
CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Lecture 6
CPU scheduling II & Process
Synchronization I
Lecture Information

Ceng328 Operating Systems at March 23, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Contents
1 Scheduling Algorithms

First-Come, First-Served Scheduling
Shortest-Job-First Scheduling
Priority Scheduling
Round-Robin Scheduling
Multilevel Queue Scheduling
Multilevel Feedback-Queue Scheduling

2 Multiple-Processor Scheduling
Approaches to Multiple-Processor Scheduling
Load Balancing

3 Operating System Examples
Example: Linux Scheduling

4 Process Synchronization
5 Race Condition
6 The Critical-Section Problem

Disabling Interrupts: (Systems approach)
Lock Variables: (Software approach)
Lock Variables: (Software approach)

7 Mutual Exclusion with Busy Waiting
Strict Alternation (Software approach)



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling I

• By far the simplest CPU-scheduling algorithm is the
first-come, first-served (FCFS) scheduling algorithm.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling I

• By far the simplest CPU-scheduling algorithm is the
first-come, first-served (FCFS) scheduling algorithm.

• When a process enters the ready queue, its PCB is linked
onto the tail of the queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling I

• By far the simplest CPU-scheduling algorithm is the
first-come, first-served (FCFS) scheduling algorithm.

• When a process enters the ready queue, its PCB is linked
onto the tail of the queue.

• The average waiting time under the FCFS policy, however,
is often quite long. Consider the following set of processes
that arrive at time 0, with the length of the CPU burst given
in milliseconds:

Burst Waiting Turnaround
Process Time Time Time

P1 24 0 24
P2 3 24 27
P3 3 27 30

Average - 17 27



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling I

• By far the simplest CPU-scheduling algorithm is the
first-come, first-served (FCFS) scheduling algorithm.

• When a process enters the ready queue, its PCB is linked
onto the tail of the queue.

• The average waiting time under the FCFS policy, however,
is often quite long. Consider the following set of processes
that arrive at time 0, with the length of the CPU burst given
in milliseconds:

Burst Waiting Turnaround
Process Time Time Time

P1 24 0 24
P2 3 24 27
P3 3 27 30

Average - 17 27

• If the processes arrive in the order P1, P2, P3, and are
served in FCFS order, we get the result shown in the
following chart:



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling II

• If the processes arrive in the order P2, P3, P1, the results
will be as shown in the following chart:



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling II

• If the processes arrive in the order P2, P3, P1, the results
will be as shown in the following chart:

• The average waiting time is now (6 + 0 + 3)/3 = 3 msecs.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling II

• If the processes arrive in the order P2, P3, P1, the results
will be as shown in the following chart:

• The average waiting time is now (6 + 0 + 3)/3 = 3 msecs.

• The average waiting time under an FCFS policy is
generally not minimal.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling II

• If the processes arrive in the order P2, P3, P1, the results
will be as shown in the following chart:

• The average waiting time is now (6 + 0 + 3)/3 = 3 msecs.

• The average waiting time under an FCFS policy is
generally not minimal.

• The FCFS scheduling algorithm is nonpreemptive.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling II

• If the processes arrive in the order P2, P3, P1, the results
will be as shown in the following chart:

• The average waiting time is now (6 + 0 + 3)/3 = 3 msecs.

• The average waiting time under an FCFS policy is
generally not minimal.

• The FCFS scheduling algorithm is nonpreemptive.

• Once the CPU has been allocated to a process, that
process keeps the CPU until it releases the CPU, either by
terminating or by requesting I/0.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling III
• Assume we have one CPU-bound process and many

I/O-bound processes.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling III
• Assume we have one CPU-bound process and many

I/O-bound processes.
• The CPU-bound process will get and hold the CPU. During

this time, all the other processes will finish their I/0 and will
move into the ready queue, waiting for the CPU.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling III
• Assume we have one CPU-bound process and many

I/O-bound processes.
• The CPU-bound process will get and hold the CPU. During

this time, all the other processes will finish their I/0 and will
move into the ready queue, waiting for the CPU.

• While the processes wait in the ready queue, the I/O
devices are idle. Eventually, the CPU-bound process
finishes its CPU burst and moves to an I/0 device.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling III
• Assume we have one CPU-bound process and many

I/O-bound processes.
• The CPU-bound process will get and hold the CPU. During

this time, all the other processes will finish their I/0 and will
move into the ready queue, waiting for the CPU.

• While the processes wait in the ready queue, the I/O
devices are idle. Eventually, the CPU-bound process
finishes its CPU burst and moves to an I/0 device.

• All the I/O-bound processes, which have short CPU bursts,
execute quickly and move back to the I/0 queues.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling III
• Assume we have one CPU-bound process and many

I/O-bound processes.
• The CPU-bound process will get and hold the CPU. During

this time, all the other processes will finish their I/0 and will
move into the ready queue, waiting for the CPU.

• While the processes wait in the ready queue, the I/O
devices are idle. Eventually, the CPU-bound process
finishes its CPU burst and moves to an I/0 device.

• All the I/O-bound processes, which have short CPU bursts,
execute quickly and move back to the I/0 queues.

• At this point, the CPU sits idle. The CPU-bound process will
then move back to the ready queue and be allocated the
CPU.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling III
• Assume we have one CPU-bound process and many

I/O-bound processes.
• The CPU-bound process will get and hold the CPU. During

this time, all the other processes will finish their I/0 and will
move into the ready queue, waiting for the CPU.

• While the processes wait in the ready queue, the I/O
devices are idle. Eventually, the CPU-bound process
finishes its CPU burst and moves to an I/0 device.

• All the I/O-bound processes, which have short CPU bursts,
execute quickly and move back to the I/0 queues.

• At this point, the CPU sits idle. The CPU-bound process will
then move back to the ready queue and be allocated the
CPU.

• Again, all the I/O processes end up waiting in the ready
queue until the CPU-bound process is done.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling III
• Assume we have one CPU-bound process and many

I/O-bound processes.
• The CPU-bound process will get and hold the CPU. During

this time, all the other processes will finish their I/0 and will
move into the ready queue, waiting for the CPU.

• While the processes wait in the ready queue, the I/O
devices are idle. Eventually, the CPU-bound process
finishes its CPU burst and moves to an I/0 device.

• All the I/O-bound processes, which have short CPU bursts,
execute quickly and move back to the I/0 queues.

• At this point, the CPU sits idle. The CPU-bound process will
then move back to the ready queue and be allocated the
CPU.

• Again, all the I/O processes end up waiting in the ready
queue until the CPU-bound process is done.

• There is a convoy effect as all the other processes wait for
the one big process to get off the CPU. A long CPU-bound
job may take the CPU and may force shorter (or I/O-bound)
jobs to wait prolonged periods.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling III
• Assume we have one CPU-bound process and many

I/O-bound processes.
• The CPU-bound process will get and hold the CPU. During

this time, all the other processes will finish their I/0 and will
move into the ready queue, waiting for the CPU.

• While the processes wait in the ready queue, the I/O
devices are idle. Eventually, the CPU-bound process
finishes its CPU burst and moves to an I/0 device.

• All the I/O-bound processes, which have short CPU bursts,
execute quickly and move back to the I/0 queues.

• At this point, the CPU sits idle. The CPU-bound process will
then move back to the ready queue and be allocated the
CPU.

• Again, all the I/O processes end up waiting in the ready
queue until the CPU-bound process is done.

• There is a convoy effect as all the other processes wait for
the one big process to get off the CPU. A long CPU-bound
job may take the CPU and may force shorter (or I/O-bound)
jobs to wait prolonged periods.

• This effect results in lower CPU and device utilization than
might be possible if the shorter processes were allowed to
go first.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

First-Come, First-Served Scheduling IV

Figure: An example to First-Come First-Served.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling I

• This algorithm associates with each process the
length of the process’s next CPU burst.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling I

• This algorithm associates with each process the
length of the process’s next CPU burst.

• When the CPU is available, it is assigned to the process
that has the smallest next CPU burst.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling I

• This algorithm associates with each process the
length of the process’s next CPU burst.

• When the CPU is available, it is assigned to the process
that has the smallest next CPU burst.

