1

1.1

Process Management

What is a process? The most central concept in any OS is the process:
an abstraction of a running program.

At the very least, we are recognizing that some program code is resident
in memory and the CPU is fetching the instructions in this code and
executing them (including the current values of the program counter,
registers, and variables).

A process can be thought of as a program in execution. A unit of
execution characterized by a single, sequential thread of execution.

A process will need certain resources - such as CPU time, memory, files,
and I/O devices -to accomplish its task.

These resources are allocated to the process either when it is created
or while it is executing.

In a multiprogramming system, the CPU also switches from program
to program, running each for tens or hundreds of milliseconds. While,
strictly speaking, at any instant of time, the CPU is running only one
program, in the course of 1 second, it may work on several programs,
thus giving the users the illusion of parallelism.

The OS is responsible for the following activities in connection with
process and thread management:

— the creation and deletion of both user and system processes;

— the scheduling of processes;

— the provision of mechanisms for synchronization, communication,
and deadlock handling for processes.

Process Concept

A batch system executes jobs, whereas a time-shared system has user
programs, or tasks.

In many respects, all these activities are similar, so we call all of them
processes. The terms job and process are used almost interchangeably.



1.1.1 The Process

e A processis a program in execution. A process is more than the program code,
which is sometimes known as the text section.

e [t also includes the current activity, as represented by the value of the
program counter and the contents of the processor’s registers.

One program counter
— Four program counters

A Prc_)cess
E switch @ D —_ —_
R g
sel  — -
a
c A i B Y c i DY B - -
& AL —
j D Time ——

@ (b) ©

Figure 1: (a) Multiprogramming of four programs. (b) Conceptual model
of four independent, sequential processes. (c¢) Only one program is active at
once.

— In Fig. [1a we see a computer multiprogramming four programs in
memory.

— In Fig. [1b we see four processes, each with its own flow of control
(i.e., its own logical program counter), and each one running inde-
pendently of the other ones. Of course, there is only one physical
program counter, so when each process runs, its logical program
counter is loaded into the real program counter. When it is fin-
ished for the time being, the physical program counter is saved in
the process’logical program counter in memory.

— In Fig. [1c we see that viewed over a long enough time interval, all
the processes have made progress, but at any given instant only
one process is actually running.

e A process generally also includes

— a data section, which contains global variables,

— the process stack, which contains temporary data (such as func-
tion parameters, return addresses, and local variables),



— a heap, which is memory that is dynamically allocated during
process run time.

e The structure of a process in memory is shown in Fig. [2.

d process
in kernel I c&glr?:i
e

STACK 1 stack: local variables

context I I | process
switchable [ S — --! context . .
HEAP i heap: dynamic variables
data: constants and static
BALA variables
TEXT text ; executable code

Figure 2: Process in memory.

e A program becomes a process when an executable file is loaded into
memory.

e Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences.

— For instance, several users may be running different copies of the
mail program,

— or the same user may invoke many copies of the web browser
program.

e Each of these is a separate process; and although the text sections are
equivalent, the data, heap, and stack sections vary.

1.1.2 Process State

e As a process executes, it changes state. The state of a process is
defined in part by the current activity of that process.

e Each process may be in one of the following states:

— New. The process is being created.



— Running. Instructions are being executed.

— Waiting. The process is waiting for some event to occur (such as
an [/O completion or reception of a signal).

— Ready. The process is waiting to be assigned to a processor.

— Terminated. The process has finished execution.

e The state diagram corresponding to these states is presented in Fig. 3|

Figure 3: Diagram of process state.

e Using the process model, it becomes much easier to think about what
is going on inside the system.

— Some of the processes run programs that carry out commands
typed in by a user.

— Other processes are part of the system and handle tasks such as
carrying out requests for file services or managing the details of
running a disk or a tape drive.

— When a disk interrupt occurs, the system makes a decision to stop
running the current process and run the disk process, which was
blocked waiting for that interrupt.

e Instead of thinking about interrupts, we can think about user processes,
disk processes, terminal processes, and so on, which block when they
are waiting for something to happen. When the disk has been read
or the character typed, the process waiting for it is unblocked and is
eligible to run again. This view gives rise to the model shown in Fig.



Processes

Scheduler

Figure 4: The lowest layer of a process-structured OS handles interrupts and
scheduling. Above that layer are sequential processes.

