
Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.1

Lecture 5
Threads & CPU scheduling I
Lecture Information

Ceng328 Operating Systems at March 16, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.2

Contents
1 Threads

Overview
Motivation
Benefits

Multithreading Models
Many-to-One Model
One-to-One Model
Many-to-Many Model

Thread Libraries
Pthreads

Threading Issues
The fork() and exec() System Calls
Cancellation
Signal Handling

Operating-System Examples
Linux Threads

2 CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle
CPU Scheduler
Pre-emptive Scheduling
Dispatcher

Scheduling Criteria



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.3

Overview I
• A traditional (or heavyweight) process has

a single thread of control.
• A thread (also referred to as a light-weight process LWP)

is a basic unit of CPU utilization.
• All threads in a process have exactly the

same address space, which means that they also share
the same global variables.

• It shares with other threads belonging to the same process
its code section, data section, and other OS resources,
such as open files and signals (see Fig. 1).

Figure: The first column lists some items shared by all threads in
a process (process properties). The second one lists some items
private to each thread.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.4

Overview II

• Processes are used to group resources together; threads
are the entities scheduled for execution on the CPU.

• If a process has multiple threads of control in the same
address space running in quasi-parallel, as though they
were separate processes (except for the shared address
space).

Figure: Single-threaded and multithreaded processes.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.5

Overview III

• Although a thread must execute in some process, the
thread and its process are different concepts and can be
treated separately.

• The threads share an address space, open files, and other
resources.

• The processes share physical memory, disks, printers, and
other resources.

• Since every thread can access every memory address
within the process’ address space, there is no protection
between threads because

• it is impossible,
• it should not be necessary. They are cooperating, not

competing.

• Like a traditional process (i.e., a process with only one
thread), a thread can be in any one of several states.

• The transitions between thread states are the same as the
transitions between process states.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.6

Motivation
• An application typically is implemented as a separate

process with several threads of control.
• A word processor may have a thread for displaying

graphics, another thread for responding to keystrokes from
the user, and a third thread for performing spelling and
grammar checking in the background.

• A web browser might have one thread display images or
text while another thread retrieves data from the network.

Figure: Left: A word processor with three threads. Right: A
multithreaded web server.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.7

Benefits

The benefits of multithreaded programming can be broken
down into four major categories:

1 Responsiveness . Multithreading an interactive
application may allow a program to continue running even
if part of it is blocked or is performing a lengthy operation,
thereby increasing responsiveness to the user.

2 Resource sharing . The benefit of sharing code and data
is that it allows an application to have several different
threads of activity within the same address space.

3 Economy of Overheads . Allocating memory and
resources for process creation is costly. Because threads
share resources of the process to which they belong, it is
more economical to create and context-switch threads.

4 Utilization of multiprocessor architectures . The
benefits of multithreading can be greatly increased in a
multiprocessor architecture, where threads may be
running in parallel on different processors (real
parallelism).



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.8

Multithreading Models I
• Support for threads may be provided either

at the user level, for user threads, or by the kernel, for
kernel threads.

• User threads are supported above the kernel and are
managed without kernel support,

• whereas kernel threads are supported and managed
directly by the OS.

Process ProcessThread Thread

Process

table

Process

table

Thread

table

Thread

table

Run-time

system

Kernel

space

User

space

KernelKernel

Figure: (a) A user-level threads package. (b) A threads package
managed by the kernel.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.9

Multithreading Models II

Implementing Threads in User Space :

• The threads package entirely in user space (see Fig. 4a).
The kernel knows nothing about them.

• The first, and most obvious, advantage is that a user-level
threads package can be implemented on an OS that does
not support threads.

• Among other issues, no trap is needed, no context switch
is needed, the memory cache need not be flushed, and so
on. This makes thread scheduling very fast.

• Despite their better performance, user-level threads
packages have a major problem as if a thread starts
running, no other thread in that process will ever run
unless the first thread voluntarily gives up the CPU.

• While user threads usually have lower management load
compared to kernel threads, one must consider this in
relation to their lower functionality.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.10

Multithreading Models III

Implementing Threads in the Kernel :

• Supported by the kernel, the
kernel performs all management (creation, scheduling,
deletion, etc., see Fig. 4b).

• There is no thread table in each process. Instead, the
kernel has a thread table that keeps track of all the threads
in the system.

• if one thread blocks, another may be run. In addition, if
one thread in a process causes a page fault, the kernel
can easily check to see if the process has any other
runnable threads.

• Ultimately, there must exist a
relationship between user threads and kernel threads.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.11

Many-to-One Model

• The many-to-one model (see Fig. 5) maps many
user-level threads to one kernel thread.

Figure: Many-to-one model.

• Thread management is done by the
thread library in user space, so it is efficient; but the entire
process will block if a thread makes a blocking system call.

