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the net flux through any closed surface surrounding a point charge q is 7
given by g/€, and its independent of the shape of that surface
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* Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

* Gauss’ law considers a hypothetical (imaginary)

- S closed surface enclosing the charge distribution.
, surface
\ T f * This Gaussian surface, as it is called, can have any
v\t\ / /1/7 shape, but the shape that minimizes our calculations
- o of the electric field is one that mimics the symmetry

of the charge distribution.

?/J | x\\;

Fig. 23-1 A spherical Gaussian
surface. If the electric field vectors
are of uniform magnitude and point
radially outward at all surface points,
you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical
symmetry.

* Electric Field & Force Law Depends on Geometry

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan
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_ Fig. 23-2 (a) A uniform airstream of
i tow— vector \ velocity v is perpendicular to the
1\ plane of a square loop of area A.
i B> A \ \ (b) The component of v

= perpendicular to the plane of the

loop is v cos6, where 6, is the angle

between v

and a normal to the plane.

(c) (d) (c) The area vector A is
perpendicular to the plane of the

* The volume flow rate (volume per unit time) at which  l0op and has a magnitude equal to

: : _ the area of the loop; that is A. Here,
air flows through the loop is ®= (v cos 6)A. A makes an angle 6, with v,

* This rate of flow through an area is an example of a (d) The velocity field intercepted by

L

flux- a volume flux in this situation- which can be the area of the loop.
rewritten in terms of vectors asq} - L =
scalar = vAcos§=v-4, Air Flow Analogy

* This equation can also be interpreted as the flux of the
velocity field through the loop. With this interpretation, flux is
no longer means the actual flow of something through an
area - rather it means the product of an area and the field
across that area.

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan
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* The area vector dA for an area element (patch element) on a surface is a vector
that is perpendicular to the element and has a magnitude equal to the area dA of

the element.

* The electric flux d¢ through a patch element with area vector dA is given by a
dot product:

dd =E - dA. o> AD = (Ecos 6) AA.
AN
) ) ) 6\60
) , ) / (a) An electric field vector pierces a

Y
= E, / small square patch on a flat
—

surface.

——x —>- x (b) Only the x component actually

-/ > pierces the patch; the y
component skims across it.

(c) The area vector of the patch is
perpendicular to the patch, with
- - a magnitude equal to the

i H O=FE-A patch’s area.
what 1s the source of the E?

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan
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i dA=+ (dA)I/’\' (dA: outward!)
q

—_

f—_
B N: inward!)
E-dA = EdAcos(180°) = —EdA

antiparallel

Electric //__
field lines &~

Since r is Constant on the Sphere - Remove
closed surface E Outside the Integral!

@:ﬁ/ﬁ'.d;i:_ dA= _Iﬂ (4%(2) Sphere Surface Area
?{ =———
t

otal area

€o Special Case! €0

http:/iwww.phys.lsu.edu/~jdowling/PHY S21132-SP15/lectures/index.html
October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 6
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Gauss’ Law: General Case

* Consider any ARBITRARY
CLOSED surface S -- NOTE: this
does NOT have to be a “real’
physical object!

* The TOTAL ELECTRIC FLUX
through S is proportional to the
TOTAL CHARGE ENCLOSED!

* The results of a complicated — — qins
integral is a very simple formula: it D E - dA —
avoids long calculations! 80

Surface

simplifications

(One of Maxwell's 4 equations!)

http:/iwww.phys.lsu.edu/~jdowling/PHYS21132-SP15/lectures/index.html
October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 7
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Electric flux through a Gaussian surface is
proportional to the net number of electric
field lines passing through that surface.

* For small AA, E can be taken as constant
over AA. Thus, the flux of electric field for
the Gaussian surface of Fig. 23-3 is

surface

* Now we can find the total flux by integrating the
dot product over the full surface. The total flux

through a surface is given by

D= JE‘ dA (total flux).

* The net flux through a closed surface (which is

used in Gauss’ law) is given by

P = % E-dA (electric flux through a Gaussian surface).

The loop sign indicates that the integration is to be
taken over the entire (closed) surface. The Sl unit for

® is (N.m?/C).

October 5, 2021

PHY 102 Physics II © Dr.Cem Ozdogan

® =Y E - AA.

Fig. 23-3 A Gaussian surface of arbitrary
shape immersed in an electric field. The

is divided into small squares of area

A A. The electric field vectors E and the
area vectors AA for three representative
squares, marked 1, 2, and 3, are shown.

