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e |t is often important to allocate a numerical description to
the outcome of a statistical experiment.
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e We use a capital letter, say X, to denote a random variable

and its corresponding small letter , x in this case, for one
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A random variable is a function that associates a real
number with each element in the sample space.

e We use a capital letter, say X, to denote a random variable
and its corresponding small letter , x in this case, for one
of its value.

e One and only one numerical value is assigned to each
sample point X.
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It is often important to allocate a numerical description to
the outcome of a statistical experiment.

These values are random quantities determined by the
outcome of the experiment.

Definition 3.1 :

A random variable is a function that associates a real
number with each element in the sample space.

We use a capital letter, say X, to denote a random variable
and its corresponding small letter , x in this case, for one
of its value.

One and only one numerical value is assigned to each
sample point X.

e Example 3.1: Two balls are drawn
in succession without replacement
from an box containing 4 red balls
and 3 black balls.
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o |t is often important to allocate a numerical description to
the outcome of a statistical experiment.

e These values are random quantities determined by the
outcome of the experiment.

e Definition 3.1 :

A random variable is a function that associates a real
number with each element in the sample space.

e We use a capital letter, say X, to denote a random variable
and its corresponding small letter , x in this case, for one
of its value.

¢ One and only one numerical value is assigned to each
sample point X.

Example 3.1 : Two balls are drawn
in succession without replacement
from an box containing 4 red balls
and 3 black balls.

The possible outcomes and the
values y of the random variable Y,
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e Example 3.1: Two balls are drawn
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values y of the random variable Y, BB 0
where Y is the number of red balls,

It is often important to allocate a numerical description to
the outcome of a statistical experiment.

These values are random quantities determined by the
outcome of the experiment.

Definition 3.1 :

A random variable is a function that associates a real
number with each element in the sample space.

We use a capital letter, say X, to denote a random variable
and its corresponding small letter , x in this case, for one
of its value.
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Example : Number of defective (D) products when 3 products Q%‘%
are tested.

Outcomes in | x: value Randor Variables and
Sample Space | of X bistisions

DDD 3
DDN 2 Do "
DND 2 i
D N N 1 Joint Probability Distribution
NDD 2
NDN 1
NND 1
NNN 0
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e Example 3.3: Components from the production line are
defective or not defective.
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e Example 3.3: Components from the production line are

defective or not defective.
e Define the random variable X by
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if the component is defective
if the component is not defective
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e Example 3.3: Components from the production line are
defective or not defective.

o Define the random variable X by

X — 1, if the component is defective
~— | 0, if the component is not defective

e This random variable is categorical in nature.
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e Example 3.3: Components from the production line are

defective or not defective.
o Define the random variable X by

X — 1, if the component is defective
~— | 0, if the component is not defective

e This random variable is categorical in nature.

e Example 3.5: A process will be
evaluated by sampling items until a
defective item is observed.
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e Example 3.3: Components from the production line are
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o Define the random variable X by
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consecutive items observed
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e Example 3.3: Components from the production line are

defective or not defective.
o Define the random variable X by

X — 1, if the component is defective
~— | 0, if the component is not defective

e This random variable is categorical in nature.

e Example 3.5: A process will be
evaluated by sampling items until a
defective item is observed.
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e According to the countability of the sample space which is
measurable, it can be either discrete or continuous.
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Concept of a Random Variable IV

e According to the countability of the sample space which is
measurable, it can be either discrete or continuous.

e Discrete random variable: If a random variable take on
only a countable number of distinct values.
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measurable, it can be either discrete or continuous.

e Discrete random variable: If a random variable take on
only a countable number of distinct values.
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Concept of a Random Variable IV

e According to the countability of the sample space which is
measurable, it can be either discrete or continuous.
e Discrete random variable: If a random variable take on
only a countable number of distinct values.
¢ If the set of possible outcomes is countable

e Often represent count data, such as the number of
defectives, highway fatalities
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only a countable number of distinct values.
e If the set of possible outcomes is countable

e Often represent count data, such as the number of
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e Continuous random variable : If a random variable can
take on values on a continuous scale.

o often represent measured data, such as heights, weights,
temperatures, distance or life periods
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e According to the countability of the sample space which is
measurable, it can be either discrete or continuous.