• Also, because only one thread can access the kernel at a
time, multiple threads are unable to run in parallel on
multiprocessors.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.12

One-to-One Model

• The one-to-one model (see Fig. 6) maps each user thread
to a kernel thread.

Figure: One-to-one model.

• It provides more concurrency than the many-to-one model
by allowing another thread to run when a thread makes a
blocking system call.

• It also allows multiple threads to run in parallel on
multiprocessors.

• Overhead of creating kernel threads can degrade the
performance of an application.

• Linux, along with the family of Windows OSs implement
the one-to-one model.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.13

Many-to-Many Model

• The many-to-many model (see Fig. 7 ) multiplexes many
user-level threads to a smaller or equal number of kernel
threads.

Figure: Many-to-many model.

• The many-to-many model
suffers from neither of these
shortcomings:

• Developers can create as
many user threads as
necessary, and the
corresponding kernel threads
can run in parallel on a
multiprocessor.

• Also, when a thread performs
a blocking system call, the
kernel can schedule another
thread for execution.

• Whereas the many-to-one model allows the developer to
create as many user threads as she wishes,
true concurrency is not gained because the kernel can
schedule only one thread at a time.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.14

Thread Libraries

• Three main thread libraries are in use today:
1 POSIX Pthreads . Pthreads, the threads extension of the

POSIX standard, may be provided as either a user- or
kernel-level library.

2 Win32 . The Win32 thread library is a kernel-level library
available on Windows systems.

3 Java . The Java thread API allows thread creation and
management directly in Java programs.

• However, because in most instances the JVM is running on
top of a host OS, the Java thread API is typically implemented
using a thread library available on the host system.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.15

Pthreads I

• Pthreads refers to the POSIX standard (IEEE 1003.1c)
defining an API for thread creation and synchronization.

• This is a specification for thread behavior, not an
implementation.

Figure: Some of the Pthreads function calls.

• A common thread call is thread_yield, which allows a
thread to voluntarily give up the CPU to let another thread
run.

• Such a call is important because there is no clock interrupt
to actually enforce time-sharing as there is with processes.

• Thus it is important for threads to be polite and voluntarily
surrender the CPU from time to time to give other threads a
chance to run.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.16

Pthreads II

#include <pthread.h>
#include <stdio.h>
int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* the thread */
int main(int argc, char *argv[])
{
pthread_t tid; /* the thread identifier */
pthread_attr_t attr; /* set of thread attributes */
if (argc != 2) {

fprintf(stderr, "usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv [1]) < 0) {

fprintf(stderr,"%d must be >= O\n",atoi(argv[1]));
return -1;

}
/* get the default attributes */
pthread_attr_init (&attr);
/* create the thread */
pthread_create(&tid,&attr,runner,argv[1]) ;
/* wait for the thread to exit */
pthread_join(tid,NULL) ;
printf (" sum = %d\n", sum) ;

}



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.17

Pthreads III

• The C program shown above and below demonstrates the
basic Pthreads API for constructing a multithreaded
program that calculates the summation of a nonnegative
integer in a separate thread (do not forget to compile with
-lpthread flag.).

• In a Pthreads program, separate threads begin execution
in a specified function (in this program; runner()).

/* The thread will begin control in this function */
void *runner(void *param)
{
int i, upper = atoi(param);
sum = 0;
for (i = 1; i <= upper; i++)

sum += i;
pthread_exit(0) ;

}



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.18

The fork() and exec() System Calls

• If one thread in a program calls fork(),
• does the new process duplicate all threads,
• or is the new process single-threaded?

• Some UNIX systems have chosen to have two versions of
fork(),

• one that duplicates all threads
• and another that duplicates only the thread that invoked the

fork() system call.

• Which of the two versions of fork() to use depends on the
application.

• If exec() is called immediately after forking, then duplicating
all threads is unnecessary, as the program specified in the
parameters to exec() will replace the process. In this
instance, duplicating only the calling thread is appropriate.

• If, however, the separate process does not call exec() after
forking, the separate process should duplicate all threads.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.19

Cancellation I

• Thread cancellation is the task of terminating a thread
before it has completed.

• For example, if multiple threads are concurrently searching
through a database and one thread returns the result, the
remaining threads might be canceled.

• Another situation might occur when a user presses a button
on a web browser that stops a web page from loading any
further.

• A thread that is to be canceled is often referred to as the
target thread .



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.20

Cancellation II

• Cancellation of a target thread may occur in two different
scenarios:

1 Asynchronous cancellation . One thread immediately
terminates the target thread.

• The difficulty with cancellation occurs in situations where
resources have been allocated to a canceled thread

• or where a thread is canceled while in the midst of updating
data it is sharing with other threads.

• Often, the OS will reclaim system resources from a
canceled thread but will not reclaim all resources.