• As an example of SJF scheduling, consider the following
set of processes, with the length of the CPU burst given in
milliseconds:

Burst Waiting Turnaround
Process Time Time Time

P1 6 3 9
P2 8 16 24
P3 7 9 16
P4 3 0 3

Average - 7 13



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling I

• This algorithm associates with each process the
length of the process’s next CPU burst.

• When the CPU is available, it is assigned to the process
that has the smallest next CPU burst.

• As an example of SJF scheduling, consider the following
set of processes, with the length of the CPU burst given in
milliseconds:

Burst Waiting Turnaround
Process Time Time Time

P1 6 3 9
P2 8 16 24
P3 7 9 16
P4 3 0 3

Average - 7 13

• By comparison, if we were using the FCFS scheduling
scheme, the average waiting time would be 10.25
milliseconds.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling II
• The SJF scheduling algorithm gives the minimum average

waiting time for a given set of processes.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling II
• The SJF scheduling algorithm gives the minimum average

waiting time for a given set of processes.
• The real difficulty with the SJF algorithm is knowing

the length of the next CPU request.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling II
• The SJF scheduling algorithm gives the minimum average

waiting time for a given set of processes.
• The real difficulty with the SJF algorithm is knowing

the length of the next CPU request.
• Although the SJF algorithm is optimal, it can not be

implemented at the level of short-term CPU scheduling.
There is no way to know the length of the next CPU burst.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling II
• The SJF scheduling algorithm gives the minimum average

waiting time for a given set of processes.
• The real difficulty with the SJF algorithm is knowing

the length of the next CPU request.
• Although the SJF algorithm is optimal, it can not be

implemented at the level of short-term CPU scheduling.
There is no way to know the length of the next CPU burst.

• Also, long running jobs may starve for the CPU when there
is a steady supply of short jobs.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling II
• The SJF scheduling algorithm gives the minimum average

waiting time for a given set of processes.
• The real difficulty with the SJF algorithm is knowing

the length of the next CPU request.
• Although the SJF algorithm is optimal, it can not be

implemented at the level of short-term CPU scheduling.
There is no way to know the length of the next CPU burst.

• Also, long running jobs may starve for the CPU when there
is a steady supply of short jobs.

• Example: In Fig. 2a, the average turnaround time is 14
minutes. Consider running these four jobs using SJF, as
shown in Fig. 2b, the average turnaround time now
becomes 11 minutes.

(a)

8


A

4


B

4


C

4


D

(b)

8


A

4


B

4


C

4


D

Figure: An example of shortest job first scheduling. (a) Running
four jobs in the original order. (b) Running them in shortest job
first order.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling III

Figure: An example to Shortest Job First.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling IV
• The SJF algorithm can be either pre-emptive or

nonpreemptive .



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling IV
• The SJF algorithm can be either pre-emptive or

nonpreemptive .
• A pre-emptive SJF algorithm will preempt the currently

executing process, whereas a nonpreemptive SJF
algorithm will allow the currently running process to finish
its CPU burst.

Arrival Burst Waiting Turnaround
Process Time Time Time Time

P1 0 8 9 17
P2 1 4 0 4
P3 2 9 15 24
P4 3 5 2 7

Average - - 6.5 13



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling IV
• The SJF algorithm can be either pre-emptive or

nonpreemptive .
• A pre-emptive SJF algorithm will preempt the currently

executing process, whereas a nonpreemptive SJF
algorithm will allow the currently running process to finish
its CPU burst.

Arrival Burst Waiting Turnaround
Process Time Time Time Time

P1 0 8 9 17
P2 1 4 0 4
P3 2 9 15 24
P4 3 5 2 7

Average - - 6.5 13
• If the processes arrive at the ready queue at the times

shown and need the indicated burst times, then the
resulting pre-emptive SJF schedule is as depicted in the
following chart:



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling IV
• The SJF algorithm can be either pre-emptive or

nonpreemptive .
• A pre-emptive SJF algorithm will preempt the currently

executing process, whereas a nonpreemptive SJF
algorithm will allow the currently running process to finish
its CPU burst.

Arrival Burst Waiting Turnaround
Process Time Time Time Time

P1 0 8 9 17
P2 1 4 0 4
P3 2 9 15 24
P4 3 5 2 7

Average - - 6.5 13
• If the processes arrive at the ready queue at the times

shown and need the indicated burst times, then the
resulting pre-emptive SJF schedule is as depicted in the
following chart:

• Nonpreemptive SJF scheduling would result in an average
waiting time of 7.75 milliseconds.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Shortest-Job-First Scheduling V

Figure: Example of non-pre-emptive SJF and pre-emptive SJF.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling I

• The SJF algorithm is a special case of the general priority
scheduling algorithm .



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling I

• The SJF algorithm is a special case of the general priority
scheduling algorithm .

• A priority is associated with each process, and the CPU is
allocated to the process with the highest priority.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling I

• The SJF algorithm is a special case of the general priority
scheduling algorithm .

• A priority is associated with each process, and the CPU is
allocated to the process with the highest priority.

• Priorities are generally indicated by some fixed range of
numbers, such as 0 to 7 or 0 to 4095. We use as low
numbers represent high priority.

Burst Waiting Turnaround
Process Time Priority Time Time

P1 10 3 6 16
P2 1 1 0 1
P3 2 4 16 18
P4 1 5 18 19
P5 5 2 1 6

Average - - 8.2 12



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling II

• Priorities can be defined either internally or externally .



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling II

• Priorities can be defined either internally or externally .
• Internally defined priorities use some measurable quantity

or quantities to compute the priority of a process.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling II

• Priorities can be defined either internally or externally .
• Internally defined priorities use some measurable quantity

or quantities to compute the priority of a process.
• External priorities are set by criteria outside the OS (such

as the importance of the process).



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling II

• Priorities can be defined either internally or externally .
• Internally defined priorities use some measurable quantity

or quantities to compute the priority of a process.
• External priorities are set by criteria outside the OS (such

as the importance of the process).

• Priority scheduling can be either pre-emptive or
nonpreemptive .



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling II

• Priorities can be defined either internally or externally .
• Internally defined priorities use some measurable quantity

or quantities to compute the priority of a process.
• External priorities are set by criteria outside the OS (such

as the importance of the process).

• Priority scheduling can be either pre-emptive or
nonpreemptive .

• A pre-emptive priority scheduling algorithm will preempt the
CPU if the priority of the newly arrived process is higher
than the priority of the currently running process.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling II

• Priorities can be defined either internally or externally .
• Internally defined priorities use some measurable quantity

or quantities to compute the priority of a process.
• External priorities are set by criteria outside the OS (such

as the importance of the process).

• Priority scheduling can be either pre-emptive or
nonpreemptive .

• A pre-emptive priority scheduling algorithm will preempt the
CPU if the priority of the newly arrived process is higher
than the priority of the currently running process.

• A nonpreemptive priority scheduling algorithm will simply
put the new process at the head of the ready queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling II

• Priorities can be defined either internally or externally .
• Internally defined priorities use some measurable quantity

or quantities to compute the priority of a process.
• External priorities are set by criteria outside the OS (such

as the importance of the process).

• Priority scheduling can be either pre-emptive or
nonpreemptive .

• A pre-emptive priority scheduling algorithm will preempt the
CPU if the priority of the newly arrived process is higher
than the priority of the currently running process.

• A nonpreemptive priority scheduling algorithm will simply
put the new process at the head of the ready queue.

• A major problem with priority scheduling algorithms is
indefinite blocking , or starvation . A process that is
ready to run but waiting for the CPU can be considered
blocked.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling II

• Priorities can be defined either internally or externally .
• Internally defined priorities use some measurable quantity

or quantities to compute the priority of a process.
• External priorities are set by criteria outside the OS (such

as the importance of the process).

• Priority scheduling can be either pre-emptive or
nonpreemptive .

• A pre-emptive priority scheduling algorithm will preempt the
CPU if the priority of the newly arrived process is higher
than the priority of the currently running process.

• A nonpreemptive priority scheduling algorithm will simply
put the new process at the head of the ready queue.