Gaussian
surface \
¥ : o

D <0

D=0
Pierce e E  Pierce
inward: outward:
negative 4 . positive
flux Ad flux

D=0

Skim: zero flux



23-3 Electric Flux d e

Electric Flux: General Surface

e For any general surface: break up
into infinitesimal planar patches

e Electric Flux @ = J‘]Etd_;&

e Surface integral

e dAis a vector normal to each
patch and has a magnitude =
dA|=dA

e CLOSED surfaces:

- define the vector dA as pointing

OUTWARDS
- Inward E dives negative flux ®  Arca=dA N
- Outward H gives positive flux @ dA

as the sign of enclosed charge

http://www.phys.lsu.edu/~jdowling/PHY S21132-SP15/lectures/index.html
October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 9
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Example, Flux through a closed cylinder, uniform ﬁeld

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field E.
with the cylinder axis parallel to the field. What is the flux
® of the electric field through this closed surface?

KEY IDEA

We can find the flux @ through the Gaussian surface by inte-
grating the scalar product E - dA over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c. Thus, from Eq. 23-4,

q>=ng’-dE
=ff-dﬁ+ff-dﬁ+ff-dﬁ.

b

(23-5)

For all points on the left cap, the angle f between E and
dA 18 180° and the magnitude E of the field is uniform. Thus,

jE’-dZ - fE(cos 180°) dA =@EjdA = —FA,

left cap
where [ dA gives the cap’s area A (= 7R?). Similarly, for the

October 5, 2021

il A Gaussian
/_ surface

I,
(]
| —r

dA

2
=
e - 1
- R D
)

o .
Lo L

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field. The cylinder axis 1s parallel to
the field direction.

right cap, where 6 = 0 for all points,
right cap

fﬁ:‘-dﬁ = JE(COSD) dA = EA.

Finally, for the cylindrical surface, where the angle 6is 90° at
all points,

j E-dA = fE(cos 90°) dA = 0. in=out
b Net flux
Substituting these results into Eq. 23-5 leads us
d=-FA+0+ EA=0.

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

(Answer)

PHY 102 Physics II © Dr.Cem Ozdogan 10
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Example, Flux through a closed Right face: An area vector A is always
cube, nonuniform field: x dependence perpendicular to its surface and always points
- ) ~away from the interior of a Gaussian surface. Thus,
A nonuniform electric field given by E = 3.0xi + 4.0j :
pierces the Gaussian cube shown in Fig. 23-5a. (£ is in the vector d4 for any ar,ea E,:lement Or_l Fhe rl_ght .
newtons per coulomb and x is in meters.) What is the face of the cube must point in the positive direction

electric flux through the right face, the left face, and the of the x axis. The most convenient way to express
top face? (We consider the other faces in another sample the vector is in unit-vector notation
b

problem.)
The y component R AT
y Consim Is a constant.
surface E, o o . . .
e 2 ®, = f E-dA = 1(3.0.::1 - A.07) - (d A7)
dA(3) E
8 ' . s ¢ 2 2
L Yo = j [(3.0x)(dA)i -1 + (4.0)(dA)j - 1]
E.‘(’
. o » o The x component - j (3.0xdA + 0) = B,DJXG'A,
-~ *=10m x=30m " depends on the . J
. value of x. dydz

right face — x=3

Although x is certainly a variable as we move left to right across the figure, because the right face is
perpendicular to the x axis, every point on the face has the same x coordinate. (The y and z
coordinates do not matter in our integral.) Thus, we have

& = 30 j (3.0) dA = 9.0] dA. = (9.0N/C)(4.0 m?) =36 N-m?C. (Answer)

total area
October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 11



1ZMIR
gl EATID

KATIP CELEB]
LIMIVERSITES]

A nonuniform electric field given by E = 3.0xi + 4.0
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the

top face? (We consider the other faces in another sample
problem.)

The y component
Fig. 23-5 I aE
i IS a constant.
y Gaussian
surface E, _
|
E
|
|
* | X
EI
o 7 The x component
el depends on the
value of x.

AFWQ 5(__" A=
\L_h/_\“"—:ﬁ 5—?{, AR

2t 5 o0y %&%

October 5, 2021

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However two
factors change. (1) The differential area vector dA points in
the negative direction of the x axis, and thus dA = —dAi
(Fig. 23-3d). (2) The term x again appears in our integration,
and 1t is again constant over the face being considered.
However, on the left face, x = 1.0 m. With these two
changes, we find that the flux @, through the left face is

®, = —12N-m?C. (Answer)

Top face: The differential area vector dA points in the posi-
tive direction of the y axis, and thus dA = dA] (Fig. 23-5e).
The flux @, through the top face is then

= j (3.0xi + 4.0)) - (dA]) %CW‘?J
- J [(3.0x)(dA)i /( + (4.0)(dA)i/J{]
J O 1 3 2
= | (0+4.0dA) = 4.ojdA_, x| dz
J ),

= 16 N-m?%C. (Answer)

‘ (I)top ‘ — ‘ (I)bottom ‘

PHY 102 Physics II © Dr.Cem Ozdogan



23-4 Gauss’ Law d e

Gauss’s law relates the net flux ® of an electric field
through a closed surface (a Gaussian surface) to the
net charge q.,. that is enclosed by that surface.

