fields, one for owner, one for other members of the
owner’s group, and one for everone else.

— Each field has a bit for read access, a bit for write access, and a
bit for execute access.

— (d)yrwzr —o — —x
e In addition to file protection, there are many other security issues.

— OS must protect itself from users; reserved memory only accessible
by OS. The OS is responsible for allocating access to memory space
and CPU time and peripherals etc., and it will control dedicated
hardware facilities:

x The memory controller, control to detect and prevent unau-
thorized access.

* A timer will also be under operating system control to manage
CPU time allocation to programs competing for resources.
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— OS may protect users from another user. A fundamental require-
ment of multiple users of a shared computer system is that they
do not interfere with each other. This gives rise to the need for
separation of the programs in terms of their resource use and ac-
cess:

x If one program attempts to access main memory allocated
to some other program, the access should be denied and an
exception raised.

x If one program attempts to gain a larger proportion of the
shared CPU time, this should be prevented.

e One approach to implementing resource allocation is to have at least
two modes of CPU operation. Modes of operation:

— Supervisor (protected, kernel) mode: all (basic and privileged)
instructions available.

* All hardware and memory available. Mode the OS runs in.
Never let the user run in supervisory mode.

— User mode: a subset of instructions.

* Limited set of hardware and memory available. Mode all user
programs run in.

x 1/0 protection, all I/O operations are privileged; so user pro-
grams can only access /O by sending a request to the (con-
trolling) operating system.

x Memory protection, base/limit registers (in early systems),
memory management unit, (MMU, in modern systems); so
user programs can only access the memory that the operating
system has allocated.

« CPU control, timer (alarm clock), context switch; so user pro-
grams can only read the time of day, and can only have as
much CPU time as the operating system allocates.

e The shell (see Fig.

e UNIX command interpreter, called the shell. Although it is not part
of the OS, it makes heavy use of many operating system features and
serves as a good example of hot the system calls can be used.

e [t is also the primary interface between a user sitting at his terminal
and the operating system, unless the user is using a graphical user
interface.



e When any user logs in, a shell is started up. The shell has the terminal
as standart input and standard output. It starts out by typing the
prompt, a character such as a dollar sign, which tells the user that the
shell is waiting to accept a command.

e When a command is typed, the shell forks off a new process. This
child process must execute the user command.

e A highly simplified shell illustrating the use of fork, waitpid, and execve
is shown in Fig. (6l

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt( ); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() !'=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* wait for child to exit */
}else {
/* Child code. */
execve(command, parameters, 0); /* execute command */
}
}

Figure 6: A stripped-down shell.

0.4 System Calls

e The system calls available in the abstraction interface vary from OS to
OS (although the underlying concepts tend to be similar).

e Any single-CPU computer can execute only one instruction at a time.
If a process is running a user program in user mode and needs a system
service, such as reading a data from a file, it has to execute a trap
instruction to tarnsfer control to the OS.

e OS carries out the system call and returns control to the instruction
following the system call.

e count = read(fd,buf fer,nbytes); read - system call.



Address

OXFFFFFFFF _
Return to caller Librar
Trap to the kernel procegure
5| Put code for read in register read
10,
4
User space e
Increment SP 11
r Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
6 9
* 7
Kernel space . 7 8| syscall
(Operating system) Dl handler

Figure 7: The 11 steps in making the system call - read(fd, buffer, nbytes).

e Step 4: Actual call to the library procedure.

e Step 5: This procedure puts the system call number in a place where
the OS expects it, such as a register.

e Step 6: Then it executes a TRAP instruction to switch from user mode
to kernel mode and start execution at a fixed address within the ker-
nel. The 11 steps in making the system call read(fd, buffer, nbytes).

e Step 7: The kernel code that starts following the TRAP examines
the system call number and then dispatches to the correct system call
handler.

e Step 8: The system call handler runs.

e Step 9: Once the system call handler has completed its work, control
may be returned to the user-space library procedure.

e Step 10: This procedure then returns to the user program in the usual
way procedure call returns.

10



e Step 11: To finish the job, the user program has to clean up the stack,
as it does after any procedure call. Assuming the stack grows down-
ward, the compiled code increments the stack pointer exactly enough
to remove the parameters pushed before the call to read.

Address (hex)

FFFF
SMCkl
Data |
Text

0000

Figure 8: Processes have three segments: text, data, and stack.

e Some of the most heavily used POSIX system calls, or more specifically,
the library procedures that make those system calls are given in Fig.