e Discrete random variable: If a random variable take on
only a countable number of distinct values.

e If the set of possible outcomes is countable
e Often represent count data, such as the number of
defectives, highway fatalities

e Continuous random variable : If a random variable can
take on values on a continuous scale.

e often represent measured data, such as heights, weights,
temperatures, distance or life periods

e Definition 3.2 :

Discrete sample space If a sample space contains
a finite number of possibilities or an unending sequence
with as many elements as there are whole numbers.
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e According to the countability of the sample space which is
measurable, it can be either discrete or continuous.

e Discrete random variable: If a random variable take on
only a countable number of distinct values.

e If the set of possible outcomes is countable
e Often represent count data, such as the number of
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Random Variables and

defectives, highway fatalities Probaliy
e Continuous random variable : If a random variable can varapia
take on values on a continuous scale. Dertons
e often represent measured data, such as heights, weights, e
temperatures, distance or life periods Joint Probabilty Distibution

e Definition 3.2 :

Discrete sample space : If a sample space contains
a finite number of possibilities or an unending sequence
with as many elements as there are whole numbers.

o Definition 3.3 :
Continuous sample space : If a sample space contains

an infinite number of possibilities equal to the number of
points on a line segment.
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e A discrete random variable assumes each of its values
with a certain probability.
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e A discrete random variable assumes each of its values
with a certain probability.

e Frequently, it is convenient to represent all the probabilities
of a random variable X by a formula;
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Discrete Probability Distributions |

e A discrete random variable assumes each of its values
with a certain probability.

e Frequently, it is convenient to represent all the probabilities
of a random variable X by a formula;

f(x) = P(X =x), f(3)=P(X =3)

e Definition 3.4 :

The set of ordered pairs (x,f(x)) is a probability func-
tion (probability mass function , or probability distri-
bution) of the discrete random variable X if for each pos-
sible outcome X,
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@ f(x) >0,
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Discrete Probability Distributions |

e A discrete random variable assumes each of its values
with a certain probability.

e Frequently, it is convenient to represent all the probabilities
of a random variable X by a formula;

f(x) = P(X =x), f(3)=P(X =3)

e Definition 3.4 :

The set of ordered pairs (x,f(x)) is a probability func-
tion (probability mass function , or probability distri-
bution) of the discrete random variable X if for each pos-
sible outcome x,

@ f(x) >0,

0> f(x)=1

© P(X =x) =f(x).

e The probability distribution of a discrete random variable
can be presented in the form of a mathematical formula, a
table, or a graph-probability histogram or barchart.
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Example : Let X be the random variable: number of heads in 3
tosses of a fair coin. Q%‘%

Sample Space | x
TTT 0
TTH 1 Era:)n;;brir:‘t\;ariables and
THT 1 et pandon
TH H 2 Variable
HTT 1 Continuous Probabilty
HTH 2 St sty oiston
HHT 2
HHH 3

P (X = x): Probability that outcome is a specific x value.

X 0
P(X=x) | 5

3
1
8

1|2
313
8 | 8
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Discrete Probability Distributions 111

e Example 3.8: A
shipment of 8 similar
microcomputers to a
retail outlet contains 3
that are defective.
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Discrete Probability Distributions 111

e Example 3.8: A
shipment of 8 similar
microcomputers to a
retail outlet contains 3
that are defective.

e If a school make a
random purchase of 2
of these computers.
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Discrete Probability Distributions 111

e Example 3.8: A
shipment of 8 similar
microcomputers to a
retail outlet contains 3
that are defective.