1.1.3 Process Control Block

e The OS must know specific information about processes in order to
manage, control them and also to implement the process model, the OS
maintains a table (an array of structures), called the process table,
with one entry per process.

e These entries are called process control blocks (PCB) - also called
a task control block.

e This entry contains information about the process’state, its program
counter, stack pointer, memory allocation, the status of its open files,
its accounting and scheduling information, and everything else about
the process that must be saved when the process is switched from run-
ning to ready or blocked state so that it can be restarted later as if it
had never been stopped. A PCB is shown in Fig. [5.

process state
process number
program counter

registers

memory limits

list of open files

Figure 5: Process control block (PCB).



e Such information is usually grouped into two categories: Process State
Information and Process Control Information. Including these:

— Process state. The state may be new, ready, running, waiting,
halted, and so on.

— Program counter. The counter indicates the address of the next
instruction to be executed for this process.

— CPU registers. The registers vary in number and type, depend-
ing on the computer architecture. They include accumulators,
index registers, stack pointers, and general-purpose registers, plus
any condition-code information.

— CPU-scheduling information. This information includes a
process priority, pointers to scheduling queues, and any other
scheduling parameters.

— Memory-management information. This information may in-
clude such information as the value of the base and limit registers,
the page tables, or the segment tables, depending on the memory
system used by the OS.

— Accounting information. This information includes the amount
of CPU and real time used, time limits, account numbers, job or
process numbers, and so on.

— I/0O status information. This information includes the list of
[/O devices allocated to the process, a list of open files, and so
on.

e Figure 6 shows some of the more important fields in a typical system.
The fields in the first column relate to process management. The other
two columns relate to memory management and file management, re-
spectively.



Process management Memory management File management

Registers Pointer to text segment info Root directory
Program counter Pointer to data segment info Working directory
Program status word Pointer to stack segment info | File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

Figure 6: Some of the fields of a typical process table entry.

e Along with the program counter, this state information must be saved
when an interrupt occurs, to allow the process to be continued correctly
afterward (see Fig. |7).

procass P, operating system procass P,

interrupt or system call

executing Jl

00 atnie Ino. PCBy

idie Interrupt or system call execufing

-
J reload state from FCE, J
execiting 1[

Figure 7: Diagram showing CPU switch from process to process.




1.2

Process Scheduling

The objective of multiprogramming is to have some process running at
all times, to maximize CPU utilization.

With the CPU switching back and forth among the processes, the rate
at which a process performs its computation will not be uniform and
probably not even reproducible if the same processes are run again.

The objective of time sharing is to switch the CPU among processes so
frequently that users can interact with each program while it is running.

To meet these objectives, the process scheduler selects an available pro-
cess (possibly from a set of several available processes) for program
execution on the CPU.

For a single-processor system, there will never be more than one run-
ning process. If there are more processes, the rest will have to wait
until the CPU is free and can be rescheduled.

1.2.1 Scheduling Queues

As processes enter the system, they are put into a job queue, which
consists of all processes in the system.

The processes that are residing in main memory and are ready and
waiting to execute are kept on a list called the ready queue.

This queue is generally stored as a linked list. A ready-queue header
contains pointers to the first and final PCBs in the list. Each PCB
includes a pointer field that points to the next PCB in the ready queue.

Suppose the process makes an 1/0O request to a shared device, such as
a disk. Since there are many processes in the system, the disk may be
busy with the I/O request of some other process.

The process therefore may have to wait for the disk. The list of pro-
cesses waiting for a particular 1/O device is called a device queue. Each
device has its own device queue (see Fig. [8).

A common representation for a discussion of process scheduling is a
queuing diagram, such as that in Fig. (9l

— Each rectangular box represents a queue. Two types of queues are
present: the ready queue and a set of device queues.



rady head * —=
GUELE il registers registors
- -
. -
\._// =
::g head +—s
unit @ L

mag head +—=
lape PCB, PCB,, PCB,
wnit 1 il = ;
1 — 4 —
%
disk head 4 [
unitd fal
PCB,
[
terminal head ‘;ﬁ T=
unit 0 tail A r

Figure 8: The ready queue and various I/O device queues.

— The circles represent the resources that serve the queues, and the
arrows indicate the flow of processes in the system.

e A new process is initially put in the ready queue. It waits there until
it is selected for execution, or is dispatched.

e Once the process is allocated the CPU and is executing, one of several
events could occur:

— The process could issue an I/O request and then be placed in an
I/O queue.

— The process could create a new subprocess and wait for the sub-
process’s termination.

— The process could be removed forcibly from the CPU, as a result
of an interrupt, and be put back in the ready queue.

e A process continues this cycle until it terminates, at which time it is
removed from all queues and has its PCB and resources deallocated.

1.2.2 Schedulers

e A process migrates among the various scheduling queues throughout
its lifetime.



