0.1 Normal Approximation to the Binomial

e Poisson distribution can be used to approximate binomial probabilities
when n is quite large and p is very close to 0 or 1.

e Normal distribution not only provide a very accurate approximation to
binomial distribution when n is large and p is not extremely close to 0
or 1,

e But also provides a fairly good approximation even when n is small
and p is reasonably close to %
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Figure 1: Normal approximation of b(x; 15,0.4).

e Theorem 6.2:

If X is a binomial random variable with mean p = np and variance
0% = npq, then the limiting form of the distribution of

X —np
Vv 1pq

as n — 00, is the standard normal distribution n(z;0, 1)

7 —

e P(T<X<V9)
9 9 6
> b(x:15,0.4) =) b(w;15,04) = Y " b(x;15,0.4)
=7 x=0 =0
= 0.9662 — 0.6098 = 0.3564
p=np=15%x04=6, 0> =15%0.4%0.6 =3.6, o = 1.897
6.5—6 9.5—6

=0.26 d zy = =1.85
1.897 e T

P(T< X <9)~ P(0.26 < Z < 1.85) = P(Z < 1.85) — P(Z < 0.26)

1 =

= 0.9687 — 0.6026 = 0.3652



P(X =4) = b(4;15,0.4) = 0.1268

3.5—-6 4.5—-6
2 = = —1.32, and z, = 1807 —0.79

P(X =4)~ P(35 < X <4.5) = P(—1.32 < Z < —0.79)
= P(Z < —0.79) — P(Z < —1.32)

= 0.2148 — 0.0934 = 0.1214
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Figure 2: Normal approximation of b(x;15,0.4) and 3.0_. b(z;15,0.4).

e The degree of accuracy, which depends on how well the curve fits the
histogram, will increase as n increases.

e [f both np and ng are greater than or equal to 5, the normal approxi-
mation will be good.

Figure 3: Histogram for b(z;6,0.2).

e Let X be a binomial random variable with parameters n and p.
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Figure 4: Histogram for b(z;15,0.2).

e Then X has approximately a normal distribution with mean p = np
and variance 0% = npq and

P(X <w)=7) blk;n,p)

~ area under normal curve to the left of =+ 0.5
x4+ 0.5 — np)
Vv 1Pq

and the approximation will be good if np and ng are greater than or
equal to 5.

:P<Z§

e Example 6.15: The probability that a patient recovers from a rare
blood disease is 0.4.

e If 100 people are known to have contracted this disease, what is the
probability that less than 30 survive?

e Solution:

pw=mnp=100x*0.4 =40
o =v100%0.4 % 0.6 = 4.899

29.5 — 40
=0 = 214
4.899
P(X < 30) ~ P(Z < —2.14)
= 0.0162

e Example 6.16: A multiple-choice quiz has 200 questions each with 4
possible answers of which only 1 is correct answer.
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Figure 5: Area for Example 6.15.

e What is the probability that sheer guess-work yields from 25 to 30
correct answers for 80 of the 200 problems about which the student
has no knowledge?

e Solution:

1
p=mnp=80*— =20

4
a:\/80*%*%:3.873
zlz%zl.lﬁ,
Lo,

30
1
P25 <X <30) = b(x; 80, —
(25X <30) = ) a0

~P(1.16 < Z < 2.71)
= 0.9966 — 0.8770 = 0.1196

Figure 6: Area for Example 6.16.



0.2

Gamma and Exponential Distributions

Exponential is a special case of the gamma distribution.
Play an important role in queuing theory and reliability problems.

Time between arrivals at service facilities, time to failure of component
parts and electrical systems.

Definition 6.2:

The gamma function is defined by
MNa) = / e "dx, for a >0
0

with
I'n)=(nm-1)(n—-2)...T(1),

['(n) =(n—1)!with I'(1) =0! =1,

also
I'(n+1) =nl(n) =n!