• A major problem with priority scheduling algorithms is
indefinite blocking , or starvation . A process that is
ready to run but waiting for the CPU can be considered
blocked.

• A priority scheduling algorithm can leave some low priority
processes waiting indefinitely.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling II

• Priorities can be defined either internally or externally .
• Internally defined priorities use some measurable quantity

or quantities to compute the priority of a process.
• External priorities are set by criteria outside the OS (such

as the importance of the process).

• Priority scheduling can be either pre-emptive or
nonpreemptive .

• A pre-emptive priority scheduling algorithm will preempt the
CPU if the priority of the newly arrived process is higher
than the priority of the currently running process.

• A nonpreemptive priority scheduling algorithm will simply
put the new process at the head of the ready queue.

• A major problem with priority scheduling algorithms is
indefinite blocking , or starvation . A process that is
ready to run but waiting for the CPU can be considered
blocked.

• A priority scheduling algorithm can leave some low priority
processes waiting indefinitely.

• In a heavily loaded computer system, a steady stream of
higher-priority processes can prevent a low-priority process
from ever getting the CPU.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling III

• It is often convenient to group processes into priority
classes and use priority scheduling among the classes but
round-robin scheduling within each class. Figure 5 shows
a system with four priority classes.

Priority 4


Priority 3


Priority 2


Priority 1

Queue

headers

Runable processes

(Highest priority)

(Lowest priority)

Figure: A scheduling algorithm with four priority classes.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling IV

• A solution to the problem of indefinite blockage of
low-priority processes is aging .



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling IV

• A solution to the problem of indefinite blockage of
low-priority processes is aging .

• Aging is a technique of gradually increasing the priority of
processes that wait in the system for a long time.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling IV

• A solution to the problem of indefinite blockage of
low-priority processes is aging .

• Aging is a technique of gradually increasing the priority of
processes that wait in the system for a long time.

• For example, if priorities range from 127 (low) to 0 (high),
we could increase the priority of a waiting process by 1
every 15 minutes.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling IV

• A solution to the problem of indefinite blockage of
low-priority processes is aging .

• Aging is a technique of gradually increasing the priority of
processes that wait in the system for a long time.

• For example, if priorities range from 127 (low) to 0 (high),
we could increase the priority of a waiting process by 1
every 15 minutes.

• Eventually, even a process with an initial priority of 127
would have the highest priority in the system and would be
executed.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Priority Scheduling V

Figure: An example to Priority-based Scheduling.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling I

• The round-robin (RR) scheduling algorithm is designed
especially for time-sharing systems.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling I

• The round-robin (RR) scheduling algorithm is designed
especially for time-sharing systems.

• It is similar to FCFS scheduling, but pre-emption is added
to switch between processes.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling I

• The round-robin (RR) scheduling algorithm is designed
especially for time-sharing systems.

• It is similar to FCFS scheduling, but pre-emption is added
to switch between processes.

• A small unit of time, called a time quantum or time slice ,
is defined.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling I

• The round-robin (RR) scheduling algorithm is designed
especially for time-sharing systems.

• It is similar to FCFS scheduling, but pre-emption is added
to switch between processes.

• A small unit of time, called a time quantum or time slice ,
is defined.

• A time quantum is generally from 10 to 100 milliseconds.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling I

• The round-robin (RR) scheduling algorithm is designed
especially for time-sharing systems.

• It is similar to FCFS scheduling, but pre-emption is added
to switch between processes.

• A small unit of time, called a time quantum or time slice ,
is defined.

• A time quantum is generally from 10 to 100 milliseconds.

• The ready queue is treated as a circular queue.

(a)

Current

process

Next

process

B F D G A

(b)

Current

process

F D G A B

Figure: Round-robin scheduling. (a) The list of runnable
processes. (b) The list of runnable processes after B uses up its
quantum.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,
• we keep the ready queue as a FIFO queue of processes.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,
• we keep the ready queue as a FIFO queue of processes.
• New processes are added to the tail of the ready queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,
• we keep the ready queue as a FIFO queue of processes.
• New processes are added to the tail of the ready queue.
• The CPU scheduler picks the first process from the ready

queue, sets a timer to interrupt after 1 time quantum, and
dispatches the process.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,
• we keep the ready queue as a FIFO queue of processes.
• New processes are added to the tail of the ready queue.
• The CPU scheduler picks the first process from the ready

queue, sets a timer to interrupt after 1 time quantum, and
dispatches the process.

• The process may have a CPU burst of less than 1 time
quantum.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,
• we keep the ready queue as a FIFO queue of processes.
• New processes are added to the tail of the ready queue.
• The CPU scheduler picks the first process from the ready

queue, sets a timer to interrupt after 1 time quantum, and
dispatches the process.

• The process may have a CPU burst of less than 1 time
quantum.

• In this case, the process itself will release the CPU voluntarily.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,
• we keep the ready queue as a FIFO queue of processes.
• New processes are added to the tail of the ready queue.
• The CPU scheduler picks the first process from the ready

queue, sets a timer to interrupt after 1 time quantum, and
dispatches the process.

• The process may have a CPU burst of less than 1 time
quantum.

• In this case, the process itself will release the CPU voluntarily.
• The scheduler will then proceed to the next process in the

ready queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,
• we keep the ready queue as a FIFO queue of processes.
• New processes are added to the tail of the ready queue.
• The CPU scheduler picks the first process from the ready

queue, sets a timer to interrupt after 1 time quantum, and
dispatches the process.

• The process may have a CPU burst of less than 1 time
quantum.

• In this case, the process itself will release the CPU voluntarily.
• The scheduler will then proceed to the next process in the

ready queue.
• Otherwise, if the CPU burst of the currently running process

is longer than 1 time quantum,



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,
• we keep the ready queue as a FIFO queue of processes.
• New processes are added to the tail of the ready queue.
• The CPU scheduler picks the first process from the ready

queue, sets a timer to interrupt after 1 time quantum, and
dispatches the process.

• The process may have a CPU burst of less than 1 time
quantum.

• In this case, the process itself will release the CPU voluntarily.
• The scheduler will then proceed to the next process in the

ready queue.
• Otherwise, if the CPU burst of the currently running process

is longer than 1 time quantum,
• the timer will go off and will cause an interrupt to the OS.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,
• we keep the ready queue as a FIFO queue of processes.
• New processes are added to the tail of the ready queue.
• The CPU scheduler picks the first process from the ready

queue, sets a timer to interrupt after 1 time quantum, and
dispatches the process.

• The process may have a CPU burst of less than 1 time
quantum.

• In this case, the process itself will release the CPU voluntarily.
• The scheduler will then proceed to the next process in the

ready queue.
• Otherwise, if the CPU burst of the currently running process

is longer than 1 time quantum,
• the timer will go off and will cause an interrupt to the OS.
• A context switch will be executed, and the process will be put

at the tail of the ready queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• To implement RR scheduling,
• we keep the ready queue as a FIFO queue of processes.
• New processes are added to the tail of the ready queue.
• The CPU scheduler picks the first process from the ready

queue, sets a timer to interrupt after 1 time quantum, and
dispatches the process.

• The process may have a CPU burst of less than 1 time
quantum.

• In this case, the process itself will release the CPU voluntarily.
• The scheduler will then proceed to the next process in the

ready queue.
• Otherwise, if the CPU burst of the currently running process

is longer than 1 time quantum,
• the timer will go off and will cause an interrupt to the OS.
• A context switch will be executed, and the process will be put

at the tail of the ready queue.
• The CPU scheduler will then select the next process in the

ready queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• The average waiting time under the RR policy is often long.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling II

• The average waiting time under the RR policy is often long.

• Consider the following set of processes that arrive at time
0, with the length of the CPU burst given in milliseconds:
(a time quantum of 4 milliseconds)

Burst Waiting Turnaround
Process Time Time Time

P1 24 6 30
P2 3 4 7
P3 3 7 10

Average - 5.66 15.66



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling IV

• In the RR scheduling algorithm, no process is allocated
the CPU for more than 1 time quantum in a row (unless it
is the only runnable process).



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling IV

• In the RR scheduling algorithm, no process is allocated
the CPU for more than 1 time quantum in a row (unless it
is the only runnable process).