Sy

‘li",) |
N2

Eo® = Gonc (Gauss’ law).

= (onc (Gauss’ law).

- The net charge g, is the algebraic sum of all the

enclosed positive and negative charges, and it can
be positive, negative, or zero.

- If q,,. is positive, the net flux is outward; if q,,. is
negative, the net flux is inward.

Fig. 23-6 Two point charges, equal
in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface S,
encloses the positive charge. Surface
S, encloses the negative charge.
Surface S; encloses no charge. Surface
S4 encloses both charges and thus no
net charge.

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 13
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Surface S1.The electric field is outward for all points on
this surface. Thus, the flux of the electric field through this
surface is positive, and so is the net charge within the
surface, as Gauss’ law requires.

Surface S2.The electric field is inward for all points on
this surface. Thus, the flux of the electric field through this
surface is negative and so is the enclosed charge, as
Gauss’ law requires.

Surface S3.This surface encloses no charge, and thus
q... = 0. Gauss’ law requires that the net flux of the

electric field through this surface be zero.

Surface S4.This surface encloses no net charge,
because the enclosed positive and negative charges have
equal magnitudes. Gauss’ law requires that the net flux of
the electric field through this surface be zero. That is
reasonable because there are as many field lines leaving
surface S4 as entering fit.

In = Out

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan

Two charges, equal in
magnitude but opposite
in sign, and the field
lines that represent their
net electric field. Four
Gaussian surfaces are

shown in cross section.
14



23-4 Gauss’ Law

equipotential surface?!

Example, Relating the net enclosed charge and the
net flux: O — Qenc

€0

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge. A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.

Figure 23-7 shows five charged lumps of plastic and an through the surface, but as much enters as leaves and no
electrically neutral coin. The cross section of a Gaussian sur- net flux is contributed. Thus, g, is only the sum ¢, + ¢, +
face S is indicated. What is the net electric flux through the ¢;and Eq.23-6 gives us

surface if g, = g4 = +3.1 nC, g, = gs = —5.9 nC. and g3 =

—3.1 nC? ® = Qenc _ 4 +tatqs
£ £
sl e C oS i I0RE S TR e
8.85 X 10 2 C3)N-m?

The net flux ® through the surface depends on the net

o )
charge q.,. enclosed by surface S. = =070 N-mC. (Answer)

¢ minus sign Shows that the net lTux through the surlace is
inward and thus that the net charge within the surface is
egative.

Calculation: The coin does not contribute to ® because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate )
the netr charge enclosed by the surface. So, let’s not bother. negative flux
Charges g4 and g5 do not contribute because they are out-

side surface S. They certainly send electric field lines

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 15




23-4 Gauss’ Law

Example, Enclosed charge in a
nonuniform field:

What is the net charge enclosed by the Gaussian cube of

Fig. 23-5, which lies in the electric field F,= 3.0xi + 4.0j?

(Eisin newtons per coulomb and x is in m?t@\
no E component

KEY IDEA

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 (&,® = @ep)-

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (@, =36 N-m%C), the left face (&, = —12
N-m?/C),and the top face (®, = 16 N-m?%C).

For the bottom face, our calculatlon is just like that for
the top face except that the differential area vector dA is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

October 5, 2021
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The y component

. Is a constant.
y Gaussian

surface | E,

) »~ The x component
x=10m x=30m depends on the Fig. 23-5
value of x.

dA = —dAj.and we find
®, = —16 N-m%C.

For the front face we have dA = dAk, and for the back face,
= —dAl( When we take the dot product of the given elec-
tric field£-= 3. Oxi + 4.0 ] with either of these expressions for
dA, we get 0 an there is no flux through those faces. We
can now find the total flux the six sides of the cube:

=(36-12+16-16+ 0+ 0) N-m¥C

=24 N-m?/C.

Enclosed charge: Next, we use Gauss law to find the
charge g.q enclosed by the cube:

Jene = 0@ = (8.85 X 1072 CHYN-m?)(24 N-m%C)

_ —10
=21X1077C outward flux
Thus, the cube encloses a net positive charge.

(Answer)

PHY 102 Physics II © Dr.Cem Ozdogan
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* Figure 23-8 shows a positive point charge q, around
which a concentric spherical Gaussian surface of

radius r is drawn. Gaussian _,”J
1. Divide this surface into differential areas dA. e /e B
2. The area vector dA at any point is perpendicular f E
to the surface and directed outward from the &--——
interior. 1

3. From the symmetry of the situation, at any point
the electric field, E, is also perpendicular to the
surface and directed outward from the interior.

4. Thus, since the angle 6 between E and dA is zero,
we can rewrite Gauss’s law as

8{)% E . d/?[ — EU% E I{A == (?EI]E'
g E P dA = gq. E(fﬂ“
radius of Gaussian

L 9 surface
This 1s exactly what Coulomb’s law yielded.