2 Deferred cancellation . The target thread periodically
checks whether it should terminate, allowing it an
opportunity to terminate itself in an orderly fashion.

• With deferred cancellation, in contrast, one thread indicates
that a target thread is to be canceled, but cancellation
occurs only after the target thread has checked a flag to
determine if it should be canceled or not.

• This allows a thread to check whether it should be canceled
at a point when it can be canceled safely.

• Pthreads refers to such points as cancellation points.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.21

Signal Handling I

• A signal is used in UNIX systems to notify a process that
a particular event has occurred.

• A signal may be received either synchronously or
asynchronously , depending on the source of and the
reason for the event being signaled.

1 A signal is generated by the occurrence of a particular
event.

2 A generated signal is delivered to a process.
3 Once delivered, the signal must be handled.

• Examples of synchronous signals include illegal memory
access and division by O.

• Synchronous signals are delivered to the same process
that performed the operation that caused the signal (that is
the reason they are considered synchronous).



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.22

Signal Handling II

• When a signal is generated by an event external to a
running process, that process receives the signal
asynchronously .

• Examples of such signals include terminating a process
with specific keystrokes (such as < control >< C > and
having a timer expire.

• Typically, an asynchronous signal is sent to another
process.

• Every signal may be handled by one of two possible
handlers:

• A default signal handler.
• A user-defined signal handler

• Every signal has a default signal handler that is run by
the kernel when handling that signal.

• This default action can be overridden by a user-defined
signal handler that is called to handle the signal.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.23

Linux Threads I

• Linux provides the ability to create threads using the
clone() system call (fork() system call for duplicating a
process) .

• In fact, Linux generally uses the term task -rather than
process or thread - when referring to
a flow of control within a program.

• When clone() is invoked, it is passed a set of flag. Some
of these flags are listed in Fig. 9 below:

Figure: Some flags for clone() system call.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.24

Linux Threads II

• if clone() is passed the flags above in the Fig. 9, the parent
and child tasks will share the same mentioned resources.

• Using clone() in this fashion is equivalent to creating a
thread.

• However, if none of these flags are set when clone() is
invoked, no sharing takes place, resulting in functionality
similar to that provided by the fork() system call.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.25

Basic Concepts

• In multiprogramming systems, whenever two or more
processes are simultaneously in the ready state, a choice
has to be made which process to run next.

• The part of the OS that makes the choice is called the
scheduler

• and the algorithm it uses is called the scheduling
algorithm .

• Almost all computer resources are scheduled before use.
The CPU is, of course, one of the primary computer
resources.

• Thus, its scheduling is central to OS design.

• Many of the same issues that apply to process scheduling
also apply to thread scheduling, although some are
different.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.26

CPU-I/O Burst Cycle I

Figure: Alternating sequence of
CPU and I/O bursts.

• The success of CPU
scheduling depends on an
observed property of
processes:

• Process execution consists of
a cycle of CPU execution and
I/O wait. Processes alternate
between these two states.

• Process execution begins
with a CPU burst. That is
followed by an I/O burst,
which is followed by another
CPU burst, then another I/O
burst, and so on.

• Eventually, the final CPU burst
ends with a system request to
terminate execution (see Fig.
10).



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.27

CPU-I/O Burst Cycle II

• The durations of CPU bursts have a frequency curve
similar to that shown in Fig. 11.

Figure: Histogram of CPU-burst durations.

• An I/O-bound
program typically has
many short CPU
bursts.

• A CPU-bound
program might have a
few long CPU bursts.

• The curve is generally characterized as exponential, with a
large number of short CPU bursts and a small number of
long CPU bursts.

• This distribution can be important in the selection of an
appropriate CPU-scheduling algorithm.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.28

CPU-I/O Burst Cycle III

• Nearly all processes alternate bursts of computing with
(disk) I/O requests, as shown in Fig. 12.

Long CPU burst

Short CPU burst

Waiting for I/O

(a) 

(b) 

Time

Figure: Bursts of CPU usage alternate with periods of waiting for
I/O. (a) A CPU-bound process. (b) An I/O-bound process.

• Having some CPU-bound processes and some I/O-bound
processes in memory together is a better idea than first
loading and running all the CPU-bound jobs and then
when they are finished loading and running all the
I/O-bound jobs (a careful mix of processes ).



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.29

CPU Scheduler

• Whenever the CPU becomes idle, the OS must select one
of the processes in the ready queue to be executed.

• The selection process is carried out by the
short-term scheduler (or CPU scheduler).

• The scheduler selects a process
from the processes in memory that are ready to execute
and allocates the CPU to that process.

• Conceptually all the processes in the ready queue are
lined up waiting for a chance to run on the CPU.

• The records in the queues are generally process control
blocks (PCBs) of the processes.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.30

Pre-emptive Scheduling I

• CPU-scheduling decisions may take place under the
following four circumstances:

1 When a process switches from the running state to the
waiting state (for example, as the result of an I/O request or
an invocation of wait for the termination of one of the child
processes).