• The performance of the RR algorithm depends heavily on
the size of the time quantum.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling IV

• In the RR scheduling algorithm, no process is allocated
the CPU for more than 1 time quantum in a row (unless it
is the only runnable process).

• The performance of the RR algorithm depends heavily on
the size of the time quantum.

• If the time quantum is extremely large, the RR policy is the
same as the FCFS policy.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling IV

• In the RR scheduling algorithm, no process is allocated
the CPU for more than 1 time quantum in a row (unless it
is the only runnable process).

• The performance of the RR algorithm depends heavily on
the size of the time quantum.

• If the time quantum is extremely large, the RR policy is the
same as the FCFS policy.

• If the time quantum is extremely small (say, 1 millisecond),
the RR approach is called processor sharing and (in
theory) creates the appearance that each of n processes
has its own processor running at 1

n the speed of the real
processor.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling V
• We need also to consider the effect of context switching on

the performance of RR scheduling (see Fig. 8).

Figure: The way in which a smaller time quantum increases
context switches.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling V
• We need also to consider the effect of context switching on

the performance of RR scheduling (see Fig. 8).
• Let us assume that we have only one process of 10 time

units.

Figure: The way in which a smaller time quantum increases
context switches.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling V
• We need also to consider the effect of context switching on

the performance of RR scheduling (see Fig. 8).
• Let us assume that we have only one process of 10 time

units.
• If the quantum is 12 time units, the process finishes in less

than 1 time quantum, with no overhead.

Figure: The way in which a smaller time quantum increases
context switches.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling V
• We need also to consider the effect of context switching on

the performance of RR scheduling (see Fig. 8).
• Let us assume that we have only one process of 10 time

units.
• If the quantum is 12 time units, the process finishes in less

than 1 time quantum, with no overhead.
• If the quantum is 6 time units, however, the process requires

2 quanta, resulting in a context switch.

Figure: The way in which a smaller time quantum increases
context switches.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling V
• We need also to consider the effect of context switching on

the performance of RR scheduling (see Fig. 8).
• Let us assume that we have only one process of 10 time

units.
• If the quantum is 12 time units, the process finishes in less

than 1 time quantum, with no overhead.
• If the quantum is 6 time units, however, the process requires

2 quanta, resulting in a context switch.
• If the time quantum is 1 time unit, then nine context switches

will occur, slowing the execution of the process accordingly

Figure: The way in which a smaller time quantum increases
context switches.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling VI

• Thus, we want the time quantum to be large with respect
to the context-switch time.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling VI

• Thus, we want the time quantum to be large with respect
to the context-switch time.

• If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will
be spent in context switching.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling VI

• Thus, we want the time quantum to be large with respect
to the context-switch time.

• If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will
be spent in context switching.

• In practice, most modern systems have time quanta ranging
from 10 to 100 milliseconds.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling VI

• Thus, we want the time quantum to be large with respect
to the context-switch time.

• If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will
be spent in context switching.

• In practice, most modern systems have time quanta ranging
from 10 to 100 milliseconds.

• The time required for a context switch is typically less than
10 microseconds; thus, the context-switch time is a small
fraction of the time quantum.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling VI

• Thus, we want the time quantum to be large with respect
to the context-switch time.

• If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will
be spent in context switching.

• In practice, most modern systems have time quanta ranging
from 10 to 100 milliseconds.

• The time required for a context switch is typically less than
10 microseconds; thus, the context-switch time is a small
fraction of the time quantum.

• Setting the quantum too short causes too many process
switches and lowers the CPU efficiency, but setting it too
long may cause poor response to short interactive
requests.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling VI

• Thus, we want the time quantum to be large with respect
to the context-switch time.

• If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will
be spent in context switching.

• In practice, most modern systems have time quanta ranging
from 10 to 100 milliseconds.

• The time required for a context switch is typically less than
10 microseconds; thus, the context-switch time is a small
fraction of the time quantum.

• Setting the quantum too short causes too many process
switches and lowers the CPU efficiency, but setting it too
long may cause poor response to short interactive
requests.

• Although the time quantum should be large compared with
the context-switch time, it should not be too large. If the
time quantum is too large, RR scheduling degenerates to
FCFS policy.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Round-Robin Scheduling VII

Figure: An example to Round Robin.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Queue Scheduling I
• Another class of scheduling algorithms has been created

for situations in which processes are easily classified into
different groups.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Queue Scheduling I
• Another class of scheduling algorithms has been created

for situations in which processes are easily classified into
different groups.

• A common division is made between foreground
(interactive) processes and background (batch)
processes.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Queue Scheduling I
• Another class of scheduling algorithms has been created

for situations in which processes are easily classified into
different groups.

• A common division is made between foreground
(interactive) processes and background (batch)
processes.

• A multilevel queue scheduling algorithm partitions the
ready queue into several separate queues (see Fig. 10).

Figure: Multilevel queue scheduling.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Queue Scheduling II

• The processes are permanently assigned to one queue,
generally based on some property of the process, such as
memory size, process priority, or process type.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Queue Scheduling II

• The processes are permanently assigned to one queue,
generally based on some property of the process, such as
memory size, process priority, or process type.

• Each queue has absolute priority over lower-priority
queues and also each queue has its own scheduling
algorithm.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Queue Scheduling II

• The processes are permanently assigned to one queue,
generally based on some property of the process, such as
memory size, process priority, or process type.

• Each queue has absolute priority over lower-priority
queues and also each queue has its own scheduling
algorithm.

• The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an
FCFS algorithm.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Queue Scheduling II

• The processes are permanently assigned to one queue,
generally based on some property of the process, such as
memory size, process priority, or process type.

• Each queue has absolute priority over lower-priority
queues and also each queue has its own scheduling
algorithm.

• The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an
FCFS algorithm.

• In addition, there must be scheduling among the queues,
which is commonly implemented as fixed-priority
pre-emptive scheduling.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Queue Scheduling II

• The processes are permanently assigned to one queue,
generally based on some property of the process, such as
memory size, process priority, or process type.

• Each queue has absolute priority over lower-priority
queues and also each queue has its own scheduling
algorithm.

• The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an
FCFS algorithm.

• In addition, there must be scheduling among the queues,
which is commonly implemented as fixed-priority
pre-emptive scheduling.

• For example, the foreground queue may have absolute
priority over the background queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling I

• If there are separate queues for foreground and
background processes, processes do not move from one
queue to the other.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling I

• If there are separate queues for foreground and
background processes, processes do not move from one
queue to the other.

• This setup has the advantage of low scheduling overhead,
but it is inflexible.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling I

• If there are separate queues for foreground and
background processes, processes do not move from one
queue to the other.

• This setup has the advantage of low scheduling overhead,
but it is inflexible.

• The multilevel feedback-queue scheduling algorithm ,
in contrast, allows a process to move between queues.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling I

• If there are separate queues for foreground and
background processes, processes do not move from one
queue to the other.

• This setup has the advantage of low scheduling overhead,
but it is inflexible.

• The multilevel feedback-queue scheduling algorithm ,
in contrast, allows a process to move between queues.

• The idea is to separate processes according to the
characteristics of their CPU bursts.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling I

• If there are separate queues for foreground and
background processes, processes do not move from one
queue to the other.

• This setup has the advantage of low scheduling overhead,
but it is inflexible.

• The multilevel feedback-queue scheduling algorithm ,
in contrast, allows a process to move between queues.

• The idea is to separate processes according to the
characteristics of their CPU bursts.

• If a process uses too much CPU time, it will be moved to a
lower-priority queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling I

• If there are separate queues for foreground and
background processes, processes do not move from one
queue to the other.

• This setup has the advantage of low scheduling overhead,
but it is inflexible.

• The multilevel feedback-queue scheduling algorithm ,
in contrast, allows a process to move between queues.

• The idea is to separate processes according to the
characteristics of their CPU bursts.

• If a process uses too much CPU time, it will be moved to a
lower-priority queue.

• This scheme leaves I/O-bound and interactive processes in
the higher-priority queues.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling I

• If there are separate queues for foreground and
background processes, processes do not move from one
queue to the other.

