
Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.1

Lecture 7
Process Synchronization II
Lecture Information

Ceng328 Operating Systems at April 06, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.2

Contents

1 Peterson’s Solution (Software approach)

2 Semaphores
Usage
Implementation
Deadlocks and Starvation
Mutexes

3 Classic Problems of Synchronization
The Bounded-Buffer Problem
The Readers-Writers Problem
The Dining-Philosophers Problem

4 Monitors
Usage

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.3

Peterson’s Solution I

• A classic software-based solution to the critical-section
problem known as Peterson’s solution.

• Does not require strict alternation.

• Peterson’s solution requires two data items to be shared
between the two processes:

int turn;
boolean flag[2];

• The variable turn indicates whose turn it is to enter its CS.
That is, if turn == i , then process Pi is allowed to execute in
its CS.

• The flag array is used to indicate if a process is ready to
enter its CS. For example, if flag[i] is true, this value
indicates that Pi is ready to enter its CS.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.4

Peterson’s Solution II

• The algorithm for Peterson’s solution is seen in Fig. 1.

Figure: The structure of process Pi in Peterson’s solution.

• Mutual exclusion is preserved .
• The progress requirement is satisfied & The

bounded-waiting requirement is met .
• Burns CPU cycles; requires busy waiting
• It can be extended to work for n processes, but overhead.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.5

Peterson’s Solution III

Figure: Peterson’s solution for achieving mutual exclusion.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.6

Peterson’s Solution IV

• Sleep and wakeup . Peterson’s solution has not only the
defect of requiring busy waiting but it can also have
unexpected effects;

• Consider a computer with two processes, H, with high
priority and L, with low priority.

• The scheduling rules are such that H is run whenever it is in
ready state.

• At a certain moment, with L in its critical region, H becomes
ready to run (e.g., an I/O operation completes).

• H now begins busy waiting, but since L is never scheduled
while H is running, L never gets the chance to leave its
critical region, so H loops forever.

• This situation is sometimes referred to as the priority
inversion problem.

• IPC primitive that blocks instead of wasting CPU time
(while loop) when they are not allowed to enter their CRs.

• One of the simplest is the pair sleep and wakeup .
• Sleep is a system call that causes the caller to block, that is,

be suspended until another process wakes it up.
• The wakeup call has one parameter, the process to be

awakened.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.7

Semaphores I
• A synchronization tool called semaphore .
• Semaphores are variables that are used to signal the

status of shared resources to processes.
• Dijkstra (1965) suggested using an integer variable to

count the number of wakeups saved for future use.
• A semaphore S is accessed only through two standard

atomic operations (apart from initialization): wait() (sleep)
and signal() (wakeup).

• A semaphore could have the value 0, indicating that no
wakeups were saved, or some positive value if one or
more wakeups were pending.

• Two operations, down and up (generalizations of sleep
and wakeup, respectively);

The definition of wait() is as
follows:

wait (S) {
while S <= 0

;// no-op
S--;

}

The definition of signal() is as
follows:

signal (S) {
S++;

}

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.8

Semaphores II

• All the modifications to the integer value of the semaphore
in the wait() and signal() operations must be executed
indivisibly (atomicity).

• That is, when one process modifies the semaphore value,
no other process can simultaneously modify that same
semaphore value.

• In addition, in the case of wait(S),
• the testing of the integer value of S (S ≤ 0),
• and its possible modification (S −−),

must also be executed without interruption.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.9

Usage I

• Counting and binary semaphores . The value of a
counting semaphore can range over an unrestricted
domain.

• The value of a binary semaphore can range only between
0 and 1. On some systems, binary semaphores are known
as mutex locks , as they are locks that provide
mutual exclusion.

• Counting semaphores can be used to control access to a
given resource consisting of a finite number of instances.

• The semaphore is initialized to the number of resources
available.

• Each process that wishes to use a resource performs a
wait() operation on the semaphore (thereby decrementing
the count).

• When a process releases a resource, it performs a signal()
operation (incrementing the count).

• When the count for the semaphore goes to 0, all resources
are being used. After that, processes that wish to use a
resource will block until the count becomes greater than 0.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.10

Usage II

• We can use binary semaphores to deal with the
critical-section problem for multiple processes.