2 When a process switches from the running state to the
ready state (for example, when an interrupt occurs).

3 When a process switches from the waiting state to the ready
state (for example, at completion of I/O, on a semaphore, or
for some other reason).

4 When a process terminates. If no process is ready, a
system-supplied idle process is normally run.

• For situations 1 and 4, there is no choice in terms of
scheduling. A new process (if one exists in the ready
queue) must be selected for execution.

• There is a choice, however, for situations 2 and 3.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.31

Pre-emptive Scheduling II

• When scheduling takes place only under circumstances 1
and 4, we say that the scheduling scheme is
nonpreemptive or cooperative;

• otherwise, it is pre-emptive .

• Under nonpreemptive scheduling, once the CPU has been
allocated to a process, the process keeps the CPU until it
releases the CPU voluntarily.

• Unfortunately, pre-emptive scheduling incurs a cost
associated with access to shared data.

• Consider the case of two processes that share data.
• While one is updating the data, it is preempted so that the

second process can run.
• The second process then tries to read the data, which are in

an inconsistent state.
• In such situations, we need new mechanisms to coordinate

access to shared data.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.32

Pre-emptive Scheduling III

• A nonpreemptive scheduling algorithm picks a process
to run and then just lets it run until it blocks (either on I/O
or waiting for another process) or until it voluntarily
releases the CPU. First-Come-First-Served (FCFS),
Shortest Job first (SJF).

• In contrast, a pre-emptive scheduling algorithm picks a
process and lets it run for a maximum of some fixed time.
If it is still running at the end of the time interval, it is
suspended and the scheduler picks another process to
run. Round-Robin (RR), Priority Scheduling.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.33

Pre-emptive Scheduling III

• Another component involved in the CPU-scheduling
function is the dispatcher .

• The scheduler is concerned with deciding policy, not
providing a mechanism.

• The dispatcher is the low-level mechanism (Responsibility:
Context-switch).

• Switching context,
• Switching to user mode,
• Jumping to the proper location in the user program to restart

that program.

• The dispatcher should be as fast as possible, since it is
invoked during every process switch.

• The time it takes for the dispatcher to stop one process
and start another running is known as the dispatch
latency .



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.34

Scheduling Criteria I

• Different CPU scheduling algorithms have different
properties, and the choice of a particular algorithm may
favour one class of processes over another.

• Which algorithm to use?, consider the properties;
• CPU utilization . We want to keep the CPU as busy as

possible.
• Throughput . One measure of work is the number of

processes that are completed per time unit, called
throughput.

• Turnaround time . The interval from the time of submission
of a process to the time of completion is the turnaround
time.

• Tr = Ts + Tw , where Ts :Execution time and Tw :Waiting time.

• Waiting time . The CPU scheduling algorithm does not
affect the amount of time during which a process executes
or does I/O; it affects only the amount of time that a process
spends waiting in the ready queue.

• Response time . In an interactive system, turnaround time
may not be the best criterion. Thus, another measure is the
time from the submission of a request until the
first response is produced.



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.35

Scheduling Criteria II

• One problem in selecting a set of performance criteria is
that they often conflict with each other.

• For example, increased processor utilization is usually
achieved by increasing the number of active processes,
but then response time decreases.

• A scheduling algorithm that maximizes throughput may
not necessarily minimize turnaround time.

• Given a mix of short jobs and long jobs, a scheduler that
always ran short jobs and never ran long jobs might achieve
an excellent throughput (many short jobs per hour) but at
the expense of a terrible turnaround time for the long jobs.

• If short jobs kept arriving at a steady rate, the long jobs
might never run, making the mean turnaround time infinite
while achieving a high throughput.

• It is desirable to maximize CPU utilization and
throughput and to minimize turnaround time , waiting
time , and response time .



Threads & CPU
scheduling I

Dr. Cem Özdo ğan

Threads
Overview

Motivation

Benefits

Multithreading Models

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread Libraries

Pthreads

Threading Issues

The fork() and exec()
System Calls

Cancellation

Signal Handling

Operating-System
Examples

Linux Threads

CPU scheduling
Basic Concepts

CPU-I/O Burst Cycle

CPU Scheduler

Pre-emptive Scheduling

Dispatcher

Scheduling Criteria

5.36

Scheduling Criteria III

• Some goals of the scheduling algorithm under different
circumstances, see Fig. 13.

Figure: Some goals of the scheduling algorithm under different
circumstances.

• Under all circumstances, fairness is important.

• Another general goal is keeping all parts of the system
busy when possible.


	Threads
	Overview
	Multithreading Models
	Thread Libraries
	Threading Issues
	Operating-System Examples

	CPU scheduling
	Basic Concepts
	Scheduling Criteria