¢ If a school make a
random purchase of 2
of these computers.

e Find the probability
distribution for the
number of defectives.

x |0 1]2
10 15 3
f) | 26 | 28 | 78
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Discrete Probability Distributions 111

e Example 3.8: A
shipment of 8 similar
microcomputers to a
retail outlet contains 3
that are defective.

e |f a school make a
random purchase of 2
of these computers.

e Find the probability
distribution for the
number of defectives.

 x [0 [1]2
) | 281 % | 2

f(O)P<xo>(g()8<)g>;g
2

= W
N—
/N
= o
N———
o

ND:HX=U:<=

N W
~—
/N
o Ul
~—
w

N3=HX=3=<=

Random Variables and
Probability
Distributions

Dr. Cem Ozdo gan

R

Random Variables and
Probability
Distributions

Concept of a Random
Variable

Discrete Probability
Distributions

Continuous Probability
Distributions

Joint Probability Distribution

5.9



Discrete Probability Distributions 1V
e Definition 3.5 :

The Cumulative distribution function ~ F(x) of a discrete
random variable X with probability distribution f(x) is

F(x) =P(X <x) =) f(t), for —oo<x <00

t<x
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Discrete Probability Distributions 1V
o Definition 3.5 :

The Cumulative distribution function ~ F(x) of a discrete
random variable X with probability distribution f(x) is

F(x) =P(X <x) =) f(t), for —oo<x < o0

t<x

e Example 3.10: Find the cumulative distribution of the
random variable X in Example 3.9.
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o Definition 3.5 :

The Cumulative distribution function ~ F(x) of a discrete
random variable X with probability distribution f(x) is

F(x) =P(X <x) =) f(t), for —oo<x < o0

t<x

e Example 3.10: Find the cumulative distribution of the
random variable X in Example 3.9.
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Discrete Probability Distributions 1V
o Definition 3.5 :

f(0) =

F(x) =

P(X <x)

= (1),

t<x

The Cumulative distribution function
random variable X with probability distribution f(x) is

F (x) of a discrete

for —oco <X <

e Example 3.10: Find the cumulative distribution of the
random variable X in Example 3.9.

15’f(1)* 16 ( )

— 6
= 16

1) 4+(2)= 1
1) +1(2) +£(3) =

16

1)+f(2)+f(3)+f(4)=1
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Discrete Probability Distributions 1V
o Definition 3.5 :

The Cumulative distribution function

F(x)=P(X <x)

= (1),

t<x

F (x) of a discrete
random variable X with probability distribution f(x) is

for —oco <X <

e Example 3.10: Find the cumulative distribution of the

random variable X in Example 3.9.

f(O) 15’f(1)** ( ):%)f(s):%7f(4):f%:
F(0) =f(0) = 15

F(1) =f0)+f(1) =3 F(x)
F(2) =f(0)+f(1)+f(2) = 13

F(3) =f(0) +f(1) +f(2) +f(3) = £

F(4) =f(0) +f(1)+f(2) +f(8) +f(4) =1

Oforx <0
=foro<x<1

5
forl<x<2
11
gefor2<x <3
15
e for3<x<4

lforx >4

Random Variables and
Probability
Distributions

Dr. Cem Ozdo gan

R

Random Variables and
Probability
Distributions

Concept of a Random
Variable

Discrete Probability
Distributions

Continuous Probability
Distributions

Joint Probability Distribution



Random Variables and

Discrete Probability Distributions V Probabilty

Distributions

Dr. Cem Ozdo gan

f(x) f(x)
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‘53; 12 B ' 5/16 |-
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Continuous Probability Distributions |

e A continuous random variable has a probability of zero of
assuming exactly any of its values.

Pla@a<X<b)=Pa<X<b)=P(@a<X<b)=P(a<X<bhb)

f(x) flx) flx) flx)

x x
(a) (b) (e

x

(d)

Figure: Typical density functions.
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Continuous Probability Distributions |
e A continuous random variable has a probability of zero of
assuming exactly any of its values.
Pl@<X<b)=P@a<X<b)=Pa<X<b)=P(@a<X<bh)
e Example : Height of a random person.
P(X = 178 cm) = 0. No assuming exactly.

f(x) flx) flx) flx)

x x

(a) (b) (e

x

(d)

Figure: Typical density functions.
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Continuous Probability Distributions |

e A continuous random variable has a probability of zero of
assuming exactly any of its values.

Pl@<X<b)=P@a<X<b)=Pa<X<b)=P(@a<X<bh)
e Example : Height of a random person.

P(X = 178 cm) = 0. No assuming exactly.
e With continuous random variables we talk about the

probability of x being in some interval, like P(a < X < b),
rather than x assuming a precise value like P(X = a).

f(x) flx) flx) flx)

x
(a) (b) (e (d)

Figure: Typical density functions.
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Continuous Probability Distributions |

e A continuous random variable has a probability of zero of
assuming exactly any of its values.

