
Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.1

Lecture 9
Main Memory II
Lecture Information

Ceng328 Operating Systems at April 20, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.2

Contents

1 Address Binding

2 Logical Versus Physical Address Space

3 Swapping

4 Contiguous Memory Allocation
Memory Mapping and Protection
Memory Allocation
Fragmentation

5 Paging
Basic Method
Protection
Shared Pages

6 Segmentation
Basic Method
Hardware



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.3

Address Binding I

• The process of associating program instructions and data
to physical memory addresses is called address binding,
or relocation.

• Addresses may be represented in different ways during
these steps.

• Addresses in the source program are generally symbolic
(such as count).

• A compiler will typically bind these symbolic addresses to
relocatable addresses (such as "14 bytes from the
beginning of this module").

• The linkage editor or loader will in turn bind the relocatable
addresses to absolute addresses (such as 74014).

• Each binding is a mapping from one address space to
another.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.4

Address Binding II

Figure: Multistep processing of a user program.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.5

Logical Versus Physical Address Space

• An address generated by the CPU is commonly referred to
as a logical address ,

• Whereas an address seen by the memory unit -that is, the
one loaded into the memory-address register of the
memory- is commonly referred to as a physical address .

• The compile-time and load-time address-binding methods
generate identical logical and physical addresses.

• However the execution-time address-binding scheme
results in differing logical and physical addresses.

• In this case, we usually refer to the logical address as a
virtual address .

• The run-time mapping from virtual to physical addresses is
done by a hardware device called the
memory-management unit (MMU).



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.6

Logical Versus Physical Address Space

Figure: Dynamic relocation using a relocation register.

• A simple MMU scheme, which is a generalization of the
base-register scheme (see Fig. 2)).

• The base register is now called a relocation register .
• The value in the relocation register is added to every

address generated by a user process at the time it is sent to
memory

• The concept of a logical address space that is bound to a
separate physical address space is central to proper
memory management.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.7

Swapping I

• A process can be swapped temporarily out of memory to
a backing store (disk) and then brought back into memory
for continued execution.

• A round-robin CPU-scheduling algorithm; when a quantum
expires (see Fig. 3),

Figure: Swapping of two processes using a disk as a backing store.

• The quantum must be large enough to allow reasonable
amounts of computing to be done between swaps.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.8

Swapping II

• Normally, a process that is swapped out will be
swapped back into the same memory space it occupied
previously.

• This restriction is dictated by the method of
address binding.

• If binding is done at assembly or load time, then the process
cannot be easily moved to a different location.

• If execution-time binding is being used, however, then a
process can be swapped into a different memory space.

• Context-switch time; to get an idea of the context-switch
time,

• Let us assume that the user process is 10 MB in size and
the backing store is a standard hard disk with a
transfer rate of 40 MB per second.

• The actual transfer of the 10-MB process to or from main
memory takes
10000 KB/40000 KB per second = 1/4 second
= 250 milliseconds.

• Assuming that no head seeks are necessary, and assuming
an average latency of 8 milliseconds, the swap time is 258
milliseconds. (swap out + swap in = 516 msec)



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.9

Swapping III

• For efficient CPU utilization, we want the execution time for
each process to be long relative to the swap time.

• Thus, the time quantum should be substantially larger than
0.516 seconds.

• Notice that the major part of the swap time is transfer time.

• Generally, swap space is allocated as a chunk of disk,
separate from the file system, so that its use is as fast as
possible.

• Currently, standard swapping is used in few systems. A
modification of swapping is used in many versions of
UNIX.

• Swapping is normally disabled but will start if many
processes are running and are using a threshold amount of
memory.

• Swapping is again halted when the load on the system is
reduced.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.10

Memory Mapping and Protection I
• We need to consider how to allocate available memory to

the processes that are in the input queue waiting to be
brought into memory.

• In the contiguous memory allocation, each process is
contained in a single contiguous section of memory.

• With relocation and limit registers, each logical address
must be less than the limit register;

• The MMU maps the logical address dynamically by adding
the value in the relocation register. This mapped address
is sent to memory (see Fig. 4).

Figure: Hardware support for relocation and limit registers.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.11

Memory Mapping and Protection II

• When the CPU scheduler selects a process for execution,
the dispatcher loads the relocation and limit registers with
the correct values as part of the context switch.

• The relocation-register scheme provides an effective way
to allow the OS size to change dynamically.