Fig. 23-8 A spherical Gaussian
surface centered on a point charge q.

‘-1' ’ﬂ'gﬂ r-
Sphere Surface

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 17
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* |If an excess charge is placed on an jsolated conductor, that
amount of charge will move entirely to the surface of the
conductor. as much as far away

1.Inside a Conductor in electrostatic equilibrium, the electric
field Is ZERO. Why?

* Because if the field is not zero, then charges inside
the conductor would be moving.

* Charges in a conductor redistribute themselves wherever
they are needed to make the field inside the conductor
ZERO. E__..=0 (metals)

2.0n the surface of conductors in electrostatic equilibrium,
the electric field is always perpendicular to the surface. Why?

EllA Lo,
* Because if not, charges onthe —— —
surface of the conductors would
move with the electric field. .
+ _ -

http//www.phys.Isu.edu/~jdowling/PHY S21132-SP15/lectures/index.himl

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 18
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3. Just outside the surface of a conductor, the , t i
electric field is easy to determine using Gauss'’s , et
law. S

A tiny cylindrical Gaussian surface is embedded
in the section as in Fig. 23-10.

* We assume that the cap area A is small enough
that the field magnitude E is constant over the (a)
cap. Then, the flux through the cap is EA, and
that is the net flux ® through the Gaussian
surface.

« The charge q.,. enclosed by the Gaussian

surface lies on the conductor’s surface in an ar

A.

« If ois the charge per unit area, then q___ is equal
to o A. Then, Gauss’s law becomes

C

October 5, 2021

+ There is flux only
through the
external end face.

* o+ o % X
x ¢

>

-}

i

I

'l+

? Jr{
¥,
=
!

+ 4
=

(b)
Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-

] r lated conductor with excess positive charge
- on its surface. A (closed) cylindrical

Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
(conducting surface). nal end cap of the cylinder, but not the inter-
nal end cap. The external end cap has area A

. and area vector A.
(nonconducting surface)

PHY 102 Physics II © Dr.Cem Ozdogan 19
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* Figure 23-12 shows a section of an infinitely 1

long cylindrical plastic rod with a uniform positive —1

linear charge density A. 1 ( ot

* Let us find an expression for the magnitude of B L=tk
the electric field E at a distance r from the axis H " T
of the rod. / \AA

* Gaussian surface should match the symmetry E- -1 \
of the problem, which is cylindrical. T K ¥

* Choose a cylinder of radius r and length h, o : ;here < o o
coaxial with the rod. Because the Gaussian N e y
surface must be closed, include two end caps j Cuweﬂ e .
as part of the surface. - '

* At every point on the cylindrical part of the Fig. 23-12 A Glaussian surface in the
Gaussian surface, E must have the same form of a closed cylinder surrounds a section
magnitude E and ® must be directed radially ofa ETE]‘}-’]Dnngnifjl mly charged, cw]indliual
outward (for a positively charged rod). plasucro. qe”c

* The flux of E through this cylindrical surface is > P = Geopes

® = FEAcos 8= E(27rh)cos0 = E(2mrh). EUE(’ﬂy/
* Then, applying the Gauss'’s law: A
* Compare with the solution at Chapter 22!! b= 5 (lme of charge).
‘?TE.‘O
20

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan
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E Due to a Line of Charge: Field on bisector

L/2 i 1L/2 y

_ dx _ X A.
Ey—k)\a f (a2+x2)3/2 =kA a 2\/ 2, 2 j’
—L/2 AN TA | 1n 1y
Integrate: Trig Substitution!  =——at ;
ntegrate: Trig Substitution! am
away from the rod: point charge _ near by the rod: infinite rod
Point Charge Limit: L <<a | Line Ci;arge Limit: L >> a
2Kk @_k@ E = 2 kAL NZk)\
E = N ——= y 2,12
g a\/4a2+\[‘2 a’> a\/lkg +L° d
Units Check!
:_\Ti. Coulomb’s HHHH1\1n121c:_1\1
AN Tl | TP AR

http//'www.phys.lsu.edu/~jdowling/PHY S21132-SP15/lectures/index.himl
September 27, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 21
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Example, Gauss’s Law and an upward streamer in a lightning™

—p—

Lightning did not strike the woman, but she was in

extreme danger because that electric field was on the
verge of causing electrical breakdown in the surrounding
air. Such a breakdown would have occurred along a path
extending away from her in what is called an upward
streamer. An upward streamer is dangerous because the
resulting ionization of molecules in the air suddenly frees
a tremendous number of electrons from those molecules.

r4

===
Upward T
# +Q # streamer
k»

—
—_
—
ha==t
—— N

Let’s model her body as a narrow vertical cylinder of
height L. = 1.8 m and radius R = 0.10 m (Fig. 23-14c¢).
Assume that charge O was uniformly distributed along the
cylinder and that electrical breakdown would have oc-
curred if the electric field magnitude along her body had
exceeded the critical value E, = 2.4 MN/C. What value of
O would have put the air along her body on the verge of
breakdown? =N

Calculations: Substituting the critical value E, for E, the
cylinder radius R for radial distance r, and the ratio Q/L for
linear charge density A, we have

L
E =2
27egR
or QO = 2meRLE,.

