
0.1 Normal Approximation to the Binomial

• Poisson distribution can be used to approximate binomial probabilities
when n is quite large and p is very close to 0 or 1.

• Normal distribution not only provide a very accurate approximation to
binomial distribution when n is large and p is not extremely close to 0
or 1,

• But also provides a fairly good approximation even when n is small
and p is reasonably close to 1

2
.

Figure 1: Normal approximation of b(x; 15, 0.4).

• Theorem 6.2:
If X is a binomial random variable with mean µ = np and variance
σ2 = npq, then the limiting form of the distribution of

Z =
X − np
√

npq

as n → ∞, is the standard normal distribution n(z; 0, 1)

• P (7 ≤ X ≤ 9)

9
∑

x=7

b(x; 15, 0.4) =
9

∑

x=0

b(x; 15, 0.4) −
6

∑

x=0

b(x; 15, 0.4)

= 0.9662 − 0.6098 = 0.3564

µ = np = 15 ∗ 0.4 = 6, σ2 = 15 ∗ 0.4 ∗ 0.6 = 3.6, σ = 1.897

z1 =
6.5 − 6

1.897
= 0.26, and z2 =

9.5 − 6

1.897
= 1.85

P (7 ≤ X ≤ 9) ≈ P (0.26 < Z < 1.85) = P (Z < 1.85) − P (Z < 0.26)

= 0.9687 − 0.6026 = 0.3652
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P (X = 4) = b(4; 15, 0.4) = 0.1268

z1 =
3.5 − 6

1.897
= −1.32, and z2 =

4.5 − 6

1.897
= −0.79

P (X = 4) ≈ P (3.5 < X < 4.5) = P (−1.32 < Z < −0.79)

= P (Z < −0.79) − P (Z < −1.32)

= 0.2148 − 0.0934 = 0.1214

Figure 2: Normal approximation of b(x; 15, 0.4) and
∑9

x=7 b(x; 15, 0.4).

• The degree of accuracy, which depends on how well the curve fits the
histogram, will increase as n increases.

• If both np and nq are greater than or equal to 5, the normal approxi-
mation will be good.

Figure 3: Histogram for b(x; 6, 0.2).

• Let X be a binomial random variable with parameters n and p.
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Figure 4: Histogram for b(x; 15, 0.2).

• Then X has approximately a normal distribution with mean µ = np
and variance σ2 = npq and

P (X ≤ x) =
x

∑

k=0

b(k; n, p)

≈ area under normal curve to the left of x + 0.5

= P

(

Z ≤
x + 0.5 − np

√
npq

)

and the approximation will be good if np and nq are greater than or
equal to 5.

• Example 6.15: The probability that a patient recovers from a rare
blood disease is 0.4.

• If 100 people are known to have contracted this disease, what is the
probability that less than 30 survive?

• Solution:

µ = np = 100 ∗ 0.4 = 40

σ =
√

100 ∗ 0.4 ∗ 0.6 = 4.899

z1 =
29.5 − 40

4.899
= −2.14

P (X < 30) ≈ P (Z < −2.14)

= 0.0162

• Example 6.16: A multiple-choice quiz has 200 questions each with 4
possible answers of which only 1 is correct answer.
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Figure 5: Area for Example 6.15.

• What is the probability that sheer guess-work yields from 25 to 30
correct answers for 80 of the 200 problems about which the student
has no knowledge?

• Solution:

µ = np = 80 ∗
1

4
= 20

σ =

√

80 ∗
1

4
∗

3

4
= 3.873

z1 =
24.5 − 20

3.873
= 1.16,

z2 =
30.5 − 20

3.873
= 2.71

P (25 ≤ X ≤ 30) =

30
∑

x=25

b(x; 80,
1

4
)

≈ P (1.16 < Z < 2.71)

= 0.9966 − 0.8770 = 0.1196

Figure 6: Area for Example 6.16.
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0.2 Gamma and Exponential Distributions

• Exponential is a special case of the gamma distribution.