Pl@<X<b)=P@a<X<b)=Pa<X<b)=P(@a<X<bh)

e Example : Height of a random person.
P(X = 178 cm) = 0. No assuming exactly.

o With continuous random variables we talk about the
probability of x being in some interval, like P(a < X < b),
rather than x assuming a precise value like P(X = a).

e |ts probability distribution cannot be given in tabular form,
but can be stated as a formula, a function of the numerical
values of the continuous random variables.

f(x) f(x) flx) flx)

x x x L x
(a) (b) (c) (d)

Figure: Typical density functions.
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Continuous Probability Distributions |

e A continuous random variable has a probability of zero of
assuming exactly any of its values.

Pl@<X<b)=P@a<X<b)=Pa<X<b)=P(@a<X<bh)

e Example : Height of a random person.
P(X = 178 cm) = 0. No assuming exactly.

e With continuous random variables we talk about the
probability of x being in some interval, like P(a < X < b),
rather than x assuming a precise value like P(X = a).

e |ts probability distribution cannot be given in tabular form,
but can be stated as a formula, a function of the numerical
values of the continuous random variables.

e Some of these functions are shown below:

f(x) f(x) flx) flx)

x L x x
(a) (b) (c) (d)

x

Figure: Typical density functions.
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Continuous Probability Distributions I

e Definition 3.6 :

The function f(x) is a probability density function  (or
density function , p.d.f) for the continuous random vari-
able X, defined over the set of real numbers R, if
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Continuous Probability Distributions I

e Definition 3.6 :

The function f(x) is a probability density function  (or
density function , p.d.f) for the continuous random vari-
able X, defined over the set of real numbers R, if

@ f(X)>0, forallx eR
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Continuous Probability Distributions I

e Definition 3.6 :

The function f(x) is a probability density function  (or
density function , p.d.f) for the continuous random vari-
able X, defined over the set of real numbers R, if
@ f(X) >0, forall x eR
0 [~ f(x)dx =1
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Continuous Probability Distributions I

e Definition 3.6 :

The function f(x) is a probability density function  (or
density function , p.d.f) for the continuous random vari-
able X, defined over the set of real numbers R, if
@ f(X) >0, forall x eR
@ /= f(x)dx =1

® P(a<X <b)= [7f(x)dx
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Continuous Probability Distributions I

e Definition 3.6 :

The function f(x) is a probability density function  (or
density function , p.d.f) for the continuous random vari-
able X, defined over the set of real numbers R, if
@ f(X) >0, forall x eR
@ /= f(x)dx =1

® P(a <X <b)= [Pf(x)dx
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Continuous Probability Distributions I

e Definition 3.6 :

The function f(x) is a probability density function  (or
density function , p.d.f) for the continuous random vari-
able X, defined over the set of real numbers R, if

@ f(X)>0, forallx eR

@ /= f(x)dx =1

® P(a<X <b)= [7f(x)dx

A probability density function is
constructed so that
the area under its curve

bounded by the x axis is equal

to 1.
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Continuous Probability Distributions I

e Definition 3.6 :

The function f(x) is a probability density function  (or
density function , p.d.f) for the continuous random vari-
able X, defined over the set of real numbers R, if

@ f(X) >0, forall x eR

@ /= f(x)dx =1

® P(a <X <b)= [Pf(x)dx

f(x)

A probability density function is

constructed so that
the area under its curve

bounded by the x axis is equal

to 1.