• This setup has the advantage of low scheduling overhead,
but it is inflexible.

• The multilevel feedback-queue scheduling algorithm ,
in contrast, allows a process to move between queues.

• The idea is to separate processes according to the
characteristics of their CPU bursts.

• If a process uses too much CPU time, it will be moved to a
lower-priority queue.

• This scheme leaves I/O-bound and interactive processes in
the higher-priority queues.

• In addition, a process that waits too long in a lower-priority
queue may be moved to a higher-priority queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling I

• If there are separate queues for foreground and
background processes, processes do not move from one
queue to the other.

• This setup has the advantage of low scheduling overhead,
but it is inflexible.

• The multilevel feedback-queue scheduling algorithm ,
in contrast, allows a process to move between queues.

• The idea is to separate processes according to the
characteristics of their CPU bursts.

• If a process uses too much CPU time, it will be moved to a
lower-priority queue.

• This scheme leaves I/O-bound and interactive processes in
the higher-priority queues.

• In addition, a process that waits too long in a lower-priority
queue may be moved to a higher-priority queue.

• The definition of a multilevel feedback-queue scheduler
makes it the most general CPU-scheduling algorithm.
Unfortunately, it is also the most complex algorithm.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling II
• This form of aging prevents starvation (see Fig. 11).



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling II
• This form of aging prevents starvation (see Fig. 11).



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling II
• This form of aging prevents starvation (see Fig. 11).

Figure: Multilevel feedback queues.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling II
• This form of aging prevents starvation (see Fig. 11).

Figure: Multilevel feedback queues.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling II
• This form of aging prevents starvation (see Fig. 11).

Figure: Multilevel feedback queues.

• A process entering the ready
queue is put in queue 0. A
process in queue 0 is given a
time quantum of 8
milliseconds.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling II
• This form of aging prevents starvation (see Fig. 11).

Figure: Multilevel feedback queues.

• A process entering the ready
queue is put in queue 0. A
process in queue 0 is given a
time quantum of 8
milliseconds.

• If it does not finish within this
time, it is moved to the tail of
queue 1.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling II
• This form of aging prevents starvation (see Fig. 11).

Figure: Multilevel feedback queues.

• A process entering the ready
queue is put in queue 0. A
process in queue 0 is given a
time quantum of 8
milliseconds.

• If it does not finish within this
time, it is moved to the tail of
queue 1.

• If queue 0 is empty, the
process at the head of queue 1
is given a quantum of 16
milliseconds.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling II
• This form of aging prevents starvation (see Fig. 11).

Figure: Multilevel feedback queues.

• A process entering the ready
queue is put in queue 0. A
process in queue 0 is given a
time quantum of 8
milliseconds.

• If it does not finish within this
time, it is moved to the tail of
queue 1.

• If queue 0 is empty, the
process at the head of queue 1
is given a quantum of 16
milliseconds.

• If it does not complete, it is
preempted and is put into
queue 2.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Multilevel Feedback-Queue Scheduling II
• This form of aging prevents starvation (see Fig. 11).

Figure: Multilevel feedback queues.

• A process entering the ready
queue is put in queue 0. A
process in queue 0 is given a
time quantum of 8
milliseconds.

• If it does not finish within this
time, it is moved to the tail of
queue 1.

• If queue 0 is empty, the
process at the head of queue 1
is given a quantum of 16
milliseconds.

• If it does not complete, it is
preempted and is put into
queue 2.

• Processes in queue 2 are run
on an FCFS basis but are run
only when queues 0 and 1 are
empty.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Approaches to Multiple-Processor Scheduling

• One approach to CPU scheduling in a multiprocessor
system has all scheduling decisions, I/O processing, and
other system activities handled by a single processor -
the master server.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Approaches to Multiple-Processor Scheduling

• One approach to CPU scheduling in a multiprocessor
system has all scheduling decisions, I/O processing, and
other system activities handled by a single processor -
the master server.

• This asymmetric multiprocessing is simple because
only one processor accesses the system data structures,
reducing the need for data sharing.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Approaches to Multiple-Processor Scheduling

• One approach to CPU scheduling in a multiprocessor
system has all scheduling decisions, I/O processing, and
other system activities handled by a single processor -
the master server.

• This asymmetric multiprocessing is simple because
only one processor accesses the system data structures,
reducing the need for data sharing.

• A second approach uses symmetric multiprocessing
(SMP), where each processor is self-scheduling.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Approaches to Multiple-Processor Scheduling

• One approach to CPU scheduling in a multiprocessor
system has all scheduling decisions, I/O processing, and
other system activities handled by a single processor -
the master server.

• This asymmetric multiprocessing is simple because
only one processor accesses the system data structures,
reducing the need for data sharing.

• A second approach uses symmetric multiprocessing
(SMP), where each processor is self-scheduling.

• All processes may be in a common ready queue, or each
processor may have its own private queue of ready
processes.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Approaches to Multiple-Processor Scheduling

• One approach to CPU scheduling in a multiprocessor
system has all scheduling decisions, I/O processing, and
other system activities handled by a single processor -
the master server.

• This asymmetric multiprocessing is simple because
only one processor accesses the system data structures,
reducing the need for data sharing.

• A second approach uses symmetric multiprocessing
(SMP), where each processor is self-scheduling.

• All processes may be in a common ready queue, or each
processor may have its own private queue of ready
processes.

• Regardless, scheduling proceeds by having the scheduler
for each processor examine the ready queue and select a
process to execute.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Approaches to Multiple-Processor Scheduling

• One approach to CPU scheduling in a multiprocessor
system has all scheduling decisions, I/O processing, and
other system activities handled by a single processor -
the master server.

• This asymmetric multiprocessing is simple because
only one processor accesses the system data structures,
reducing the need for data sharing.

• A second approach uses symmetric multiprocessing
(SMP), where each processor is self-scheduling.

• All processes may be in a common ready queue, or each
processor may have its own private queue of ready
processes.

• Regardless, scheduling proceeds by having the scheduler
for each processor examine the ready queue and select a
process to execute.

• if we have multiple processors trying to access and update
a common data structure, we must ensure that two
processors do not choose the same process and that
processes are not lost from the queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Load Balancing I

• Load balancing attempts to keep the workload evenly
distributed across all processors in an SMP system.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Load Balancing I

• Load balancing attempts to keep the workload evenly
distributed across all processors in an SMP system.

• Load balancing is typically only necessary on systems
where each processor has its own private queue of eligible
processes to execute.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Load Balancing I

• Load balancing attempts to keep the workload evenly
distributed across all processors in an SMP system.

• Load balancing is typically only necessary on systems
where each processor has its own private queue of eligible
processes to execute.

• On systems with a common run queue, load balancing is
often unnecessary, because once a processor becomes
idle, it immediately extracts a runnable process from the
common run queue.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Load Balancing I

• Load balancing attempts to keep the workload evenly
distributed across all processors in an SMP system.

• Load balancing is typically only necessary on systems
where each processor has its own private queue of eligible
processes to execute.

• On systems with a common run queue, load balancing is
often unnecessary, because once a processor becomes
idle, it immediately extracts a runnable process from the
common run queue.

• It is important to note that in most contemporary OSs
supporting SMP, each processor does have a private
queue of eligible processes.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Load Balancing II

• There are two general approaches to load balancing:
push migration and pull migration .



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Load Balancing II

• There are two general approaches to load balancing:
push migration and pull migration .

• With push migration, a specific task periodically checks the
load on each processor and -if it finds an imbalance- evenly
distributes the load by moving (or pushing) processes from
overloaded to idle or less-busy processors.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Load Balancing II

• There are two general approaches to load balancing:
push migration and pull migration .

• With push migration, a specific task periodically checks the
load on each processor and -if it finds an imbalance- evenly
distributes the load by moving (or pushing) processes from
overloaded to idle or less-busy processors.

• Pull migration occurs when an idle processor pulls a waiting
task from a busy processor.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Load Balancing II

• There are two general approaches to load balancing:
push migration and pull migration .

• With push migration, a specific task periodically checks the
load on each processor and -if it finds an imbalance- evenly
distributes the load by moving (or pushing) processes from
overloaded to idle or less-busy processors.