Substituting given data then gives us
O = (27)(8.85 X 10712 C?/N-m?)(0.10 m)
X (1.8 m)(2.4 X 10°N/C)
= 2402 X 107> C = 24 uC. (Answer)

Left as exercise

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 22
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Nonconducting Sheet:
* Figure 23-15 shows a portion of a thin, infinite,

.
nonconducting sheet with a uniform (positive) sy T T
surface charge density o. P i X Gaussin
* We need to find the electric field E at a distance rin AR B
front of the sheet. Rl e
A useful Gaussian surface is a closed cylinder with = _'L"t— i +
end caps of area A, arranged to pierce the sheet : S
perpendicularly as shown. 4 There is flux only
* From symmetry, E must be perpendicular to the r (a) ::‘Jgﬁzt;ies
sheet and hence to the end caps. '
* Since the charge is positive, E is directed away - A~
from the sheet. only caps contribute _ e _
 Because the field lines do not pierce the curved = e
surface, there is no flux through this portion of the — l -
Gaussian surface. no surface contribution - ; -
* Thus E.dA is simply EdA, then the Gauss’s law: ()
Here oA is the charge | g, % E-dA =gq_., F_i;a- 2315f (c‘r)_ l?ex'spe§ti_\’e_ ?’ie\fv’ and (b)
enclosed by the Gaussian side view of a portion of a very large, thin

uniform charge distribution plastic sheet, uniformly charged on one

surface. Therefore, eo(EA + EA) = oA, side to surface charge density o. A closed
E= s (sheet of charge). Compare with the solution cylindrical Ga.ussian surface passes through
2Ey at Chapter 2911 the sheet and is perpendicular to it.
October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdosan 23
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E Due to Charged Disk
|
|

* We need to find the electric field at point P, a distance z from the disk along its
R’/

|

central axis.
Define & Adding: Divide the disk into concentric flat rings and then calculate
|

the electric field at point P by adding up (that is, by integrating) the

contributions of all the rings.
* The figure shows one such ring, with radius r and radial width dr. If o is

the charge per unit area, the charge on the ring is 5
A=mnr"; dA = 2nrdr

dg = odA = o (2mrdr),.

IE — zo2ar dr _ 02 2r dr
o 477811(:3 £ = "2)353 de (:2 . 2 "2)}52
. . N Q dq
Integrating: We can now find E by integrating dE over the surface of the —~ =g = —
A dA

)

S]]

disk— that is, by integrating with respect to the variable r from r =0 to r =R.
oC {(:2 ol I.Z)*l:‘l JR

oz [*. 5
E=|dE= (z2 + r3)32Q2r)dr. =
-1'8“ 0 -4]-8“

‘ E — ‘)U‘

If we let R —, while keeping z finite,

) (charged disk) 6 second term in the parentheses in
the above equation approaches zero,

and this equation reduces to

o
E = (infinite sheet).
2¢g

This is the electric field produced by an infinite sheet of uniform
24

charge.
PHY 102 Physics II © Dr.Cem Ozdogan
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Two Conducting Plates:
* Figure 23-16a shows a cross section of a thin,

infinite conducting plate with excess positive
charge.
* The plate is thin and very large, and all the excess ,
charge is on the two large faces of the plate. - ]
* It will spread out on the two faces with a uniform
surface charge density of magnitude o,. i“’ — “’i
* Just outside the plate this charge sets up an
electric field of magnitude E = o, /e,.
* Figure 23-16b shows an identical plate with excess

negative charge having the same magnitude of E=0
surface charge density o,. >

- Now the electric field is directed toward the plate.

* If we arrange for the plates to be close to each other induction
and parallel (Fig. 23-16¢), the excess charge on one  Fig. 23-16 () A thin. very large conduct-
plate attracts the excess charge on the other plate, =~ neplate with excess positive charge. (b) An

identical plate with excess negative charge.

+ +/Ul 0'1\_ _/0'1

| 7

4
4
I

Qbbb
=y
T T T 71

o
T

and all the excess charge moves onto the inner faces (;)The two plates arranged so they are par-
of the plates as in Fig. 23-16c¢. allel and close.
* The new surface charge density, o, on each inner face is twice o ,. E — 209 _
Thus, the electric field at any point between the plates has the magnitude: 0 €o

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 25
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Insulating and Conducting Planes

Insulating Plate: Charge Distributed Homogeneously.

