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Normal Approximation to the Binomial I

• Poisson distribution can be used to approximate binomial
probabilities when n is quite large and p is very close to 0
or 1.

• Normal distribution not only provide a very accurate
approximation to binomial distribution when n is large and
p is not extremely close to 0 or 1,

• But also provides a fairly good approximation even when n
is small and p is reasonably close to 1

2 .

Figure: Normal approximation of b(x ; 15, 0.4).
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Normal Approximation to the Binomial II
• Theorem 6.2 :

If X is a binomial random variable with mean µ = np and
variance σ2 = npq, then the limiting form of the distribu-
tion of

Z =
X − np
√

npq

as n → ∞, is the standard normal distribution n(z; 0, 1)

• P(7 ≤ X ≤ 9)

9
∑

x=7

b(x ; 15, 0.4) =
9

∑

x=0

b(x ; 15, 0.4) −
6

∑

x=0

b(x ; 15, 0.4)

= 0.9662 − 0.6098 = 0.3564

µ = np = 15∗0.4 = 6, σ2 = 15∗0.4∗0.6 = 3.6, σ = 1.897

z1 =
6.5 − 6
1.897

= 0.26, and z2 =
9.5 − 6
1.897

= 1.85

P(7 ≤ X ≤ 9) ≈ P(0.26 < Z < 1.85) = P(Z < 1.85)−P(Z < 0.26)

= 0.9687 − 0.6026 = 0.3652
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Normal Approximation to the Binomial III
P(X = 4) = b(4; 15, 0.4) = 0.1268

z1 =
3.5 − 6
1.897

= −1.32, and z2 =
4.5 − 6
1.897

= −0.79

P(X = 4) ≈ P(3.5 < X < 4.5) = P(−1.32 < Z < −0.79)

= P(Z < −0.79) − P(Z < −1.32)

= 0.2148 − 0.0934 = 0.1214

Figure: Normal approximation of b(x ; 15, 0.4) and
P9

x=7 b(x ; 15, 0.4).
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Normal Approximation to the Binomial IV

• The degree of accuracy, which depends on how well the
curve fits the histogram, will increase as n increases.

• If both np and nq are greater than or equal to 5, the
normal approximation will be good.

Figure: Histogram for b(x ; 6, 0.2). Figure: Histogram for b(x ; 15, 0.2).
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Normal Approximation to the Binomial V

• Let X be a binomial random variable with parameters n
and p.

• Then X has approximately a normal distribution with mean
µ = np and variance σ2 = npq and

P(X ≤ x) =

x
∑

k=0

b(k ; n, p)

≈ area under normal curve to the left of x + 0.5

= P
(

Z ≤
x + 0.5 − np

√
npq

)

and the approximation will be good if np and nq are
greater than or equal to 5.
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Normal Approximation
to the Binomial

Gamma and
Exponential
Distributions

Chi-Squared
Distribution

Lognormal Distribution

10.8

Normal Approximation to the Binomial VI

• Example 6.15 : The probability that a patient recovers from
a rare blood disease is 0.4.

• If 100 people are known to have contracted this disease,
what is the probability that less than 30 survive?

• Solution:

µ = np = 100 ∗ 0.4 = 40

σ =
√

100 ∗ 0.4 ∗ 0.6 = 4.899

z1 =
29.5 − 40

4.899
= −2.14

P(X < 30) ≈ P(Z < −2.14)

= 0.0162
Figure: Area for Example 6.15.
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Normal Approximation to the Binomial VII
• Example 6.16 : A multiple-choice quiz has 200 questions

each with 4 possible answers of which only 1 is correct
answer.

• What is the probability that sheer guess-work yields from
25 to 30 correct answers for 80 of the 200 problems about
which the student has no knowledge?

• Solution:
µ = np = 80 ∗

1
4

= 20

σ =

r

80 ∗
1
4
∗

3
4

= 3.873

z1 =
24.5 − 20

3.873
= 1.16,

z2 =
30.5 − 20

3.873
= 2.71

P(25 ≤ X ≤ 30) =

30
X

x=25

b(x ; 80,
1
4

)

≈ P(1.16 < Z < 2.71)

= 0.9966 − 0.8770 = 0.1196

Figure: Area for Example 6.16.
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Gamma and Exponential Distributions I

• Exponential is a special case of the gamma distribution.
• Play an important role in queuing theory and reliability

problems.
• Time between arrivals at service facilities, time to failure of

component parts and electrical systems.
• Definition 6.2 :

The gamma function is defined by

Γ(α) =

∫ ∞

0
xα−1e−xdx , for α > 0

with
Γ(n) = (n − 1)(n − 2) . . . Γ(1),

Γ(n) = (n − 1)! with Γ(1) = 0! = 1,

• also
Γ(n + 1) = nΓ(n) = n!