• For example, the OS contains code and buffer space for
device drivers.

• If a device driver (or other OS service) is not commonly
used, we do not want to keep the code and data in memory.

• Such code is sometimes called transient OS code; it
comes and goes as needed.

• Thus, using this code changes the size of the OS during
program execution.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.12

Memory Allocation I

• One of the simplest methods for allocating memory is to
divide memory into several fixed-sized partitions.

• Each partition may contain exactly one process.

• Thus, the degree of multiprogramming is bound by the
number of partitions.

• In this multiple-partition method,
• When a partition is free, a process is selected from the input

queue and is loaded into the free partition.
• When the process terminates, the partition becomes

available for another process.

• This method is no longer in use.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.13

Memory Allocation II

• The next method is a generalization of the fixed-partition
scheme (called MVT, Multiprogramming with Variable
Partitions).

• In the fixed-partition scheme,
• The OS keeps a table indicating which parts of memory are

available and which are occupied.
• Initially, all memory is available for user processes and is

considered one large block of available memory, a hole.
• When a process arrives and needs memory, we search for a

hole large enough for this process.
• If we find one, we allocate only as much memory as is

needed, keeping the rest available to satisfy future requests.

• At any given time, we have a list of available block sizes
and the input queue.

• The OS can order the input queue according to a
scheduling algorithm.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.14

Memory Allocation III

• This procedure is a particular instance of the general
dynamic storage-allocation problem, which concerns
how to satisfy a request of size n from a list of free holes.
There are many solutions to this problem.

• First fit . Allocate the first hole that is big enough. Searching
can start either at the beginning of the set of holes or where
the previous first-fit search ended. We can stop searching
as soon as we find a free hole that is large enough.

• Best fit . Allocate the smallest hole that is big enough. We
must search the entire list, unless the list is ordered by size.
This strategy produces the smallest leftover hole.

• Worst fit . Allocate the largest hole. Again, we must search
the entire list, unless it is sorted by size. This strategy
produces the largest leftover hole, which may be more
useful than the smaller leftover hole from a best-fit
approach.

• Simulations have shown that both first fit and best fit are
better than worst fit in terms of decreasing time and
storage utilization.

• Neither first fit nor best fit is clearly better than the other in
terms of storage utilization, but first fit is generally faster.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.15

Fragmentation I

• Both the first-fit and best-fit strategies for memory
allocation suffer from external fragmentation .

• External fragmentation exists when there is enough total
memory space to satisfy a request, but the available
spaces are not contiguous.

• Storage is fragmented into a large number of small holes.
• Memory fragmentation can be internal as well as external.

• Consider a multiple-partition allocation scheme with a hole
of 18,464 bytes.

• Suppose that the next process requests 18,462 bytes.
• If we allocate exactly the requested block, we are left with a

hole of 2 bytes.
• The difference between these two numbers is internal

fragmentation; memory that is internal to a partition but is
not being used.

• The general approach to avoiding this problem is to break
the physical memory into fixed-sized blocks and allocate
memory in units based on block size.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.16

Fragmentation II

• One solution to the problem of external fragmentation is
compaction .

• The goal is to shuffle the memory contents so as to place
all free memory together in one large block.

• Another possible solution to the external-fragmentation
problem is to permit the logical address space of the
processes to be non-contiguous , thus allowing a process
to be allocated physical memory wherever the latter is
available.

• Two complementary techniques achieve this solution:
• paging
• segmentation

• These techniques can also be combined.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.17

Paging

• Paging is a memory-management scheme that permits the
physical address space of a process to be non-contiguous.

• Paging avoids the considerable problem of fitting memory
chunks of varying sizes onto the backing store.

• The backing store also has the fragmentation problems
discussed in connection with main memory, except that
access is much slower, so compaction is impossible!

• Because of its advantages over earlier methods, paging in
its various forms is commonly used in most OSs.

• Traditionally, support for paging has been handled by
hardware.

• However, recent designs have implemented paging by
closely integrating the hardware and OS, especially on
64-bit microprocessors.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.18

Basic Method I
• The basic method for implementing paging involves

• breaking physical memory into fixed-sized blocks called
frames

• breaking logical memory into blocks of the same size called
pages.

• The backing store is divided into fixed-sized blocks that
are of the same size as the memory frames.

Figure: Paging hardware.

