
CENG328
Operating Systems

Laboratory IX
Semaphores, Mutual Exclusion



2Cankaya University
Department of Computer Engineering

2011

1. Semaphores

● Semaphore; code34.c

● A common strategy to avoid race conditions is to use semaphores.

● The use of semaphores is important to prevent simultaneous access to system resources 
by separate processes or separate threads inside the same process.

● Three system calls to create, use, and release semaphores:

– semget - Returns an integer semaphore index that is assigned by the kernel

– semop - Performs operations on the semaphore set

– semctl - Performs control operations on the semaphore set

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code34.c


3Cankaya University
Department of Computer Engineering

2011

1. Semaphores

● The program shows how to create a semaphore set and how to access the elements of 
that set. Does the following:

– Creates a unique key and creates a semaphore,

– Checks to make sure that the semaphore is created OK,

– Prints out the value of the semaphore at index 0 (should be 1),

– Sets the semaphore (decrements the value of semaphore at index 0 to 0),

– Prints out the value of the semaphore at index 0 (should be 0),

– Unsets the semaphore (increments the value of semaphore at index 0 back to 1),

– Prints out the value of the semaphore at index 0 (should be 1),

– Removes the semaphore.

● Study the code.

● Execute several times and observe that how the output changes.

● Is there any possible race conditions? Explain.



4Cankaya University
Department of Computer Engineering

2011

2. Mutual Exclusion (Mutex)

● Mutex; code32.c

● Several threads and shared data.

● Mutex mechanism (pthread mutex lock) is used for concurrent executing.

● Execute code several times and observe that how the execution order of the threads 
changes.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code32.c


5Cankaya University
Department of Computer Engineering

2011

3. Starving Philosophers Simulation

● Download the simulator from link: 
StarvingPhilosophers.tar.gz.

● Unpack the simulator with the following 
command:

cd Downloads
tar zxvf StarvingPhilosophers.tar.gz

● Run the simulator with the following 
command:

cd StarvingPhilosophers
chmod +x runsp
./runsp

● First of all, read the spdoc.html file 
carefully. This file contains detailed 
information about running and modifying 
the parameters of the simulation.

http://siber.cankaya.edu.tr/OperatingSystems/week7l/StarvingPhilosophers.tar.gz


6Cankaya University
Department of Computer Engineering

2011

3. Starving Philosophers Simulation

● Each time you want to modify simulation parameters such as number of philosophers or 
whether starving is enabled or not, you have to edit the spconfig file and restart the 
simulator. The contents of spconfig file look like this:

number 5
starving off
animate on
queueing fifo
eatingdist constant 100
thinkingdist constant 100
starvingdist constant 900
thinkingdist1 constant 3
thinkingdistvalue1 2
eatingdist1 constant 2
thinkingdist2 constant 1
eatingdist2 constant 4
eatingdistvalue2 2

● Each line in this file hold various parameters related to the simulation.

● After starting the simulator, click on the "Run Until Starvation" button. This will start the 
simulation.

● Animated sequence of simulation will start and continue until simulation has been aborted or 
starving has occured.



7Cankaya University
Department of Computer Engineering

2011

3. Starving Philosophers Simulation

● You may draw a gannt chart for displaying how long each philosopher spent their time for 
thinking, eating or as hungry by clicking on the "Gannt Chart" button.

● For different sample runs, have a look at demos directory.

● Exercise: Modify the simulation parameters to create a deadlock (starvation). You are free to 
modify any parameters you like to, but you should explain your method.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