> > E — Finsu
D > insu ~ o

< > g

> > Oinsu Q /A

Conducting Plate: Charge Distributed on the Outer Surfaces.
Electric Field Inside a Conductor 1s ZERO!

Q/2
‘/ E — Ocond — 2 E

cond nsu

€

=Q/(2A)

cond

A A A AAAAAAAS

VVYVVVYVYYYVYYY

acond Ocond

http:/iwww.phys.lsu.edu/~jdowling/PHYS21132-SP15/lectures/index.html
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Example, Electric Field:

Figure 23-17a shows portions of two large, parallel, non-

conducting sheets, each with a fixed uniform charge on one

side. The magnitudes of the surface charge densities are
O(+) = 6.8 wC/m? for the positively charged sheet and O =
4.3 uC/m? for the negatively charged sheet.

Find the electric field E (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

KEY IDEA

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field Eb(ﬂ due to
the positive sheet is directed away from the sheet and, from
Eq.23-13, has the magnitude

Ti+y 6.8 X 10 7% C/m?

2¢g (2)(8.85 X 1072 C?N-m?)

= 3.84 X 10° N/C.

Eqy =

O+ O

Fig. 23-17 (a)Two large, paral-

lel sheets, uniformly charged on

one side. (b) The individual elec-

tric fields resulting from the two
charged sheets. (¢) The net field

due to both charged sheets, found

by superposition. (a)

October 5, 2021

+FFFFFFFFFFF T+

Similarly, at any point, the electric field E}_) due to the negative
sheet is directed toward that sheet and has the magnitude

T—) 43 X 107° C/m?
2e  (2)(8.85 X 10712 C%YN-m?)
= 2.43 X 103 N/C.
Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L), between them (B).and to their right (R).
The resultant fields in these three regions follow from the
superposition principle. To the left. the field magnitude is
g g e
= 3.84 X 10° N/C — 2.43 X 10° N/C
= 1.4 X 10> N/C.
Because E . is larger than £, the net electric field E, in this
region is directed to the left, as Fig. 23-17¢ shows. To the right of
the sheets, the electric field has the same magnitude but is di-
rected to the right, as Fig. 23-17¢ shows.
Between the sheets, the two fields add and we have
EB = E(+) + E(_)
= 3.84 X 10° N/C + 2.43 X 105 N/C

E—=

(Answer)

= 6.3 X 10° N/C. (Answer)

The electric field EB is directed to the right.

i+ — + —
— H — — H
E+y @ E(+) T Ew H B

- - - -

i — — i — — —
L B | R = —>
- K — — -
E-) E- T E- B

Lo, [ Eo + -

H - H -

+ - (e} + -
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1. A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’'s charge were concentrated at the center of the shell (ST1).

2. If a charged particle is located inside a shell of uniform charge, there is no net

electrostatic force on the particle from the shell (ST2).

Using Gauss’ law, it is easy to prove these shell
theorems: DE-A=E | dA= E(4ar?) = qe—”

1- Applying-Gat aw for spherical Gaussian

q
surface S, yields (r > R)
1 g _
E =— = (spherical shell, field at r = R).
4’?8{] I

This field is the same as one set up by a point
charge q at the center of the shell of charge. Thus,
Fig. 23-18 A thin,uniformly charged, he force produced by a shell of charge g on a
éphc_‘rlcal shcll‘wn‘l?‘lolz?l (?hnrg‘c q,In cross charged_particle placed outside the shell is the
section. Two Gaussian surfaces S; and S, - i
are also shown in cross section. Surface S, same as theforce produced by a point charge g
encloses the shell, and §; encloses only the located at the center of the shell.

empty interior of the shell.

2- Applying Gauss'’s law for spherical Gaussian surface S, yields (' < R)

= q.enc
E =0 (spherical shell, field at r < R), E-dA = €0 =0

because this Gaussian surface encloses no charge. Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the particle.

October 5, 2021 PHY 102 Physics II © Dr.Cem Ozdogan 28
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Enclosed

Enclosed ¥ 5
charge is ¢ -
1

E ol Gaussian
charge is ¢
Y

surface Gaussian
surface

3

r inside

r outside @ The fiux through the
(a) surface depends on
only the enclosed
charge.

Fig. 23-19 The dots represent a
spherically symmetric distribution
of charge of radius R, whose
volume charge density pis a
function only of distance from the
center.

The charged object is not a
conductor, and therefore the charge
1s assumed to be fixed in position.
A concentric spherical Gaussian
surface with » >R is shown in (a).
A similar Gaussian surface with

r <R is shown in (b).

* In Fig. 23-19a, r > R. The charge produces an electric field on the Gaussian surface
as if the charge were a point charge located at the center (ST1).
* Figure 23-19b, r < R. The charge lying outside the Gaussian surface does not set up

a net electric field on the Gaussian surface. The charge enclosed by the surface sets
up an electric field as if that enclosed charge were concentrated at the center.