:I ready queue @PLh—

—{(v0)—{ T |—{ iSmamt }—

i slics |

expired |
ohid fork l,
p— -—
(o —{

Figure 9: Queueing-diagram representation of process scheduling.

The OS must select, for scheduling purposes, processes from these
queues in some fashion. The selection process is carried out by the
appropriate scheduler.

Often, in a batch system, more processes are submitted than can be
executed immediately. These processes are spooled to a mass-storage
device (typically a disk), where they are kept for later execution.

The long-term scheduler, or job scheduler, selects processes from
this pool and loads them into memory for execution.

The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute and allocates the CPU to one
of them.

The long-term scheduler controls the degree of multiprogramming
(the number of processes in memory). If the degree of multiprogram-
ming is stable, then the average rate of process creation must be equal
to the average departure rate of processes leaving the system.

Thus, the long-term scheduler may need to be invoked only when a
process leaves the system. Because of the longer interval between exe-
cutions, the long-term scheduler can afford to take more time to decide
which process should be selected for execution.

It is important that the long-term scheduler make a careful selection.
In general, most processes can be described as either 1/O bound or
CPU bound.

10



— An I/O-bound process is one that spends more of its time doing
[/O than it spends doing computations.

— A CPU-bound process, in contrast, generates 1/O requests infre-
quently, using more of its time doing computations.

e [t is important that the long-term scheduler select a good process mix

of I/O-bound and CPU-bound processes.

e On some systems, the long-term scheduler may be absent or minimal.
For example, time-sharing systems such as UNIX and Microsoft Win-
dows systems often have no long-term scheduler but simply put every
new process in memory for the short-term scheduler.

e The stability of these systems depends either on a physical limitation
(such as the number of available terminals) or on the self-adjusting
nature of human users.

e Some OSs, such as time-sharing systems, may introduce an additional,
intermediate level of scheduling. This medium-term scheduler is
diagrammed in Fig. [10.

SWap in partialhy oxocutod Ewap aul
swapped-oul processes
——
ready queue '{PU f « ond

-"'d;c?‘ VO waiting

(0)— ‘o=

Figure 10: Addition of medium-term scheduling to the queuing diagram.

e The key idea behind a medium-term scheduler is that sometimes it can
be advantageous to remove processes from memory (and from active
contention for the CPU) and thus reduce the degree of multiprogram-
ming.

e Later, the process can be reintroduced into memory, and its execution
can be continued where it left off. This scheme is called swapping.

11



1.2.3 Context Switch

e When an interrupt occurs, the system needs to save the current con-
text of the process currently running on the CPU so that it can re-
store that context when its processing is done, essentially suspending
the process and then resuming it.

e The context is represented in the PCB of the process; it includes

— the value of the CPU registers,
— the process state,
— and memory-management information.

e Switching the CPU to another process requires performing a state save
of the current process and a state restore of a different process.

e This task is known as a context switch. When a context switch
occurs, the kernel saves the context of the old process in its PCB and
loads the saved context of the new process scheduled to run.

— process table keeps track of processes,
— context information stored in PCB,
— process suspended: register contents stored in PCB,
— process resumed: PCB contents loaded into registers
e Context-switch time is pure overhead, because the system does no useful

work while switching. Context switching can be critical to perfor-
mance.

1.2.4 Modelling Multiprogramming

e When multiprogramming is used, the CPU utilization can be improved.
Crudely put, if the average process computes only 20% of the time it
is sitting in memory at once, the CPU should be busy all the time.

e Unrealistically optimistic, assumes that all five processes will never be
waiting for I/O at the same time.

e Suppose that a process spend a fraction p of its time waiting for 1/O
to complete. With n processes in memory at once, the probability that
all n processes are waiting for I/0 is p”. The CPU utilization is then
given by the formula:

CPU utilization =1 — p"

12



e Figure 11/shows the CPU utilization as a function of n, which is called
the degree of multiprogramming.

_ 20% 1/0O wait
= 100 — < v
3
= 0, i
S g |- 50% I/O wait
S
s 60 [~ 80% /0 wait
I
S 40 -
5
Z 20
O
\ \ \ \ \ \ \ \ \ \

0 1 2 3 4 5 6 7 8 9 10
Degree of multiprogramming

Figure 11: CPU utilization as a function of the number of processes in mem-
ory.

e For the sake of complete accuracy, it should be pointed out that the
probabilistic model is only an approximation. Context switching over-
head is ignored.

1.3 Operations on Processes

e The processes in most systems can execute concurrently, and they may
be created and deleted dynamically.

e Thus, these systems must provide a mechanism for process creation
and termination.