9l
e These system calls can be roughly grouped as the following:

— Process control; fork, exec, wait, abort.

— File manipulation; chmod, link, stat, creat.

— Device manipulation; open, close, ioctl, select.

— Information maintenance; time, acct, gettimeofday.

— Communications; socket, accept, send, recv.

0.5 Operating Systems Structure

An operating system generally consists of the following components (see Fig.

10):

e Monolithic Systems, Layered Systems, Microkernels, Client-server Systems,
Virtual Machines, Exokernels.

0.5.1 Monolithic Systems

e The most common organization. The structure is that there is no
structure.

11



Process management

Call

Description

pid = fork( )

Create a child pracess identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

&= BXECVE(NAME, argy, environp)

Replace a process’ core image

exit{status) Terminate process execution and return status
File management
Call Description
fd = apen(file, how, ...} Cpen a file for reading, writing, or both
5 = close(fd) Close an apen file

n = readifd. butfer. nbytas)

Read data from afile into a buffer

n = write{fd, buffer, nhytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whenee)
5 = gtatiname. &buf)

Move the file pointer
Get a file’s status infarmation

Directory and fi

le system management

Call

Description

&= mkdiriname, made)
s = rmdir{name)

Create a new directory
Remove an empty directory

5 = link{name1, name2)

Create a new entry, name2, pointing to name

5 = unlink{name)

5 = mount{special. name, flag)

5 = umount{special)

Remaove a directory entry
Mount a file system
Unmount a file system

cellaneous

Call
5 = chdir{dirname}
5 = chmod{name, made)

Descriptian
Change the working directory
Change a file’s protection bits

5 = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1870

Figure 9: Some of the major POSIX system calls.

The operating system is written as a collection of procedures, each of

which can call any of the other ones whenever it needs to.

To construct the actual object program of the operating system when
this approach is used, one first compiles all the individual procedures,
or files containing the procedures, and then binds them all together

into a single object file using the system linker.

In terms of information hiding, there is essentially none — every proce-

dure is visible to every other procedure.

Even in monolithic systems, however, it is possible to have at least a

12
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Figure 10: OS Architecture

little structure, remember the system calls at Fig. 7).

— A main program that invokes the requested service procedure.
— A set of service procedures that carry out the system calls.
— A set of utility procedures (such as fetching data from user pro-

grams) that help the service procedures.

e This division of the procedures into three layers is shown in Fig.

Main
procedure

Service
procedures

Utility
procedures

Figure 11: A simple structuring model for a monolithic system.

0.5.2 Layered Systems

e A generalization of this division of the procedures approach is to orga-
nize the operating system as a hierarchy of layers, each one constructed
upon the one below it.

13



e The first system constructed in this way was the THE system built
at the Technische Hogeschool Eindhoven in the Netherlands by E. W.
Dijkstra (1968) and his students.

e The system had 6 layers, as shown in Fig. [12.

Layer Function
5 The operator
4 User programs
3 Input/output management
2 Operator-process communication
1 Memory and drum management
0 Processor allocation and multiprogramming

Figure 12: Structure of the THE operating system.

— Layer 0 dealt with allocation of the processor, switching between
processes when interrupts occurred or timers expired. Layer 0
provided the basic multiprogramming of the CPU.

— Layer 1 did the memory management. It allocated space for pro-
cesses in main memory. Layer 1 software took care of making sure
pages were brought into memory whenever they were needed.

— Layer 2 handled communication between each process and the
operator console.

— Layer 3 took care of managing the 1/O devices and buffering the
information streams to and from them. Above layer 3 each process
could deal with abstract I/O devices with nice properties, instead
of real devices with many peculiarities.

— Layer 4 was where the user programs were found. They did not
have to worry about process, memory, console, or I/O manage-
ment.

— The system operator process was located in layer 5.

— A further generalization of the layering concept was present in the
MULTICS (Multiplexed Information and Computing Service, an
extremely influential early time-sharing operating system, 1964)
system. Instead of layers, MULTICS was described as having a
series of concentric rings, with the inner ones being more privileged
than the outer ones.

14



0.5.3 Microkernels

Bug density depends on module size, module age, and more, but a
ballpark figure for serious industrial systems is ten bugs per thousand
lines of code. This means that a monolithic OS of five million lines of
code is likely to contain something like 50000 kernel bugs.

The basic idea behind the microkernel design is to achieve high relia-
bility by splitting the OS up into small, well-defined modules.

If the hardware provides multiple privilege levels, then the microkernel
is the only software executing at the most privileged level (generally
referred to as supervisor or kernel mode).