• Play an important role in queuing theory and reliability problems.

• Time between arrivals at service facilities, time to failure of component
parts and electrical systems.

• Definition 6.2:
The gamma function is defined by

Γ(α) =

∫ ∞

0

xα−1e−xdx, for α > 0

with
Γ(n) = (n − 1)(n − 2) . . . Γ(1),

Γ(n) = (n − 1)! with Γ(1) = 0! = 1,

• also
Γ(n + 1) = nΓ(n) = n!

Γ(1/2) =
√

π exception

• Gamma Distribution: The continuous random variable X has a
gamma distribution, with parameters α and β,

• If its density function is given by

f(x) =

{

1
βαΓ(α)

xα−1e−x/β, x > 0

0, elsewhere

where α > 0 and β > 0

• The mean and variance of the gamma distribution are (Proof is in
Appendix A.28)

µ = αβ and σ2 = αβ2

• Exponential Distribution (α = 1, special gamma distribution): The
continuous random variable X has an exponential distribution, with
parameters β,

• In real life, we observe the lifetime of certain products decreased as
time goes.
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Figure 7: Gamma Distributions.

• To model life-lengths, especially the exponential curve seemed be good
to fit these data rather well.

• If its density function is given by

f(x) =

{

1
β
e−x/β, x > 0

0, elsewhere

where β > 0

• The mean and variance of the exponential distribution are

µ = β and σ2 = β2

• The exponential distribution has a single tail. The single parameter β
determines the shape of the distribution.

• Relationship to the Poisson Process: The most important appli-
cations of the exponential distribution are situations where the Poisson
process applies.

• An industrial engineer may be interested in modeling the time T be-
tween arrivals at a congested interaction during rush hour in a large
city. An arrival represents the Poisson event.

• Using Poisson distribution, the probability of no events occurring in
the span up to time t

p(0, λt) =
e−λt(λt)0

0!
= e−λt
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• Let X be the time to the first Poisson event.

• The probability that the length of time until the first event will exceed
x is the same as the probability that no Poisson events will occur in x.

P (X ≥ x) = e−λx ⇒ P (0 ≤ X ≤ x) = 1 − e−λx

• Differentiate the cumulative distribution function for the exponential
distribution

f(x) = λe−λx with λ = 1/β

• Applications of Gamma and Exponential Distributions

• The mean of the exponential distribution is the parameter β, the re-
ciprocal of the parameter in the Poisson distribution.

• Poisson distribution has no memory, implying that occurrences in suc-
cessive time periods are independent. They immediately “forget” their
past behavior.

• The important parameter β is the mean time between events.

• The equipment failure often conforms to this Poisson process, β is called
mean time between failures.

• Many equipment breakdowns do follow the Poisson process, and thus
the exponential distribution does apply.

• Other applications include survival times in bio-medical experiments
and computer response time.

• Example 6.17: Suppose that a system contains a certain type of
component whose time in years to failure is given by T .

• The random variable T is modeled nicely by the exponential distribu-
tion with mean time to failure β = 5.

• Solution:

P (T > 8) =
1

5

∫ ∞

8

e−t/5dt = e−8/5 ≈ 0.2

Let X represent the number of components functioning after 8 years.
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• If 5 of these components are installed in different systems, what is the
probability that at least 2 are still functioning at the end of 8 years.

• Solution:

P (X ≥ 2) =
5

∑

x=2

b(x; 5, 0.2) = 1 −
1

∑

x=0

b(x; 5, 0.2)

= 1 − 0.7373 = 0.2627

• Example 6.18: Suppose that telephone calls arriving at a switchboard
follow a Poisson process with an average of 5 calls coming per minute.

• What is the probability that up to a minute will elapse until 2 calls
have come in to the switchboard?

• Solution:

The Poisson process applies with time until 2 Poisson events following
a gamma distribution with β = 1/5 and α = 2.
Let represent the time in minutes that transpires before 2 calls come.