• The n processes share a semaphore, mutex , initialized to
1.

• Each process Pi is organized as shown in Fig. 3.

Figure: Mutual-exclusion implementation with semaphores.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.11

Implementation I

• The main disadvantage of the semaphore is that it
requires busy waiting.

• While a process is in its CS, any other process that tries to
enter its CS must loop continuously in the entry code.

• Busy waiting wastes CPU cycles that some other process
might be able to use productively.

• This type of semaphore is also called a spinlock because
the process “spins” while waiting for the lock (context
switch is not required).

• To overcome the need for busy waiting, we can modify the
definition of the wait() and signal() semaphore operations.

• When a process executes the wait() operation and finds
that the semaphore value is not positive, it must wait.

• However, rather than engaging in busy waiting, the process
can block itself.

• The block operation places a process into a waiting queue
associated with the semaphore, and the state of the
process is switched to the waiting state.

• Then control is transferred to the CPU scheduler, which
selects another process to execute.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.12

Implementation II

• A process that is blocked, waiting (sleeping) on a
semaphore S, should be restarted when some other
process executes a signal() (wakeup) operation.

• It changes the process from the waiting state to the
ready state.

• The list of waiting processes can be easily implemented by
a link field in each process control block (PCB).

• The critical aspect of semaphores is that they be executed
atomically .

• We must guarantee that no two processes can execute
wait() and signal() operations on the same semaphore at
the same time.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.13

Deadlocks and Starvation I

• The implementation of a semaphore with a waiting queue
may result in a situation where two or more processes are
waiting indefinitely for an event that can be
caused only by one of the waiting processes.

• The event in question is the execution of a signal()
operation.

• When such a state is reached, these processes are said to
be deadlocked .

• Another problem related to deadlocks is indefinite
blocking , or starvation , a situation in which processes
wait indefinitely within the semaphore.

• Indefinite blocking may occur if we add and remove
processes from the list associated with a semaphore in
LIFO (last-in, first-out) order.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.14

Deadlocks and Starvation II

• To illustrate deadlock, we consider a system consisting of
two processes, P0 and P1, each accessing two
semaphores, S and Q, set to the value 1:

• Suppose that P0 executes wait(S) and then P1 executes
wait(Q).

• When P0 executes wait(Q), it must wait until P1 executes
signal(0).

• Similarly, when P1 executes wait(S), it must wait until P0

executes signal(S).
• Since these signal() operations cannot be executed, P0 and

P1 are deadlocked.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.15

Mutexes I

• A mutex is a variable that can be in one of two states:
unlocked or locked.

• Two procedures are used with mutexes.
• When a thread (or process) needs access to a critical

region, it calls mutex_lock .
• If the mutex is currently unlocked (meaning that the critical

region is available), the call succeeds and the calling thread
is free to enter the critical region.

• On the other hand, if the mutex is already locked, the calling
thread is blocked until the thread in the critical region is
finished and calls mutex_unlock .

• If multiple threads are blocked on the mutex, one of them
is chosen at random and allowed to acquire the lock.

• With threads, there is no clock that stops threads that have
run too long.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.16

Mutexes II
• Consequently, a thread that tries to acquire a lock by busy

waiting will loop forever and never acquire the lock
because it never allows any other thread to run and
release the lock.

• That is where the difference between enter_region and
mutex_lock comes in.

• When the later fails to acquire a lock, it calls thread_yield
to give up the CPU to another thread.

• Consequently there is no busy waiting. When the thread
runs the next time, it tests the lock again.

Figure: Some of the Pthreads calls relating to the mutexes.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.17

Mutexes III

Figure: Using threads to solve the producer-consumer problem I.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.18

Mutexes IV

Figure: Using threads to solve the producer-consumer problem II.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.19

The Bounded-Buffer Problem I

• We assume that the pool consists of n buffers.
• The mutex semaphore provides mutual exclusion for

accesses to the buffer pool and is initialized to the value 1.
• The empty (initially n) and full (initially 0) semaphores

count the number of empty and full buffers.
• The code for the producer process is shown in Fig. 7;

Figure: The structure of the producer process.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.20

The Bounded-Buffer Problem II

The code for the consumer process is shown in Fig. 8;

Figure: The structure of the consumer process.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.21

The Bounded-Buffer Problem III

Figure: The producer-consumer problem using semaphores.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.22

The Readers-Writers Problem I

• A database is to be shared among several
concurrent processes.