• Pull migration occurs when an idle processor pulls a waiting
task from a busy processor.

• Linux runs its load balancing algorithm every 200
milliseconds (push migration) or whenever the run queue
for a processor is empty (pull migration).



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Example: Linux Scheduling I

• The Linux scheduler is a pre-emptive, priority-based
algorithm with two separate priority ranges:



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Example: Linux Scheduling I

• The Linux scheduler is a pre-emptive, priority-based
algorithm with two separate priority ranges:

• a real-time range from 0 to 99



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Example: Linux Scheduling I

• The Linux scheduler is a pre-emptive, priority-based
algorithm with two separate priority ranges:

• a real-time range from 0 to 99
• and a nice value ranging from 100 to 140.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Example: Linux Scheduling I

• The Linux scheduler is a pre-emptive, priority-based
algorithm with two separate priority ranges:

• a real-time range from 0 to 99
• and a nice value ranging from 100 to 140.

• The relationship between priorities and time-slice length is
shown in Fig. 12.

Figure: The relationship between priorities and time-slice length.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Example: Linux Scheduling I

• The Linux scheduler is a pre-emptive, priority-based
algorithm with two separate priority ranges:

• a real-time range from 0 to 99
• and a nice value ranging from 100 to 140.

• The relationship between priorities and time-slice length is
shown in Fig. 12.

Figure: The relationship between priorities and time-slice length.

• A runnable task is considered eligible for execution on the
CPU as long as it has time remaining in its time slice.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Example: Linux Scheduling II

• The kernel maintains a list of all runnable tasks in a
runqueue data structure.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Example: Linux Scheduling II

• The kernel maintains a list of all runnable tasks in a
runqueue data structure.

• Each runqueue contains two priority arrays -active and
expired .

Figure: List of tasks indexed according to priority.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Example: Linux Scheduling II

• The kernel maintains a list of all runnable tasks in a
runqueue data structure.

• Each runqueue contains two priority arrays -active and
expired .

• The active array contains all tasks with time remaining in
their time slices,

Figure: List of tasks indexed according to priority.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Example: Linux Scheduling II

• The kernel maintains a list of all runnable tasks in a
runqueue data structure.

• Each runqueue contains two priority arrays -active and
expired .

• The active array contains all tasks with time remaining in
their time slices,

• and the expired array contains all expired tasks.

Figure: List of tasks indexed according to priority.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Example: Linux Scheduling II

• The kernel maintains a list of all runnable tasks in a
runqueue data structure.

• Each runqueue contains two priority arrays -active and
expired .

• The active array contains all tasks with time remaining in
their time slices,

• and the expired array contains all expired tasks.

Figure: List of tasks indexed according to priority.

• Each of these priority arrays contains a list of tasks
indexed according to priority (see Fig. 13).



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Race Condition I

• A potential problem; the order of instructions of
cooperating processes (see Table 1).

Table: Race Condition

Process A Process B concurrent access
X = 1; Y = 2; does not matter
X = Y + 1; Y = Y * 2; important!



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Race Condition I

• A potential problem; the order of instructions of
cooperating processes (see Table 1).

Table: Race Condition

Process A Process B concurrent access
X = 1; Y = 2; does not matter
X = Y + 1; Y = Y * 2; important!

• A race condition is a situation where two or more
processes access shared data concurrently and final value
of shared data depends on timing (race to access and
modify data)



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Race Condition I

• A potential problem; the order of instructions of
cooperating processes (see Table 1).

Table: Race Condition

Process A Process B concurrent access
X = 1; Y = 2; does not matter
X = Y + 1; Y = Y * 2; important!

• A race condition is a situation where two or more
processes access shared data concurrently and final value
of shared data depends on timing (race to access and
modify data)

• To guard against the race condition above, we need to
ensure that only one process at a time can be
manipulating the variable counter (process
synchronization ).



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Race Condition II

• Producer-consumer problem . It is described that how a
bounded buffer could be used to enable processes
to share memory



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Race Condition II

• Producer-consumer problem . It is described that how a
bounded buffer could be used to enable processes
to share memory

• Bounded buffer problem . The solution allows at most
BUFFER_SIZE − 1 items in the buffer at the same time.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Race Condition II

• Producer-consumer problem . It is described that how a
bounded buffer could be used to enable processes
to share memory

• Bounded buffer problem . The solution allows at most
BUFFER_SIZE − 1 items in the buffer at the same time.

• An integer variable counter, initialized to 0. counter is
incremented every time we add a new item to the buffer and
is decremented every time we remove one item from the
buffer.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Race Condition II

• Producer-consumer problem . It is described that how a
bounded buffer could be used to enable processes
to share memory

• Bounded buffer problem . The solution allows at most
BUFFER_SIZE − 1 items in the buffer at the same time.

• An integer variable counter, initialized to 0. counter is
incremented every time we add a new item to the buffer and
is decremented every time we remove one item from the
buffer.

• Although both the producer and consumer routines are
correct separately, they may not function correctly when
executed concurrently.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Race Condition II

• Producer-consumer problem . It is described that how a
bounded buffer could be used to enable processes
to share memory

• Bounded buffer problem . The solution allows at most
BUFFER_SIZE − 1 items in the buffer at the same time.

• An integer variable counter, initialized to 0. counter is
incremented every time we add a new item to the buffer and
is decremented every time we remove one item from the
buffer.

• Although both the producer and consumer routines are
correct separately, they may not function correctly when
executed concurrently.

• We would arrive at incorrect state because we allowed
both processes to
manipulate the variable counter concurrently.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Race Condition III

• The code for the producer process:
while (true)
{
/* produce an item in next Produced */
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem I
• How do we avoid race conditions? What we need is

mutual exclusion (see Fig. 14).
A enters critical region A leaves critical region

B attempts to

enter critical 


region

B enters

critical region

T1 T2 T3 T4

Process A 

Process B 

B blocked

B leaves

critical region

Time

Figure: Mutual exclusion using critical regions.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem I
• How do we avoid race conditions? What we need is

mutual exclusion (see Fig. 14).
A enters critical region A leaves critical region

B attempts to

enter critical 


region

B enters

critical region

T1 T2 T3 T4

Process A 

Process B 

B blocked

B leaves

critical region

Time

Figure: Mutual exclusion using critical regions.

• Consider a system consisting of n processes. Each
process has a segment of code, called a critical section
(CS), in which the process may be changing common
variables, updating a table, writing a file, and so on.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem I
• How do we avoid race conditions? What we need is

mutual exclusion (see Fig. 14).
A enters critical region A leaves critical region

B attempts to

enter critical 


region

B enters

critical region

T1 T2 T3 T4

Process A 

Process B 

B blocked

B leaves

critical region

Time

Figure: Mutual exclusion using critical regions.

• Consider a system consisting of n processes. Each
process has a segment of code, called a critical section
(CS), in which the process may be changing common
variables, updating a table, writing a file, and so on.

• The important feature of the system is that, when one
process is executing in its CS,
no other process is to be allowed to execute in its CS.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem II

• That is, no two processes are executing in their CSs at the
same time.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem II

• That is, no two processes are executing in their CSs at the
same time.

• Each process must request permission to enter its CS.
The section of code implementing this request is the entry
section .



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem II

• That is, no two processes are executing in their CSs at the
same time.

• Each process must request permission to enter its CS.
The section of code implementing this request is the entry
section .

• The CS may be followed by an exit section .



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem II

• That is, no two processes are executing in their CSs at the
same time.

• Each process must request permission to enter its CS.
The section of code implementing this request is the entry
section .

• The CS may be followed by an exit section .
• The remaining code is the remainder section (see Fig.

15).

Figure: General structure of a typical process Pi .



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem III

• A solution to the CS problem must satisfy the following
requirements:



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem III

• A solution to the CS problem must satisfy the following
requirements:

1 Mutual exclusion . If process Pi is executing in its CS, then
no other processes can be executing in their CSs.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem III

• A solution to the CS problem must satisfy the following
requirements:

1 Mutual exclusion . If process Pi is executing in its CS, then
no other processes can be executing in their CSs.

2 Progress . If no process is executing in its CS and some
processes wish to enter their CSs, then only those
processes that are not executing in their remainder sections
can participate in the decision on which will enter its CS
next, and this selection cannot be postponed indefinitely.
(No process should have to wait forever to enter its CS.)