Γ(1/2) =
√

π exception
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Gamma and Exponential Distributions II

• Gamma Distribution : The continuous random variable X
has a gamma distribution, with parameters α and β,

• If its density function is given by

f (x) =

{ 1
βαΓ(α)xα−1e−x/β , x > 0
0, elsewhere

where α > 0 and β > 0

• The mean and variance of the gamma distribution are
(Proof is in Appendix A.28)

µ = αβ and σ2 = αβ2
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Gamma and Exponential Distributions III

Figure: Gamma Distributions.
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Normal Approximation
to the Binomial

Gamma and
Exponential
Distributions

Chi-Squared
Distribution

Lognormal Distribution

10.13

Gamma and Exponential Distributions IV

• Exponential Distribution (α = 1, special gamma
distribution): The continuous random variable X has an
exponential distribution, with parameters β,

• In real life, we observe the lifetime of certain products
decreased as time goes.

• To model life-lengths, especially the exponential curve
seemed be good to fit these data rather well.

• If its density function is given by

f (x) =

{ 1
β e−x/β , x > 0
0, elsewhere

where β > 0

• The mean and variance of the exponential distribution are

µ = β and σ2 = β2

• The exponential distribution has a single tail. The single
parameter β determines the shape of the distribution.
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Gamma and Exponential Distributions V
• Relationship to the Poisson Process : The most

important applications of the exponential distribution are
situations where the Poisson process applies.

• An industrial engineer may be interested in modeling the
time T between arrivals at a congested interaction during
rush hour in a large city. An arrival represents the Poisson
event .

• Using Poisson distribution, the probability of no events
occurring in the span up to time t

p(0, λt) =
e−λt(λt)0

0!
= e−λt

• Let X be the time to the first Poisson event.
• The probability that the length of time until the first event

will exceed x is the same as the probability that no
Poisson events will occur in x .

P(X ≥ x) = e−λx ⇒ P(0 ≤ X ≤ x) = 1 − e−λx

• Differentiate the cumulative distribution function for the
exponential distribution

f (x) = λe−λx with λ = 1/β
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Gamma and Exponential Distributions VI

• Applications of Gamma and Exponential Distributions
• The mean of the exponential distribution is the parameter

β, the reciprocal of the parameter in the Poisson
distribution.

• Poisson distribution has no memory, implying that
occurrences in successive time periods are independent.
They immediately “forget” their past behavior.

• The important parameter β is the mean time between
events.

• The equipment failure often conforms to this Poisson
process, β is called mean time between failures.

• Many equipment breakdowns do follow the Poisson
process, and thus the exponential distribution does apply.

• Other applications include survival times in bio-medical
experiments and computer response time.
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Gamma and Exponential Distributions VII

• Example 6.17 : Suppose that a system contains a certain
type of component whose time in years to failure is given
by T .

• The random variable T is modeled nicely by the
exponential distribution with mean time to failure β = 5.

• Solution:

P(T > 8) =
1
5

∫ ∞

8
e−t/5dt = e−8/5 ≈ 0.2

Let X represent the number of components functioning after 8
years.

• If 5 of these components are installed in different systems,
what is the probability that at least 2 are still functioning at
the end of 8 years.

• Solution:

P(X ≥ 2) =

5
∑

x=2

b(x ; 5, 0.2) = 1 −
1

∑

x=0

b(x ; 5, 0.2)

= 1 − 0.7373 = 0.2627
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Gamma and Exponential Distributions VIII

• Example 6.18 : Suppose that telephone calls arriving at a
switchboard follow a Poisson process with an average of 5
calls coming per minute.

• What is the probability that up to a minute will elapse until
2 calls have come in to the switchboard?

• Solution:
The Poisson process applies with time until 2 Poisson events
following a gamma distribution with β = 1/5 and α = 2.
Let represent the time in minutes that transpires before 2 calls
come.