• The hardware support for paging is illustrated in Fig. 5.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.19

Basic Method II
• Every address generated by the CPU is divided into two

parts: a page number (p) and a page offset (d).
• The page number is used as an index into a page table.
• The page table contains the base address of each page in

physical memory.
• This base address is combined with the page offset

to define the physical memory address.
• The paging model of memory is shown in Fig. 6.

Figure: Paging model of logical and physical memory.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.20

Basic Method III

• The size of a page is typically a power of 2, varying
between 512 bytes and 16 MB per page, depending on the
computer architecture.

• Consider the memory in Fig. 7. It is shown that how the
user’s view of memory can be mapped into physical
memory.

• Using a page size of 4 bytes and a physical memory of 32
bytes (8 pages).

• Logical address 0 is page O, offset O. Indexing into the
page table, we find that page 0 is in frame 5. Thus, logical
address 0 maps to physical address 20 (= (5 x 4) + 0).

• Logical address 3 (page 0, offset 3) maps to physical
address 23 (= (5 x 4) + 3).

• Logical address 4 is page 1, offset 0; according to the page
table, page 1 is mapped to frame 6. Thus, logical address 4
maps to physical address 24 (= (6 x 4) + 0).

• Logical address 13 maps to physical address 9.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.21

Basic Method IV

Figure: Paging example for a 32-byte memory with 4-byte pages.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.22

Basic Method V

• Using paging is similar to using a table of base (or
relocation) registers, one for each frame of memory.

• When we use a paging scheme, we have
no external fragmentation:

• Any free frame can be allocated to a process that needs it.

• However, we may have some internal fragmentation.

• If the memory requirements of a process do not happen to
coincide with page boundaries, the last frame allocated
may not be completely full.

• For example, if page size is 2,048 bytes, a process of
72,766 bytes would need 35 pages plus 1,086 bytes.

• It would be allocated 36 frames, resulting in an internal
fragmentation of 2,048 - 1,086 = 962 bytes.

• In the worst case, a process would need n pages plus 1
byte. It would be allocated n + 1 frames, resulting in an
internal fragmentation of almost an entire frame.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.23

Basic Method VI

• What about page size?

• Generally, page sizes have grown over time as processes,
data sets, and main memory have become larger.

• Today, pages typically are between 4 KB and 8 KB in size,
and some systems support even larger page sizes.

• Usually, each page-table entry is 4 bytes long, but that size
can vary as well. A 32-bit entry can point to one of 232

physical page frames.

• If frame size is 4 KB, then a system with 4-byte entries can
address 244(4KB ∗ 232) bytes (or 16 TB) of physical
memory.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.24

Basic Method VII

Figure: Free frames (a) before allocation and (b) after allocation.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.25

Basic Method VIII
• An important aspect of paging is the clear separation

between the user’s view of memory and the actual
physical memory.

• The logical addresses are translated into physical
addresses by the address-translation hardware.

• This mapping is hidden from the user and is controlled by
the OS.

• The user process has no way of addressing memory
outside of its page table, and the table includes only those
pages that the process owns.

• Since the OS is managing physical memory, it must be
aware of the allocation details of physical memory

• which frames are allocated,
• which frames are available,
• how many total frames there are, and so on.

• This information is generally kept in a data structure called
a frame table .

• The frame table has one entry for each physical page
frame, indicating whether the latter is free or allocated and,

• if it is allocated, to which page of which process or
processes.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.26

Protection I

• Memory protection in a paged environment is
accomplished by protection bits associated with each
frame.

• These bits are kept in the page table. One bit can define a
page to be read-write or read-only.

• An attempt to write to a read-only page causes a hardware
trap to the operating system (or memory-protection
violation).

• One additional bit is generally attached to each entry in
the page table: a valid-invalid bit.

• When this bit is set to “valid”, the associated page is in the
process’s logical address space and is thus a legal (or valid)
page.

• When the bit is set to “invalid”, the page is not in the
process’s logical address space.

• Illegal addresses are trapped by use of the valid-invalid bit.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.27

Protection II

• Suppose, for example, that in a system with a 14-bit
address space (0 to 16383), we have a program that
should use only addresses 0 to 10468.

• Given a page size of 2 KB (with 6 pages 2048 ∗ 6 = 12288).
• item Addresses in pages 0, 1, 2, 3, 4, and 5 are mapped

normally through the page table.
• Any attempt to generate an address in pages 6 or 7,

however, will find that the valid-invalid bit is set to invalid,
and the computer will trap to the OS (invalid page
reference).