1.3.1 Process Creation

e There are four principal events that cause processes to be created:

1. System wnitialization. When an OS is booted, typically several
processes are created.

2. FEzxecution of a process creation system call by a running process.
Often a running process will issue system calls to create one or
more new processes to help it do its job. Creating new processes
is particularly useful when the work to be done can easily be
formulated in terms of several related, but otherwise independent
interacting processes.

13



3. A user request to create a new process. In interactive systems,
users can start a program by typing a command or (double) click-
ing an icon.

4. Initiation of a batch job. Here users can submit batch jobs to the
system (possibly remotely). When the OS decides that it has the
resources to run another job, it creates a new process and runs
the next job from the input queue in it.

In all these cases, a new process is created by having an existing process
execute a process creation system call (in UNIX, fork()).

The creating process is called a parent process, and the new processes
are called the children of that process. Each of these new processes
may in turn create other processes, forming a tree of processes.

Most OSs (including UNIX and the Windows family of OSs) identify
processes according to a unique process identifier (or pid), which is
typically an integer number.

In general, a process will need certain resources (CPU time, memory,
files, 1/0 devices) to accomplish its task. When a process creates a
subprocess, that subprocess may be able to obtain its resources directly
from the OS, or it may be constrained to a subset of the resources of
the parent process.

— The parent may have to partition its resources among its children,
— or it may be able to share some resources (such as memory or

files) among several of its children.

Restricting a child process to a subset of the parent’s resources pre-
vents any process from overloading the system by creating too many
subprocesses.

When a process creates a new process, two possibilities exist in terms
of execution:

1. The parent continues to execute concurrently with its children,
competing equally for the CPU.

2. The parent waits until some or all of its children have terminated
(on UNIX, see the man pages for {wait, waitpid, wait4, wait3}.).

There are also two possibilities in terms of the address space of the new
process:

14



1. The child process is a duplicate of the parent process (it has the
same program and data as the parent, an exact clone). The two
processes, the parent and the child, have the same memory image,
the same environment strings, and the same open files.

2. The child process has a new program loaded into it.

e The C program shown below illustrates the UNIX system calls previ-
ously described.

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main ()
{
pid_t pid;
/* fork a child process */
pid = fork();
if (pid < 0) {/* error occurred */
fprintf (stderr,"Fork Failed");
exit(-1);
}
else if (pid == 0) {/* child process * /
execlp("/bin/1s","1s" ,NULL);
}
else {/* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit (0);
}
}

— We now have two different processes running a copy of the same
program.

— The value of pid for the child process is zero; that for the parent
is an integer value greater than zero.

— The child process overlays its address space with the UNIX com-
mand /bin/ls (used to get a directory listing) using the execlp()
system call (execlp() is a version of the exec() system call).

— The parent waits for the child process to complete with the wait()
system call.

15



— When the child process completes (by either implicitly or explicitly
invoking exit() ) the parent process resumes from the call to wait()
, where it completes using the exit() system call.

— This is also illustrated in Fig. [12.

painond ;"fwm-ﬁ\“ TQEANTHIS
(/-*”— SRR
=
| fockd) ) :l:
B = g —
%ﬁﬂami:f} f exit) )

Figure 12: Process creation.

1.3.2 Process Termination

e Normal exit (voluntary): A process terminates when it finishes execut-
ing its final statement and asks the OS to delete it by using the exit()
system call. At that point, the process may return a status value (typ-
ically an integer) to its parent process (via the wait() system call). All
the resources of the process -including physical and virtual memory;,
open files, and 1/O buffers- are deallocated by the OS.

e Abnormal termination: programming errors, run time errors, 1/O, user
intervention.

— Error exit (voluntary): An error caused by the process, often due
to a program bug (executing an illegal instruction, referencing
non-existent memory, or dividing by zero). In some systems (e.g.
UNIX), a process can tell the OS that it wishes to handle certain
errors itself, in which case the process is signaled (interrupted)
instead of terminated when one of the errors occurs.

— Fatal error (involuntary): i.e.; no such file exists during the com-
pilation.

— Killed by another process (involuntary): A process can cause the
termination of another process via an appropriate system call (for
example, T'erminate Process() in Win32). Usually, such a system
call can be invoked only by the parent of the process that is to be
terminated.

e A parent may terminate the execution of one of its children for a variety
of reasons, such as these:

16



1.4

— The child has exceeded its usage of some of the resources that it
has been allocated. (To determine whether this has occurred, the
parent must have a mechanism to inspect the state of its children.)

— The task assigned to the child is no longer required.

— The parent is exiting, and the OS does not allow a child to continue
if its parent terminates (cascading termination).