* Letting q' represent that enclosed charge:

I ' q
E=- q,, (spherical distribution, field at r = R). B = (
4me, r-

47TE[]R3

)r (uniform charge, field at r = R).

(If the full charge g enclosed within radius R is uniform)

October 5, 2021
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23-9 Applying Gauss’Law: Spherical Symmetry i
Electric Fields With Insulating Sphere
® =EA =q,, /¢,

r<RrR
& a =Q[ Vm] =Q[ 4n~r3/3] _al
assian T W) T \aaR3) TR
surface r>R
Qs =Q
£E=4:11:eﬂ ,% r<R-— Edar =Q;=Z/€0

r>R— Edar’ =Q/e,
Copyright 2 Addison Wesley Longman, Inc,

r _
http//www.phys,lsu.edu/~jdowling/PHY S21132-SP15/lectures/index.hitml
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1. The box-like Gaussian surface shown in Figure encloses a net charge of +24.0e, C
and lies 1n an electric field given by E =[(10.0 + 2.00x)i - 3.00j + bzk] N/C, with
x and z in meters and b a constant. The bottom face is in the xz-plane; the top face
1s in the horizontal plane passing through y,=1.00 m. For x,=1.00 m, x,=4.00 m,

z,=1.00 m, and z,=3.00 m, what is b? £ A vy

Y
Aj' . )
2 @) ¥ E — E(x,2) @;g'{) I @\ <‘8
@1 T
' >
¥

JI g{,‘b%

ﬂ;iuﬁvl?{ﬁ’r

J
2 24 2, _' it - ¥
¢ ” ’—I——:| F}ﬁM %C;Z’JE/J%%
- . , ﬂuf’mﬂf
) ) )(g ) BT .
zegsty ¥ ,
23 - EI ) ’572— o (J
aLZ-(J) Xg 2L /"Y'L y;
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e i &

3 (16) T4/ clpcdbr 7844% fg f’" fé—[-(lac;:ouzh souJ+éeLj

® plaes - %y, y2, u Goicion, i i |67
@) Nt [l éém:g/t Ly two faces /)M gl 22

"(&m 24,08 C
i‘;{ i 2 j fé’/( ..Zz_)dfzdﬁj

dA = dzdyk

2= ?ZYZ=ZT
k iﬁs. jyifaéi(sé)—[:/zf%,?é);54—3é=6{=

S TR Sttt I A
‘%& L=, %Z- £ fc[?-(}-/-z;r_z_) fﬂ/fa/e//m?z, - 19 -6= /1
7 \ SRS z'2/”/”"“— dA = dzdz;

ze[y (72_"‘ /"] Jcétfa/e (3) jﬂdb[aé.[——j) O as expected

/%w/ gy/p,é M}M j_,— O 7@1_ yg"'f?> 24,05;
@é +/2.+0) zgﬁé_—z.a_r\g,ﬂ

Fa g
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2. Figure shows a section of a long, thin-walled metal tube
of radius R=3.00 cm, with a charge per unit length of
A=2.00x10-*C/m. What is the magnitude E of the electric /&
field at radial distance (a) » = R/2.00 and (b) =2.00R?
(c) Graph E versus r for the ragréséd?):o to 2.00R. "%

4 (24) neecl a—o}ffo%fcaléhmdm SMg@Z. éé—"-ﬂ; Denc
i) Pl 9,0 = €=0 |

2.00xi0” "/,
R=2.00cm

e
(Z.UJK/O ‘%H)

%) r - M )T 2 AL S ()2 =
8L i - Eo 27Tr& 2710 -CCEW
s h f E[|A [=2-00& CS-Jleé"i
R r--.'/“ : ;2-00;(5-000'1 . E_(f)z s.95 xlOzl% ~pa
- 0.060 e
&) 3
T g . = Elr=R) = 1.9 xl0 ), (
Vio | 1774 |
X § [ 4
LT 8 Ak
N b
Py Nl ‘

\

\ rd ro
0.0l 0oL 003 0Vq 045 0-06
(m)
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|

3. In Figure, a small, nonconducting ball of mass m=1.0 mg and
charge g=2.0x10® C (distributed uniformly through its
volume) hangs from an insulating thread that makes an angle
0 = 30°with a vertical, uniformly charged nonconducting
sheet (shown in cross section). Considering the gravitational
force on the ball and assuming the sheet extends far
vertically and into and out of the page, calculate the surface
charge density o of the sheet.