• Because the program extends to only address 10468, any
reference beyond that address is illegal.

• However, references to page 5 are classified as valid, so
accesses to addresses up to 12287 are valid.

• Only the addresses from 12288 to 16383 are invalid.

• This problem is a result of the 2-KB page size and reflects
the internal fragmentation of paging.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.28

Protection III

Figure: Valid (v) or invalid (i) bit in a page table.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.29

Shared Pages I
• An advantage of paging is the possibility of

sharing common code.

Figure: Sharing of code in a paging environment.

• Consider a system that supports 40 users, each of whom
executes a text editor (see Fig. 10).



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.30

Shared Pages II
• If the text editor consists of 150 KB of code and 50 KB of

data space, we need 8,000 KB to support the 40 users
(40 ∗ (150KB + 50KB)).

• If the code is reentrant code (or pure code), it can be
shared (to be shareable, the code must be reentrant).

• Reentrant code is non-self-modifying code; it never
changes during execution.

• Thus, two or more processes can execute the same code
at the same time.

• Each process has its own copy of registers and data
storage to hold the data for the process’s execution.

• Only one copy of the editor need be kept in physical
memory.

• Each user’s page table maps onto the same physical copy
of the editor, but data pages are mapped onto different
frames.

• Thus, to support 40 users, we need only one copy of the
editor (150 KB), plus 40 copies of the 50 KB of data space
per user.

• The total space required is now 2,150 KB instead of 8,000
KB-a significant savings.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.31

Basic Method I
• Users prefer to view memory as a collection of

variable-sized segments, with no necessary ordering
among segments (Figure 8.18).

Figure: User’s view of a program.

• Segmentation is a memory-management scheme that
supports this user view of memory.

• A logical address space is a collection of segments.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.32

Basic Method II

• Each segment has a name and a length. The addresses
specify both the segment name and the offset within the
segment.

• a segment name
• an offset

• For simplicity of implementation, segments are numbered
and are referred to by a segment number, rather than by a
segment name.

• Thus, a logical address consists of a two tuple:

<segment-number, offset>

• A logical address consists of two parts: a segment
number, s, and an offset into that segment, d .



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.33

Hardware I

• Although the user can now refer to objects in the program
by a two-dimensional address, the actual physical memory
is still, of course, a one-dimensional sequence of bytes.

• Thus, we must define an implementation to map
two-dimensional user-defined addresses into
one-dimensional physical addresses.

• This mapping is effected by a segment table . Each entry
in the segment table has a segment base and a
segment limit.

• The segment base contains the starting physical address
where the segment resides in memory, whereas the
segment limit specifies the length of the segment (see Fig.
12).



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.34

Hardware II

Figure: Segmentation hardware.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.35

Hardware III

• The segment number is used as an index to the segment
table.

• The offset d of the logical address must be between 0 and
the segment limit.

• If it is not, we trap to the OS (logical addressing attempt
beyond end of segment).

• When an offset is legal, it is added to the segment base to
produce the address in physical memory of the desired
byte.

• The segment table is thus essentially an array of base-limit
register pairs.

• As an example, consider the situation shown in Fig. 13.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.36

Hardware IV

Figure: Example of segmentation.



Main Memory II

Dr. Cem Özdo ğan

Address Binding

Logical Versus
Physical Address
Space

Swapping

Contiguous Memory
Allocation
Memory Mapping and
Protection

Memory Allocation

Fragmentation

Paging
Basic Method

Protection

Shared Pages

Segmentation
Basic Method

Hardware

9.37

Hardware V

• We have five segments numbered from 0 through 4.

• The segment table has a separate entry for each segment,
giving the beginning address of the segment in physical
memory (or base) and the length of that segment (or limit).

• For example, segment 2 is 400 bytes long and begins at
location 4300.

• Thus, a reference to byte 53 of segment 2 is mapped onto
location 4300 + 53 = 4353.

• A reference to segment 3, byte 852, is mapped to 3200
(the base of segment 3) + 852 = 4052.

• A reference to byte 1222 of segment would result in a trap
to the OS, as this segment is only 1,000 bytes long.


	Address Binding
	Logical Versus Physical Address Space
	Swapping
	Contiguous Memory Allocation
	Memory Mapping and Protection
	Memory Allocation
	Fragmentation

	Paging
	Basic Method
	Protection
	Shared Pages

	Segmentation
	Basic Method
	Hardware