Actual operating system services, such as device drivers, protocol stacks,
file systems and user interface code are contained in user space.

The MINIX 3 microkernel is only about 3200 lines of C and 800 lines of
assembler for very low-level functions such as catching interrupts and
switching processes.

The C code manages and schedules processes, handles interprocess com-
munication (by passing message between processes), and offers a set of
about 35 kernel calls. The process structure of MINIX 3 is shown in
Fig. 13

__Process

User progs.
User < ¥

Y
Microkernel handles interrupts, @ @
processes, scheduling, IPC

Figure 13: Structure of the MINIX 3 system.
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0.5.4 Client-Server Model

e A slight variation of the microkernel idea is to distinguish two classes
of processes,

1. the servers, each of which provides some service

2. the clients, which use these services.

e An obvious generalization of the client-server model is its adaptability
to use in distributed systems (see Fig. [14).

Machine 1 Machine 2 Machine 3 Machine 4
Client File server Process server Terminal server
oo Kernel Kernel Kernel Kernel LI
X
Network

Message from
client to server

Figure 14: The client-server model over a network.

e If a client communicates with a server by sending it messages, the
client need not know whether the message is handled locally in its own
machine, or whether it was sent across a network to a server on a remote
machine. As far as the client is concerned, the same thing happens in
both cases: a request was sent and a reply came back.

0.5.5 Virtual Machines

Virtual 370s
B System calls here
I/O instructions here CMS CMS CMS *** Trap here
Trap here —>Y VM/370
370 Bare hardware

Figure 15: The structure of VM/370 with CMS (Conversational Monitor
System).
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e The heart of the system, known as the virtual machine monitor, runs
on the bare hardware and does the multiprogramming, providing not
one, but several virtual machines to the next layer up, as shown in Fig.

151-26.

e However, unlike all other operating systems, these virtual machines are
not extended machines, with files and other nice features. Instead, they
are exact copies of the bare hardware, including kernel /user mode, 1/0O,
interrupts, and everything else the real machine has.

e Because each virtual machine is identical to the true hardware, each
one can run any operating system that will run directly on the bare
hardware.

e Virtual Machines Rediscovered. Another use of virtualization is for end
users who want to be able to run two or more OS at the same time, say
Windows and Linux. This situation is illustrated in Fig. [16a, where the
term “virtual machine monitor” has been renamed type 1 hypervisor
in recent years.

Guest OS process

Excel Word Mplayer Apollon Host OS
O O O process
Guest OS l
Windows Type 2 hypervisor O O
Type 1 hypervisor Host operating system

(@ (b)

Figure 16: (a) A type 1 hypervisor. (b) A type 2 hypervisor.

e Another area where virtual machines are used, but in a somewhat dif-
ferent way, is for running Java programs.

e When Sun Microsystems invented the Java programming language, it
also invented a virtual machine (i.e., a computer architecture) called
the JVM (Java Virtual Machine).

e The Java compiler produces code for JVM, which then typically is ex-
ecuted by a software JVM interpreter. The advantage of this approach
is that the JVM code can be shipped over the Internet to any computer
that has a JVM interpreter and run there.
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0.5.6 Exokernels

e Rather than cloning the actual machine, as is done with virtual ma-

0.6

chines, another strategy is partitioning it, in other words, giving each
user a subset of the resources. Thus one virtual machine might get disk
blocks 0 to 1023, the next one might get blocks 1024 to 2047, and so
on.

At the bottom layer, running in kernel mode, is a program called the
exokernel. Its job is to allocate resources to virtual machines and then
check attempts to use them to make sure no machine is trying to use
somebody else’s resources.

Each user-level virtual machine can run its own operating system, as
on VM/370 and the Pentium virtual 8086s, except that each one is re-
stricted to using only the resources it has asked for and been allocated.

The advantage of the exokernel scheme is that it saves a layer of map-
ping.

— In the other designs, each virtual machine thinks it has its own
disk, with blocks running from 0 to some maximum, so the virtual
machine monitor must maintain tables to remap disk addresses
(and all other resources).

— With the exokernel, this remapping is not needed. The exokernel
need only keep track of which virtual machine has been assigned
which resource.

Problems in building OS

Large Systems: 100k’s to millions of lines of code involving 100 to 1000
man-years of work

Complex: Performance is important while there is conflicting needs of
different users, Cannot remove all bugs from such complex and large
software

e Behavior is hard to predict; tuning is done by guessing

18
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