['(1/2) = /7 exception

Gamma Distribution: The continuous random variable X has a
gamma distribution, with parameters o and (3,

If its density function is given by

1 a—1,_—x
fay = | @, r=>0
0, elsewhere

where @ > 0 and 3 > 0

The mean and variance of the gamma distribution are (Proof is in
Appendix A.28)
= af and o* = a3

Exponential Distribution (o = 1, special gamma distribution): The
continuous random variable X has an exponential distribution, with
parameters (3,

In real life, we observe the lifetime of certain products decreased as
time goes.
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Figure 7: Gamma Distributions.

To model life-lengths, especially the exponential curve seemed be good
to fit these data rather well.

If its density function is given by

1o—z/B 0
_Jose ", x>
/(@) { 0, elsewhere

where 5 >0

The mean and variance of the exponential distribution are

u=pand o® = 3*

The exponential distribution has a single tail. The single parameter
determines the shape of the distribution.

Relationship to the Poisson Process: The most important appli-
cations of the exponential distribution are situations where the Poisson
process applies.

An industrial engineer may be interested in modeling the time 7" be-
tween arrivals at a congested interaction during rush hour in a large
city. An arrival represents the Poisson event.

Using Poisson distribution, the probability of no events occurring in
the span up to time ¢
e_At()‘t)O Y

p(0, \t) = o ¢



Let X be the time to the first Poisson event.

The probability that the length of time until the first event will exceed
x is the same as the probability that no Poisson events will occur in .

PX>z)=e™=>PO0<X<2)=1—¢™

Differentiate the cumulative distribution function for the exponential
distribution
f(x) = Xe ™™ with A\ =1/

Applications of Gamma and Exponential Distributions

The mean of the exponential distribution is the parameter 3, the re-
ciprocal of the parameter in the Poisson distribution.

Poisson distribution has no memory, implying that occurrences in suc-
cessive time periods are independent. They immediately “forget” their
past behavior.

The important parameter (3 is the mean time between events.

The equipment failure often conforms to this Poisson process, ( is called
mean time between failures.

Many equipment breakdowns do follow the Poisson process, and thus
the exponential distribution does apply.

Other applications include survival times in bio-medical experiments
and computer response time.

Example 6.17: Suppose that a system contains a certain type of
component whose time in years to failure is given by 7.

The random variable 7" is modeled nicely by the exponential distribu-
tion with mean time to failure 5 = 5.

Solution:

1 oo
P@>&=5/ e~ Pdt = e 8% = 0.2
8

Let X represent the number of components functioning after 8 years.



If 5 of these components are installed in different systems, what is the
probability that at least 2 are still functioning at the end of 8 years.

Solution:

5 1
P(X >2)=) b(x;5,02)=1—Y b(x;5,02)
=2 =0

=1-0.7373 = 0.2627

Example 6.18: Suppose that telephone calls arriving at a switchboard
follow a Poisson process with an average of 5 calls coming per minute.

What is the probability that up to a minute will elapse until 2 calls
have come in to the switchboard?
Solution:

The Poisson process applies with time until 2 Poisson events following
a gamma distribution with § = 1/5 and o = 2.
Let represent the time in minutes that transpires before 2 calls come.

1
P(X <zx)= —2xe’x/ﬂd:c
o B

1
P(X<1)= 25/ ze "dx
0
=1—-e"(1+5)=0.96
Example 6.19: In a biomedical study with rats a dose-response in-

vestigation is used to determine the effect of the dose of a toxicant on
their survival time.

For a certain dose of the toxicant the study determines that the survival
time, in weeks, has a gamma distribution with a =5 and = 10.