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem III

• A solution to the CS problem must satisfy the following
requirements:

1 Mutual exclusion . If process Pi is executing in its CS, then
no other processes can be executing in their CSs.

2 Progress . If no process is executing in its CS and some
processes wish to enter their CSs, then only those
processes that are not executing in their remainder sections
can participate in the decision on which will enter its CS
next, and this selection cannot be postponed indefinitely.
(No process should have to wait forever to enter its CS.)

3 Bounded waiting . There exists a bound, or limit, on the
number of times that other processes are allowed to enter
their CSs after a process has made a request to enter its
CS and before that request is granted.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem III

• A solution to the CS problem must satisfy the following
requirements:

1 Mutual exclusion . If process Pi is executing in its CS, then
no other processes can be executing in their CSs.

2 Progress . If no process is executing in its CS and some
processes wish to enter their CSs, then only those
processes that are not executing in their remainder sections
can participate in the decision on which will enter its CS
next, and this selection cannot be postponed indefinitely.
(No process should have to wait forever to enter its CS.)

3 Bounded waiting . There exists a bound, or limit, on the
number of times that other processes are allowed to enter
their CSs after a process has made a request to enter its
CS and before that request is granted.

4 Fault tolerance . Process running outside its CR should not
block other processes accessing the CR.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem III

• A solution to the CS problem must satisfy the following
requirements:

1 Mutual exclusion . If process Pi is executing in its CS, then
no other processes can be executing in their CSs.

2 Progress . If no process is executing in its CS and some
processes wish to enter their CSs, then only those
processes that are not executing in their remainder sections
can participate in the decision on which will enter its CS
next, and this selection cannot be postponed indefinitely.
(No process should have to wait forever to enter its CS.)

3 Bounded waiting . There exists a bound, or limit, on the
number of times that other processes are allowed to enter
their CSs after a process has made a request to enter its
CS and before that request is granted.

4 Fault tolerance . Process running outside its CR should not
block other processes accessing the CR.

5 No assumptions may be made about speeds or the
number of CPUs.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem IV

• Atomic operation . Atomic means either an operation
happens in its entirely or NOT at all (it cannot be
interrupted in the middle).



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem IV

• Atomic operation . Atomic means either an operation
happens in its entirely or NOT at all (it cannot be
interrupted in the middle).

• Machine instructions are atomic, high level instructions are
not (count++; this is actually 3 machine level instructions,
an interrupt can occur in the middle of instructions).



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem IV

• Atomic operation . Atomic means either an operation
happens in its entirely or NOT at all (it cannot be
interrupted in the middle).

• Machine instructions are atomic, high level instructions are
not (count++; this is actually 3 machine level instructions,
an interrupt can occur in the middle of instructions).

• Various proposals for achieving mutual exclusion, so that
while one process is busy updating shared memory in its
CS, no other process will enter its CS and cause trouble.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem IV

• Atomic operation . Atomic means either an operation
happens in its entirely or NOT at all (it cannot be
interrupted in the middle).

• Machine instructions are atomic, high level instructions are
not (count++; this is actually 3 machine level instructions,
an interrupt can occur in the middle of instructions).

• Various proposals for achieving mutual exclusion, so that
while one process is busy updating shared memory in its
CS, no other process will enter its CS and cause trouble.

• Disabling Interrupts



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem IV

• Atomic operation . Atomic means either an operation
happens in its entirely or NOT at all (it cannot be
interrupted in the middle).

• Machine instructions are atomic, high level instructions are
not (count++; this is actually 3 machine level instructions,
an interrupt can occur in the middle of instructions).

• Various proposals for achieving mutual exclusion, so that
while one process is busy updating shared memory in its
CS, no other process will enter its CS and cause trouble.

• Disabling Interrupts
• Lock Variables



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem IV

• Atomic operation . Atomic means either an operation
happens in its entirely or NOT at all (it cannot be
interrupted in the middle).

• Machine instructions are atomic, high level instructions are
not (count++; this is actually 3 machine level instructions,
an interrupt can occur in the middle of instructions).

• Various proposals for achieving mutual exclusion, so that
while one process is busy updating shared memory in its
CS, no other process will enter its CS and cause trouble.

• Disabling Interrupts
• Lock Variables
• Strict Alternation



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem IV

• Atomic operation . Atomic means either an operation
happens in its entirely or NOT at all (it cannot be
interrupted in the middle).

• Machine instructions are atomic, high level instructions are
not (count++; this is actually 3 machine level instructions,
an interrupt can occur in the middle of instructions).

• Various proposals for achieving mutual exclusion, so that
while one process is busy updating shared memory in its
CS, no other process will enter its CS and cause trouble.

• Disabling Interrupts
• Lock Variables
• Strict Alternation
• Peterson’s Solution



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

The Critical-Section Problem IV

• Atomic operation . Atomic means either an operation
happens in its entirely or NOT at all (it cannot be
interrupted in the middle).

• Machine instructions are atomic, high level instructions are
not (count++; this is actually 3 machine level instructions,
an interrupt can occur in the middle of instructions).

• Various proposals for achieving mutual exclusion, so that
while one process is busy updating shared memory in its
CS, no other process will enter its CS and cause trouble.

• Disabling Interrupts
• Lock Variables
• Strict Alternation
• Peterson’s Solution
• The TSL instructions (Hardware approach)



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

• The simplest solution is to have each process disable all
interrupts just after entering its CS and re-enable them just
before leaving it.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

• The simplest solution is to have each process disable all
interrupts just after entering its CS and re-enable them just
before leaving it.

• With interrupts disabled, no clock interrupts can occur
(The CPU is only switched from process to process as a
result of clock or other interrupts)



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

• The simplest solution is to have each process disable all
interrupts just after entering its CS and re-enable them just
before leaving it.

• With interrupts disabled, no clock interrupts can occur
(The CPU is only switched from process to process as a
result of clock or other interrupts)

• With interrupts turned off the CPU will not be switched to
another process!! Thus, once a process has disabled
interrupts, it can examine and update the shared memory
without fear that any other process will intervene.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

• The simplest solution is to have each process disable all
interrupts just after entering its CS and re-enable them just
before leaving it.

• With interrupts disabled, no clock interrupts can occur
(The CPU is only switched from process to process as a
result of clock or other interrupts)

• With interrupts turned off the CPU will not be switched to
another process!! Thus, once a process has disabled
interrupts, it can examine and update the shared memory
without fear that any other process will intervene.

• This approach is generally unattractive because it is
unwise to give user processes the power to turn off
interrupts. Suppose that one of them did it and never
turned them on again? That could be the end of the
system.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

• The simplest solution is to have each process disable all
interrupts just after entering its CS and re-enable them just
before leaving it.

• With interrupts disabled, no clock interrupts can occur
(The CPU is only switched from process to process as a
result of clock or other interrupts)

• With interrupts turned off the CPU will not be switched to
another process!! Thus, once a process has disabled
interrupts, it can examine and update the shared memory
without fear that any other process will intervene.

• This approach is generally unattractive because it is
unwise to give user processes the power to turn off
interrupts. Suppose that one of them did it and never
turned them on again? That could be the end of the
system.

• On the other hand, it is frequently convenient for the kernel
itself to disable interrupts for a few instructions while it is
updating variables or lists.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

Figure: Solution to the critical-section problem using locks.

• Consider having a single, shared (lock) variable, initially 0.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

Figure: Solution to the critical-section problem using locks.

• Consider having a single, shared (lock) variable, initially 0.
• When a process wants to enter its CS, it first tests the lock.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

Figure: Solution to the critical-section problem using locks.

• Consider having a single, shared (lock) variable, initially 0.
• When a process wants to enter its CS, it first tests the lock.
• If the lock is 0, the process sets it to 1 and enters the CS.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

Figure: Solution to the critical-section problem using locks.

• Consider having a single, shared (lock) variable, initially 0.
• When a process wants to enter its CS, it first tests the lock.
• If the lock is 0, the process sets it to 1 and enters the CS.
• If the lock is already 1, the process just waits until it

becomes 0.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

Figure: Solution to the critical-section problem using locks.