To illustrate process execution and termination, consider that, in UNIX,
we can terminate a process by using the exit() system call; its parent
process may wait for the termination of a child process by using the
wait() system call.

The wait() system call returns the process identifier of a terminated
child so that the parent can tell which of its possibly many children has
terminated.

If the parent terminates, then the child will become a zombie process
and may be listed as such in the process status list!. This is not always
true since all its children could have been assigned as their new parent
the init process. Thus, the children still have a parent to collect their
status and execution statistics.

Interprocess Communication

Processes executing concurrently in the OS may be either independent
processes or cooperating processes.

— A process is independent if it cannot affect or be affected by the
other processes executing in the system. Any process that does
not share data with any other process is independent.

— A process is cooperating if it can affect or be affected by the other
processes executing in the system. Clearly, any process that shares
data with other processes is a cooperating process.

e There are several reasons for providing an environment that allows

process cooperation:

— Information sharing. Since several users may be interested in
the same piece of information (for instance, a shared file), we
must provide an environment to allow concurrent access to such
information.

17



— Computation speedup. If we want a particular task to run
faster, we must break it into subtasks, each of which will be exe-
cuting in parallel with the others. Notice that such a speedup can
be achieved only if the computer has multiple processing elements
(such as CPUs or I/O channels).

— Modularity. We may want to construct the system in a modular
fashion, dividing the system functions into separate processes or
threads.

— Convenience. Even an individual user may work on many tasks
at the same time. For instance, a user may be editing, printing,
and compiling in parallel.

e Cooperating processes require an interprocess communication (IPC)
mechanism that will allow them to exchange data and information.

e There are two fundamental models of interprocess communication:

— Shared Memory. A region of memory that is shared by co-
operating processes is established. Processes can then exchange
information by reading and writing data to the shared region.

— Message Passing. Communication takes place by means of mes-
sages exchanged between the cooperating processes. The two com-
munications models are contrasted in Fig. [13!

Process A E - process A i
g1
shared *'.
procass B |E| process B el !
2 1
kernal EI_ kemel
(a) (&)

Figure 13: Communications models. (a) Message passing. (b) Shared mem-
ory.

18



Both of the models just discussed are common in OSs, and many sys-
tems implement both.

Message passing is useful for exchanging smaller amounts of data, be-
cause no conflicts need be avoided. Message passing is also easier to
implement than is shared memory for intercomputer communication.

Shared memory allows maximum speed and convenience of communi-
cation, as it can be done at memory speeds when within a computer.
Shared memory is faster than message passing, as message-passing sys-
tems are typically implemented using system calls and thus require the
more time-consuming task of kernel intervention.

In contrast, in shared-memory systems, system calls are required only
to establish shared-memory regions. Once shared memory is estab-
lished, all accesses are treated as routine memory accesses, and no
assistance from the kernel is required.

1.4.1 Shared-Memory Systems

Interprocess communication using shared memory requires communi-
cating processes to establish a region of shared memory. Typically, a
shared-memory region resides in the address space of the process creat-
ing the shared-memory segment.

Other processes that wish to communicate using this shared-memory
segment must attach it to their address space.

Recall that, normally, the OS tries to prevent one process from ac-
cessing another process’s memory. Shared memory requires that two
or more processes agree to remove this restriction. They can then ex-
change information by reading and writing data in the shared areas.

The form of the data and the location are determined by these pro-
cesses and are not under the OS’s control. The processes are also
responsible for ensuring that they are not writing to the same location
simultaneously.

To illustrate the concept of cooperating processes, let’s consider the
producer-consumer problem, which is a common paradigm for co-
operating processes. A producer process produces information that is
consumed by a consumer process.

19



One solution to the producer-consumer problem uses shared memory.
To allow producer and consumer processes to run concurrently, we must
have available a buffer of items that can be filled by the producer and
emptied by the consumer.

This buffer will reside in a region of memory that is shared by the
producer and consumer processes. A producer can produce one item
while the consumer is consuming another item.

The producer and consumer must be synchronized, so that the con-
sumer does not try to consume an item that has not yet been produced.

Two types of buffers can be used.

1. The unbounded buffer places no practical limit on the size of
the buffer. The consumer may have to wait for new items, but
the producer can always produce new items.

2. The bounded buffer assumes a fixed buffer size. In this case,
the consumer must wait if the buffer is empty, and the producer
must wait if the buffer is full.

20



	Process Management
	Process Concept
	The Process
	Process State
	Process Control Block

	Process Scheduling
	Scheduling Queues
	Schedulers
	Context Switch
	Modelling Multiprogramming

	Operations on Processes
	Process Creation
	Process Termination

	Interprocess Communication
	Shared-Memory Systems