What is the probability that a rat survives no longer than 60 weeks?
Solution:

Let X be the survival time

1
pel(a)

22 e /By

P(ng):/;

8
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TABLE A.24 The Incomplete Gamma Function: F (x; @) = / i_—{-;}-y""’e”’dy
i

o
\ 1 2 3 4 5 6 7 8 9 10

1 0632 0264 0080 0019 0004 0001 0000 0000 0000  0.000
2 0865 0594 0323 0143 0053 0017 0005 0001 0000  0.000
3 0950 0801 0577 0353 0185 0084 0034 0012 0004 0001
4 0982 0908 0762 0567 0371 0215 0111 0051 0021 0008
5 0993 0960 0875 0735 0560 038 0238 0133 0068  0.032
6 0998 0983 0938 0849 0715 055 0394 025 0153 0.084
7 0999 0993 0970 0918 0827 069 0350 0401 0271 0170
8 1000 0997 0986 0958 0900 0809 0687 0547 0407 0283
9 0999 0994 0979 0945 0884 0793 0676 0544 0413
10 1000 0997 0990 0971 0933 0870 0780 0667 0542
11 0999 0995 0985 0962 0921 0857 0768 0659
12 1000 0998 0992 0980 0954 0911 0845 0758
13 (1,999 (1996 0.989 0.974 0.946 (1L900 (.834
14 1000 0.998 0.994 0.986 0.968 0.938 (.891
15 0999 0997 0992 0982 0963 0930

1 60 a—1_—z/8
P@gw——/f—i—m
0

G
Using incomplete gamma function F(z;a) = foz —ya;(f)_yd
Let y = z/f, and = = By
6 y4e—y

iﬂXﬁw:AI%)

= F(6;5) = 0.715, see Appendix A.24

0.3 Chi-Squared Distribution

e Chi-Squared Distribution (o = v/2 and f = 2, special gamma
distribution): The continuous random variable X has a chi-squared

distribution, with v degrees of freedom, if its density function is given
by
1 V)21 —x/2
Flov) = 2L e , x>0
0, elsewhere

where v is a positive integer

e The chi-squared distribution plays a vital role in statistical inference.



0.4

Topics dealing with sampling distributions, analysis of variance and
nonparametric statistics involve extensive use of the chi-squared distri-
bution.

Theorem 6.4:
The mean and variance of the chi-squared distribution are
p=vand o* = 2v
Lognormal Distribution

The lognormal distribution applies in cases where a natural log trans-
formation results in a normal distribution.

Lognormal Distribution: The continuous random variable X has a
lognormal distribution if the random variable Y = In(X) has a normal
distribution with mean p and standard deviation o.

The resulting density function of X is

2mox

1 —5ln(z)—p)/o)? >
fla) = ° ey
0, x <0

The normal distribution has 2-tails. The lognormal distribution has a
single tail.

The normal distribution extends to —oo and oo.

The lognormal only extends to co but is 0 for z < 0.

Theorem 6.5:

The mean and variance of the lognormal distribution are

2

2 2
="t and 0% = e % (e — 1)

Example 6.22: Suppose it is assumed that the concentration of a
certain pollutant produced by chemical plants, in parts per million,
has a lognormal distribution with parameters y = 3.2 and ¢ = 1.

What is the probability that the concentration exceeds 8 parts per
million? (Table A.3)

10
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Figure 8: Lognormal Distributions.

e Solution:

Let X be the pollutant concentration
Since [n(X) has a normal distribution with 4 = 3.2 and o =1

P(X>8):1—P(93§8):1—c1>{m(8)+3'2]
208 —3.2

1
=1-0.1314 = 0.8686

:1-@[ }:1-@(—1.12)

Here,we use the ® notation to denote the cumulative distribution func-
tion of the standard normal distribution.

e Example 6.23: The life, in thousands of miles, of a certain type of
electronic control for locomotives has an approximate lognormal distri-
bution with p = 5.149 and o = 0.737.

e Find the 5" percentile of the life of such locomotive?

e Solution:

In(x) has a normal distribution with p = 5.149 and ¢ = 0.737

In(x) —5.149
—— = —1.645
0.737

11



= In(z) = 0.737  (—1.645) + 5.149 = 3.937
= 2 =51.265

5% of the locomotives will have lifetime less than 51.265 thousand miles

12
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