• Some of these processes may want only to read the
database (readers), whereas others may want to update
(that is, to read and write) the database (writers).

• If two readers access the shared data simultaneously, no
adverse affects will result.

• However, if a writer and some other thread (either a reader
or a writer) access the database simultaneously, there
could be some synchronization issues .

• To ensure that these difficulties do not arise, we require
that the writers have exclusive access to the shared
database.

• This synchronization problem is referred to as the
readers-writers problem.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.23

The Readers-Writers Problem II

• The readers-writers problem has several variations, all
involving priorities.

• The simplest one, referred to as the first readers-writers
problem, requires that no reader will be kept waiting unless
a writer has already obtained permission to use the shared
object. In other words, no reader should wait for other
readers to finish simply because a writer is waiting.

• The second readers-writers problem requires that, once a
writer is ready, that writer performs its write as soon as
possible. In other words, if a writer is waiting to access the
object, no new readers may start reading.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.24

The Readers-Writers Problem III
• A solution to either problem may result in starvation .

• In the first case, writers may starve.
• In the second case, readers may starve.

• The solution to the first readers-writers problem;

Figure: The structure of a writer
process.

Figure: The structure of a reader
process.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.25

The Readers-Writers Problem IV

• In the solution to the first readers-writers problem, the
reader processes share the following data structures:

semaphore mutex, wrt;
int readcount;

• The semaphores mutex and wrt are initialized to 1;
readcount is initialized to 0.

• The semaphore wrt is common to both reader and writer
processes.

• The mutex semaphore is used to ensure mutual exclusion
when the variable readcount is updated.

• The readcount variable keeps track of how many processes
are currently reading the object.

• The semaphore wrt functions as a mutual-exclusion
semaphore for the writers. It is also used by the first or last
reader that enters or exits the CS.

• It is not used by readers who enter or exit while other
readers are in their CSs.

• Note that, if a writer is in the CS and n readers are waiting,
then one reader is queued on wrt , and n − 1 readers are
queued on mutex .

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.26

The Dining-Philosophers Problem I

• The dining philosophers problem is useful for modeling
processes that are competing for exclusive access to a
limited number of resources, such as I/O devices.

• Consider five philosophers who spend their lives thinking
and eating.

• The philosophers share a circular table surrounded by five
chairs (see Fig. 12).

Figure: The situation of the dining philosophers.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.27

The Dining-Philosophers Problem II
• The dining-philosophers problem is an example of a large

class of concurrency-control problems.
• When a philosopher thinks, she does not interact with her

colleagues.
• From time to time, a philosopher gets hungry and tries to

pick up the two chopsticks that are closest to her (the
chopsticks that are between her and her left and right
neighbors).

• A philosopher may pick up only one chopstick at a time.
• When a hungry philosopher has both her chopsticks at the

same time, she eats without releasing her chopsticks.
• When she is finished eating, she puts down both of her

chopsticks and starts thinking again.
• One simple solution is to

represent each chopstick with a semaphore.
• A philosopher tries to grab a chopstick by executing a wait()

operation on that semaphore; she releases her chopsticks
by executing the signal() operation on the appropriate
semaphores.

• Thus, the shared data are
semaphore chopstick[5] ;
where all the elements of chopstick are initialized to 1.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.28

The Dining-Philosophers Problem III

• The structure of philosopher i is shown in Fig. 13.

Figure: The structure of philosopher i .

• Although this solution guarantees that no two neighbors
are eating simultaneously, it could create a deadlock.

• Suppose that all five philosophers become hungry
simultaneously and each grabs her left chopstick.

• When each philosopher tries to grab her right chopstick,
she will be delayed forever.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.29

The Dining-Philosophers Problem IV

• One improvement to Fig. 13 that has no deadlock and no
starvation is to protect the five statements following the
call to think by a binary semaphore.