P(X ≤ x) =

∫ x

0

1
β2 xe−x/βdx

P(X ≤ 1) = 25
∫ 1

0
xe−5xdx

= 1 − e−5∗1(1 + 5) = 0.96
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Gamma and Exponential Distributions IX
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Gamma and Exponential Distributions X
• Example 6.19 : In a biomedical study with rats a

dose-response investigation is used to determine the
effect of the dose of a toxicant on their survival time.

• For a certain dose of the toxicant the study determines
that the survival time, in weeks, has a gamma distribution
with α = 5 and β = 10.

• What is the probability that a rat survives no longer than
60 weeks?

• Solution:
Let X be the survival time

P(X ≤ x) =

∫ x

0

1
βαΓ(α)

xα−1e−x/βdx

P(X ≤ 60) =
1
β5

∫ 60

0

xα−1e−x/β

Γ(5)
dx

Using incomplete gamma function F (x ;α) =
∫ x

0
yα−1e−y

Γ(α) dy
Let y = x/β, and x = βy

⇒ P(X ≤ 60) =

∫ 6

0

y4e−y

Γ(5)
dy

= F (6; 5) = 0.715, see Appendix A.24
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Chi-Squared Distribution

• Chi-Squared Distribution (α = ν/2 and β = 2, special
gamma distribution): The continuous random variable X
has a chi-squared distribution, with ν degrees of freedom,
if its density function is given by

f (x ; ν) =

{ 1
2ν/2Γ(ν/2)

xν/2−1e−x/2, x > 0
0, elsewhere

where ν is a positive integer

• The chi-squared distribution plays a vital role in statistical
inference.

• Topics dealing with sampling distributions, analysis of
variance and nonparametric statistics involve extensive
use of the chi-squared distribution.

• Theorem 6.4 :
The mean and variance of the chi-squared distribution are

µ = ν and σ2 = 2ν
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Lognormal Distribution I

• The lognormal distribution applies in cases where a
natural log transformation results in a normal distribution.

• Lognormal Distribution : The continuous random variable
X has a lognormal distribution if the random variable
Y = ln(X ) has a normal distribution with mean µ and
standard deviation σ.

• The resulting density function of X is

f (x) =

{

1√
2πσx

e− 1
2 [(ln(x)−µ)/σ]2 , x ≥ 0

0, x < 0

• The normal distribution has 2-tails. The lognormal
distribution has a single tail.

• The normal distribution extends to −∞ and ∞.

• The lognormal only extends to ∞ but is 0 for x < 0.
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Normal Approximation
to the Binomial

Gamma and
Exponential
Distributions

Chi-Squared
Distribution

Lognormal Distribution

10.22

Lognormal Distribution II

• Theorem 6.5 :
The mean and variance of the lognormal distribution are

µ = eµ+σ2/2 and σ2 = e2µ+σ2
∗ (eσ2

− 1)

Figure: Lognormal Distributions.
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Lognormal Distribution III

• Example 6.22 : Suppose it is assumed that the
concentration of a certain pollutant produced by chemical
plants, in parts per million, has a lognormal distribution
with parameters µ = 3.2 and σ = 1.

• What is the probability that the concentration exceeds 8
parts per million? (Table A.3)

• Solution:
Let X be the pollutant concentration
Since ln(X ) has a normal distribution with µ = 3.2 and σ = 1

P(X > 8) = 1 − P(x ≤ 8) = 1 − Φ

[

ln(8) − 3.2
1

]

= 1 − Φ

[

2.08 − 3.2
1

]

= 1 − Φ(−1.12)

= 1 − 0.1314 = 0.8686
Here,we use the Φ notation to denote the cumulative distribution
function of the standard normal distribution.
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Lognormal Distribution IV

• Example 6.23 : The life, in thousands of miles, of a certain
type of electronic control for locomotives has an
approximate lognormal distribution with µ = 5.149 and
σ = 0.737.

• Find the 5th percentile of the life of such locomotive?

• Solution:
P(Z < z1) = 0.05 ⇒ z1 = −1.645

ln(x) has a normal distribution with µ = 5.149 and σ = 0.737
ln(x) − 5.149

0.737
= −1.645

⇒ ln(x) = 0.737 ∗ (−1.645) + 5.149 = 3.937

⇒ x = 51.265
5% of the locomotives will have lifetime less than 51.265
thousand miles
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