• Consider having a single, shared (lock) variable, initially 0.
• When a process wants to enter its CS, it first tests the lock.
• If the lock is 0, the process sets it to 1 and enters the CS.
• If the lock is already 1, the process just waits until it

becomes 0.
• Thus, a 0 means that no process is in its CS, and a 1

means that some process is in its CS.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

• Unfortunately, this idea contains a fatal flaw;



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

• Unfortunately, this idea contains a fatal flaw;
• Suppose that one process reads the lock and sees that it is

0.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

• Unfortunately, this idea contains a fatal flaw;
• Suppose that one process reads the lock and sees that it is

0.
• Before it can set the lock to 1, another process is

scheduled, runs, and sets the lock to 1.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Disabling Interrupts: (Systems approach)

• Unfortunately, this idea contains a fatal flaw;
• Suppose that one process reads the lock and sees that it is

0.
• Before it can set the lock to 1, another process is

scheduled, runs, and sets the lock to 1.
• When the first process runs again, it will also set the lock to

1, and two processes will be in their CSs at the same time.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) I

• Busy waiting (notice the semicolons terminating the while
statements in Fig. 17); continuously testing a variable until
some value appears, a lock that uses busy waiting is
called a spin lock .



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) I

• Busy waiting (notice the semicolons terminating the while
statements in Fig. 17); continuously testing a variable until
some value appears, a lock that uses busy waiting is
called a spin lock .

• It should usually be avoided, since it wastes CPU time.

Figure: A proposed solution to the critical region problem. (a)
Process 0. (b) Process 1.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),
• initially, process 0 inspects turn, finds it to be 0, and enters its

CR,



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),
• initially, process 0 inspects turn, finds it to be 0, and enters its

CR,
• process 1 also finds it to be 0 and therefore sits in a tight loop

continually testing turn to see when it becomes,



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),
• initially, process 0 inspects turn, finds it to be 0, and enters its

CR,
• process 1 also finds it to be 0 and therefore sits in a tight loop

continually testing turn to see when it becomes,
• when process 0 leaves the CR, it sets turn to 1, to allow process

1 to enter its CR,



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),
• initially, process 0 inspects turn, finds it to be 0, and enters its

CR,
• process 1 also finds it to be 0 and therefore sits in a tight loop

continually testing turn to see when it becomes,
• when process 0 leaves the CR, it sets turn to 1, to allow process

1 to enter its CR,
• suppose that process 1 finishes its CR quickly, so both

processes are in their nonCR (with turn set to 0)



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),
• initially, process 0 inspects turn, finds it to be 0, and enters its

CR,
• process 1 also finds it to be 0 and therefore sits in a tight loop

continually testing turn to see when it becomes,
• when process 0 leaves the CR, it sets turn to 1, to allow process

1 to enter its CR,
• suppose that process 1 finishes its CR quickly, so both

processes are in their nonCR (with turn set to 0)
• process 0 finishes its nonCR and goes back to the top of its loop.

Process 0 executes its whole loop quickly, exiting its CR and
setting turn to 1.



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),
• initially, process 0 inspects turn, finds it to be 0, and enters its

CR,
• process 1 also finds it to be 0 and therefore sits in a tight loop

continually testing turn to see when it becomes,
• when process 0 leaves the CR, it sets turn to 1, to allow process

1 to enter its CR,
• suppose that process 1 finishes its CR quickly, so both

processes are in their nonCR (with turn set to 0)
• process 0 finishes its nonCR and goes back to the top of its loop.

Process 0 executes its whole loop quickly, exiting its CR and
setting turn to 1.

• at this point turn is 1 and both processes are executing in their
nonCR,



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),
• initially, process 0 inspects turn, finds it to be 0, and enters its

CR,
• process 1 also finds it to be 0 and therefore sits in a tight loop

continually testing turn to see when it becomes,
• when process 0 leaves the CR, it sets turn to 1, to allow process

1 to enter its CR,
• suppose that process 1 finishes its CR quickly, so both

processes are in their nonCR (with turn set to 0)
• process 0 finishes its nonCR and goes back to the top of its loop.

Process 0 executes its whole loop quickly, exiting its CR and
setting turn to 1.

• at this point turn is 1 and both processes are executing in their
nonCR,

• process 0 finishes its nonCR and goes back to the top of its loop,



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),
• initially, process 0 inspects turn, finds it to be 0, and enters its

CR,
• process 1 also finds it to be 0 and therefore sits in a tight loop

continually testing turn to see when it becomes,
• when process 0 leaves the CR, it sets turn to 1, to allow process

1 to enter its CR,
• suppose that process 1 finishes its CR quickly, so both

processes are in their nonCR (with turn set to 0)
• process 0 finishes its nonCR and goes back to the top of its loop.

Process 0 executes its whole loop quickly, exiting its CR and
setting turn to 1.

• at this point turn is 1 and both processes are executing in their
nonCR,

• process 0 finishes its nonCR and goes back to the top of its loop,
• unfortunately, it is not permitted to enter its CR, turn is 1 and

process 1 is busy with its nonCR,



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),
• initially, process 0 inspects turn, finds it to be 0, and enters its

CR,
• process 1 also finds it to be 0 and therefore sits in a tight loop

continually testing turn to see when it becomes,
• when process 0 leaves the CR, it sets turn to 1, to allow process

1 to enter its CR,
• suppose that process 1 finishes its CR quickly, so both

processes are in their nonCR (with turn set to 0)
• process 0 finishes its nonCR and goes back to the top of its loop.

Process 0 executes its whole loop quickly, exiting its CR and
setting turn to 1.

• at this point turn is 1 and both processes are executing in their
nonCR,

• process 0 finishes its nonCR and goes back to the top of its loop,
• unfortunately, it is not permitted to enter its CR, turn is 1 and

process 1 is busy with its nonCR,
• it hangs in its while loop until process 1 sets turn to 0,



CPU scheduling II &
Process

Synchronization I

Dr. Cem Özdo ğan

Scheduling Algorithms
First-Come, First-Served
Scheduling

Shortest-Job-First
Scheduling

Priority Scheduling

Round-Robin Scheduling

Multilevel Queue
Scheduling

Multilevel Feedback-Queue
Scheduling

Multiple-Processor
Scheduling
Approaches to
Multiple-Processor
Scheduling

Load Balancing

Operating System
Examples
Example: Linux Scheduling

Process
Synchronization

Race Condition

The Critical-Section
Problem
Disabling Interrupts:

Strict Alternation (Software approach) II
• the integer variable turn (keeps track of whose turn it is to enter

the CR),
• initially, process 0 inspects turn, finds it to be 0, and enters its

CR,
• process 1 also finds it to be 0 and therefore sits in a tight loop

continually testing turn to see when it becomes,
• when process 0 leaves the CR, it sets turn to 1, to allow process

1 to enter its CR,
• suppose that process 1 finishes its CR quickly, so both

processes are in their nonCR (with turn set to 0)
• process 0 finishes its nonCR and goes back to the top of its loop.

Process 0 executes its whole loop quickly, exiting its CR and
setting turn to 1.

• at this point turn is 1 and both processes are executing in their
nonCR,

• process 0 finishes its nonCR and goes back to the top of its loop,
• unfortunately, it is not permitted to enter its CR, turn is 1 and

process 1 is busy with its nonCR,
• it hangs in its while loop until process 1 sets turn to 0,
• this algorithm does avoid all races. But violates condition Fault

tolerance .


	Scheduling Algorithms
	First-Come, First-Served Scheduling
	Shortest-Job-First Scheduling
	Priority Scheduling
	Round-Robin Scheduling
	Multilevel Queue Scheduling
	Multilevel Feedback-Queue Scheduling

	Multiple-Processor Scheduling
	Approaches to Multiple-Processor Scheduling
	Load Balancing

	Operating System Examples
	Example: Linux Scheduling

	Process Synchronization
	Race Condition
	The Critical-Section Problem
	Disabling Interrupts: (Systems approach)
	Lock Variables: (Software approach)
	Lock Variables: (Software approach)

	Mutual Exclusion with Busy Waiting
	Strict Alternation (Software approach)