P (X ≤ x) =

∫ x

0

1

β2
xe−x/βdx

P (X ≤ 1) = 25

∫ 1

0

xe−5xdx

= 1 − e−5∗1(1 + 5) = 0.96

• Example 6.19: In a biomedical study with rats a dose-response in-
vestigation is used to determine the effect of the dose of a toxicant on
their survival time.

• For a certain dose of the toxicant the study determines that the survival
time, in weeks, has a gamma distribution with α = 5 and β = 10.

• What is the probability that a rat survives no longer than 60 weeks?

• Solution:

Let X be the survival time

P (X ≤ x) =

∫ x

0

1

βαΓ(α)
xα−1e−x/βdx
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P (X ≤ 60) =
1

β5

∫ 60

0

xα−1e−x/β

Γ(5)
dx

Using incomplete gamma function F (x; α) =
∫ x

0
yα−1e−y

Γ(α)
dy

Let y = x/β, and x = βy

⇒ P (X ≤ 60) =

∫ 6

0

y4e−y

Γ(5)
dy

= F (6; 5) = 0.715, see Appendix A.24

0.3 Chi-Squared Distribution

• Chi-Squared Distribution (α = ν/2 and β = 2, special gamma
distribution): The continuous random variable X has a chi-squared
distribution, with ν degrees of freedom, if its density function is given
by

f(x; ν) =

{ 1
2ν/2Γ(ν/2)

xν/2−1e−x/2, x > 0

0, elsewhere

where ν is a positive integer

• The chi-squared distribution plays a vital role in statistical inference.
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• Topics dealing with sampling distributions, analysis of variance and
nonparametric statistics involve extensive use of the chi-squared distri-
bution.

• Theorem 6.4:
The mean and variance of the chi-squared distribution are

µ = ν and σ2 = 2ν

0.4 Lognormal Distribution

• The lognormal distribution applies in cases where a natural log trans-
formation results in a normal distribution.

• Lognormal Distribution: The continuous random variable X has a
lognormal distribution if the random variable Y = ln(X) has a normal
distribution with mean µ and standard deviation σ.

• The resulting density function of X is

f(x) =

{

1√
2πσx

e−
1

2
[(ln(x)−µ)/σ]2 , x ≥ 0

0, x < 0

• The normal distribution has 2-tails. The lognormal distribution has a
single tail.

• The normal distribution extends to −∞ and ∞.

• The lognormal only extends to ∞ but is 0 for x < 0.

• Theorem 6.5:
The mean and variance of the lognormal distribution are

µ = eµ+σ2/2 and σ2 = e2µ+σ2

∗ (eσ2

− 1)

• Example 6.22: Suppose it is assumed that the concentration of a
certain pollutant produced by chemical plants, in parts per million,
has a lognormal distribution with parameters µ = 3.2 and σ = 1.

• What is the probability that the concentration exceeds 8 parts per
million? (Table A.3)
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Figure 8: Lognormal Distributions.

• Solution:

Let X be the pollutant concentration
Since ln(X) has a normal distribution with µ = 3.2 and σ = 1

P (X > 8) = 1 − P (x ≤ 8) = 1 − Φ

[

ln(8) − 3.2

1

]

= 1 − Φ

[

2.08 − 3.2

1

]

= 1 − Φ(−1.12)

= 1 − 0.1314 = 0.8686

Here,we use the Φ notation to denote the cumulative distribution func-
tion of the standard normal distribution.

• Example 6.23: The life, in thousands of miles, of a certain type of
electronic control for locomotives has an approximate lognormal distri-
bution with µ = 5.149 and σ = 0.737.

• Find the 5th percentile of the life of such locomotive?

• Solution:

P (Z < z1) = 0.05 ⇒ z1 = −1.645

ln(x) has a normal distribution with µ = 5.149 and σ = 0.737

ln(x) − 5.149

0.737
= −1.645
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⇒ ln(x) = 0.737 ∗ (−1.645) + 5.149 = 3.937

⇒ x = 51.265

5% of the locomotives will have lifetime less than 51.265 thousand miles
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