• Before starting to acquire forks, a philosopher would do a
down on mutex

• After replacing the forks, she would do an up on mutex

• It has a performance bug: only one philosopher can be
eating at any instant.

• With five forks available, we should be able to allow two
philosophers to eat at the same time.

• Any satisfactory solution to the dining-philosophers
problem must guard against the possibility that one of the
philosophers will starve to death.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.30

The Dining-Philosophers Problem V
• The solution presented in Fig. 14 is deadlock-free and

allows the maximum parallelism for an arbitrary number of
philosophers.

• It uses an array, state, to keep track of whether a
philosopher is eating, thinking, or hungry (trying to acquire
forks).

• A philosopher may move only into eating state if neither
neighbor (LEFT and RIGHT) is eating .

Figure: A solution to the dining philosophers problem I.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.31

The Dining-Philosophers Problem VI

Figure: A solution to the dining philosophers problem II.

The solution is deadlock–free and allows the maximum
parallelism for any number of philosophers

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.32

Monitors I

• Although semaphores provide a
convenient and effective mechanism for process
synchronization,

• using them incorrectly can result in timing errors that are
difficult to detect, since these errors happen only if some
particular execution sequences take place and these
sequences do not always occur.

• The semaphore solution to the CS problem.
• All processes share a semaphore variable mutex , which is

initialized to 1.
• Each process must execute wait(mutex) before entering the

CS and signal(mutex) afterward.
• If this sequence is not observed,two processes may be in

their CSs simultaneously.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.33

Monitors II

• Suppose that a process interchanges the order in which
the wait() and signal() operations on the semaphore
mutex are executed, resulting in the following execution:

signal(mutex);
...

critical section
...

wait(mutex);

• Suppose that a process replaces signal(mutex) with
wait(mutex). That is, it executes

wait(mutex);
...

critical section
...

wait(mutex);

In this case, a deadlock will occur.
• Suppose that a process omits the wait(mutex), or the

signal(mutex), or both. In this case, either mutual
exclusion is violated or a deadlock will occur.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.34

Monitors III

• You must be careful when using semaphores. It is like
programming in assembly language, only worse, because
the errors are race conditions, deadlocks, and other forms
of unpredictable and irreproducible behavior.

• Semaphores require programmer to think of every timing
issue; easy to miss something, difficult to debug.

• Let the compiler handle the details. Programmer only has
to say what to protect.

• Researchers have developed high-level language
constructs - monitor .

• A monitor is a collection of procedures, variables, and data
structures that are all grouped together in a special kind of
module or package.

• Processes may call the procedures in a monitor whenever
they want to, but they cannot directly access the monitor’s
internal data structures from procedures declared outside
the monitor.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.35

Monitors IV

• Monitors have an important property that makes them
useful for achieving mutual exclusion: only one process
can be active in a monitor at any instant.

• Compiler actually does the protection (compiler will use
semaphores to do protection).

• Main problem: provides less control.

• Some real programming languages also support monitors.
One such language is Java.

• Java is an object-oriented language that supports
user-level threads and also allows methods (procedures)
to be grouped together into classes (keyword
synchronized).

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.36

Usage I

• The monitor type contains
the declaration of variables
whose values define the
state of an instance of that
type, along with the bodies
of procedures or functions
that operate on those
variables.

• The syntax of a monitor is
shown in Fig. 16.

Figure: Syntax of a monitor.

Process
Synchronization II

Dr. Cem Özdo ğan

Peterson’s Solution
(Software approach)

Semaphores
Usage

Implementation

Deadlocks and Starvation

Mutexes

Classic Problems of
Synchronization
The Bounded-Buffer
Problem

The Readers-Writers
Problem

The Dining-Philosophers
Problem

Monitors
Usage

7.37

Usage II

• The monitor construct ensures that only one process at a
time can be active within the monitor.

• Consequently, the programmer does not need to code this
synchronization constraint explicitly (see Fig. 17).

Figure: Schematic view of a monitor.

	Peterson's Solution (Software approach)
	Semaphores
	Usage
	Implementation
	Deadlocks and Starvation
	Mutexes

	Classic Problems of Synchronization
	The Bounded-Buffer Problem
	The Readers-Writers Problem
	The Dining-Philosophers Problem

	Monitors
	Usage