(29) small ,noncondacting m=1.0 =29 xw—gc

%o;z—amaé(c_&g Shaf . 0= 7"15 7 ‘

—

E

+ 4+ 4+ 4 A o 4 4

LT

P8
1

T . Tles 36=1g=May=0 E’l(‘/ M%} N C‘Zlgﬁ . —C?/
% 1 GE - TSim30=ay=U E_-Z-—E: |
E__:qg — T oc~———— -
-——7ﬁ____ _ Mg-évaO -—-70’*——-/777'250 lan3o®
m
) Fsg gz (.ox /j)f" Imf2)2( 58505 CAJM‘) fan30 = & xi0
(20){/0 C) hf"l/g"’:?“ mz
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4. Figure shows a very large nonconducting sheet that has a uniform
surface charge density of 6 =-2.00 uC/m?; 1t also shows a particle
of charge O = 6.00 uC, at distance d from the sheet. Both are fixed
in place. If 4 = 0.200 m, at what (a) positive and (b) negative
coordinate on the x axis (other than infinity) 1s the net electric field
E , of the sheet and particle zero? (c) If d = 0.800 m, at what

coordinate on the x axis 1s £, ,,= 07 Epet = Eo+ E, =0
—> —— ES '|I |E3| — |Ep|
F
? ? ? =
< : > «— & < ! > Ep kQ/I'2
p
: » X E=ole
{'i S 0
e I-f =

Fig. 23-46 Problem 40.
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sl (- 1?7 =200 ME W&‘W:M-@@c@ ShaoA-
e " wnifum suduce choge ol
‘ C(f;UrZOOM

W&MV/"CﬂgM‘ 45 £em whee 14@ cmaz(.,e’adu ohvd o

e shat e (~d< Ma-m,iém

Blw +he shat oad éb,f)m? ' z<o)“0 Posi-{c Choger some.
o —7 [opy ~ |

‘) xyo (o) _ 18] = r—-%\jég; cﬁwfﬂ‘“”’g"’ -

i) x<o (26 4UEE | ‘fg |

——
/71 24069 7 N\

"‘ o , o{/a/é
arny miore . So %4.,\./ M&Aa\/e Oﬂé //)oy%pé 0 .69/M N *"‘ .
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5. An electron 1s shot directly toward the center of a large metal plate
that has surface charge density o = -2.0x10° C/m2. If the initial
kinetic energy of the electron 1s 1.60x10'7 J and 1f the electron 1s to
stop/(due to electrostatic repulsion from the plate) just as 1t reaches
the late, how far from the plate must the launch point be?

el plife = T=-2-0xlG “C/oy -l

—1C ,KE=]-66xI0 I_émw

cloebwn. - q=1-60X0 ,

‘h

e E- e_f,_ fore M—fca( %_'%Pw e/t

E— const nt — constant & — 0 stan?accelezratlon

F:’ MCL = ’—e’_—- mé, 7 MM
| decel (3
o UL +2( e{ﬁ) . —?ecezatlogz_m U‘)E;: _ (K-E‘) [&) (6 xl0 7(3 JIA/ONi)
/0—7 elo7 (1-6xt0 c)(z,a,,/o"%g

/’,Z- G4 %10 M]
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6. Figure shows, in cross section, two solid /(7 \l/(_\
spheres with uniformly distributed charge
throughout their volumes. Each has radius w /
R. Point P lies on a line connecting the
centers of the spheres, at radial distance Fig. 23-54 Problem 54.
R/2.00 from the center of sphere 1. If the

net electric field at point P 1s zero, what 1s
the ratio ¢g,/q, of the total charges?

(54) ned cloobiic fFrld is 2eco . Raois : R Uniformby Aidiliuted choge.

f’z_
12ed a spho /il Goum/on mg@m
sphec 53 00 /3L s Phoe ! Z WM/ %)“ 3
5‘5 -dA-'j.@_"_C_. f é_t(,ﬂ(ﬁ'l‘%)—‘»é:" fé'&/ﬂ-—’—‘qmc ;
o =&

€o

“= 7% ’L?Lm} = F” 2 = /’)Lﬂz,_?_/b =hies |
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23 Solved Problems d
Video: Solved Problem 6

= *Ch23 Jecture Gauss_Law annotated.pdf - Master PDF Editor
File
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&
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Gauss’ Law
Gauss’ law is

e =g, Eq. 23-6

*the net flux of the electric field
through the surface:

rl*-—ﬂ;.ﬁ'*dﬁ

Applications of Gauss’ Law
*surface of a charged conductor

Eq. 23-6

g Eq. 23-11

£

*Within the surface E=0.

*line of charge
A

E=—
2megr

October 5, 2021

Eq. 23-12

* Infinite non-conducting sheet

ir

E= Eq. 23-13

* QOutside a spherical shell of charge

1 q
E = . Eg. 23-15
darey

* Inside a uniform spherical shell

E=10 Eq. 23-16

* Inside a uniform sphere of charge

e 9 Eq. 23-20
E ( 4’."."2.;]4&3 ) *

PHY 102 Physics II © Dr.Cem Ozdogan 40
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Additional Materials
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