Ceng272 -Exercise Set 3

3.5 Determine the value c so that each of the following functions can serve as a probability distribution of the discrete random variable X:

(a)
$$f(x) = c(x^2 + 4)$$
, for a: = 0, 1, 2, 3;
(b) $f(x) = c\binom{2}{x}\binom{3}{3-x}$, for $x = 0, 1, 2$.

3.6 The shelf life, in days, for bottles of a certain prescribed medicine is a random variable having the density function

$$f(x) = \begin{cases} \frac{20,000}{(x+100)^3}, & x > 0, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the probability that a bottle of this medicine will have a shell life of

- (a) at least 200 days;
- (b) anywhere from 80 to 120 days.
- 3.12 An **investment** firm offers its customers municipal bonds that mature after varying numbers of years. Given that the cumulative distribution function of T, the number of years to maturity for a randomly selected bond, is,

$$F(t) = \begin{cases} \mathbf{0}, & t < 1, \\ \frac{1}{4}, & 1 \le t < 3, \\ \frac{1}{2}, & 3 \le t < 5, \\ \frac{3}{4}, & 5 \le t < 7, \\ 1, & t > \underline{7}, \end{cases}$$

find

- (a) P(T = 5);
- (b) P(T > 3);
- (c) P(1.4 < T < 6).
- 3.21 Consider the density function

$$f(x) = \begin{cases} k\sqrt{x}, & 0 < X < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Evaluate k.
- (b) Find F(x) and use it to evaluate

3.38 If the joint probability distribution of X and Y is given by

$$f(x, y) = \frac{x+y}{3u}$$
, for ... = 0, 1, 2, 3; $y = (1, 1, 2, 3)$

find

- (a) $P(X \le 2, Y = 1)$;
- (b) P(X > 2, Y < 1);
- (c) P(X > Y);
- (d) P(X + Y = 4).