Figure: P(a < X < b)
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Continuous Probability Distributions 111

e Example 3.11 : Suppose that the error in reaction
temperature in °C is a continuous random variable X
having the probability density function

f(x):{ %for —1<x<2}

0, elsewhere
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Continuous Probability Distributions Il

e Example 3.11 : Suppose that the error in reaction

temperature in °C is a continuous random variable X
having the probability density function

elsewhere

X2
f(x):{ 0gfor —1<x<2}

o Verify [% f(x)dx =1
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Continuous Probability Distributions Il

e Example 3.11 : Suppose that the error in reaction

temperature in °C is a continuous random variable X
having the probability density function

elsewhere

X2
f(x):{ 0gfor —1<x<2}
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Continuous Probability Distributions Il

e Example 3.11 : Suppose that the error in reaction

temperature in °C is a continuous random variable X
having the probability density function

X2
Lfor —1<x<2
f(x)=<{ 3
() {0, elsewhere }
o Verify [% f(x)dx =1
of X)dX—fl%
e FiNdP(0 <X <1)

3
x° |12 8 1
2 s+ = |
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Continuous Probability Distributions Il

e Example 3.11 : Suppose that the error in reaction

temperature in °C is a continuous random variable X
having the probability density function

X2
f(x):{ 0gfor —1<x<2}

, elsewhere

o Verify [% f(x)dx =1

o [ f)dx = [2 Ndx =P =5 +F=1
e FiNdP(0 < X < 1)
e PO<X<l)=[Idx=21=1
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e Definition 3.7 :

The cumulative function F(x) of a continuous random Random Variables and
variable X with density function f(x) is Ay

Concept of a Random
X Variable

F(x)=P(X <x)= / f(t)dt for — oo < x < o0 it
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Continuous Probability Distributions 1V

e Definition 3.7 :

The cumulative function F(x) of a continuous random
variable X with density function f(x) is

F(x) =P(X gx):/x

— 00

f(t)dt for —oco < x < o0

e An immediate consequence:
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Continuous Probability Distributions 1V

e Definition 3.7 :

The cumulative function F(x) of a continuous random
variable X with density function f(x) is

X

F(x)=P(X gx):/ f(t)dt for —oco < x < o0

— 00

e An immediate consequence:
e P@<X <b)=F(b)-F(a)
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Continuous Probability Distributions 1V

e Definition 3.7 :

The cumulative function
variable X with density function f(x) is

F (x) of a continuous random

X

F(x)=P(X gx):/ f(t)dt for —oco < x < o0

— 00

e An immediate consequence:
e P@<X <b)=F(b)-F(a)

° f(x) =

dF (x
dx

), if the derivative exists
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Continuous Probability Distributions V

Example 3.12 : For the density function of Example 3.6 find
F(x), and use it to evaluate P(0 < X < 1).
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Continuous Probability Distributions V

Example 3.12 : For the density function of Example 3.6 find
F(x), and use it to evaluate P(0 < X < 1).
For -1 <x <2

Hm:/ljmm:/xgm

—oo

_t3|x _x3+1
K=

9 9
0, x< -1
x34+1
F(X): T’_ISX<2
1,x >2

P(0 < X < 1) =F(1) — F(0)
2 1 1

9 9

©
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Continuous Probability Distributions V Random variables and

Probability
Distributions

Dr. Cem Ozdo gan
Example 3.12 : For the density function of Example 3.6 find
F(x), and use it to evaluate P(0 < X < 1).
For -1 <x <2

X X t2
= = — Random Variabl d
Foo= [ tou=[ S o Randor varaiscr
} Distributions
_ 3 |x . x3+1 1.01 B e
9ot 9 n4 perse oy
0, x< -1 0.6
0.4 Joint Probability Distribution
x3+1
Fo)=q "o TTSX<? 02
1,x >2 1 0 “I Z\_X
P(0< X <1)=F(1)— F(0) Figure: Continuous cumulative
> 1 1 distribution function.
"9 9 9



Joint Probability Distribution |

e |n some experiment, we might want to study simultaneous
outcomes of several random variables.
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Joint Probability Distribution |

e |n some experiment, we might want to study simultaneous
outcomes of several random variables.

e If X and Y are two discrete random variables, the
probability distribution for their simultaneous occurrence
can be represented by a function with values f(x,y)

Random Variables and
Probability
Distributions

Dr. Cem Ozdo gan

Random Variables and
Probability
Distributions

Concept of a Random
Variable

Discrete Probability
Distributions

Continuous Probability
Distributions



Joint Probability Distribution |

e |n some experiment, we might want to study simultaneous
outcomes of several random variables.

e If X and Y are two discrete random variables, the
probability distribution for their simultaneous occurrence
can be represented by a function with values f(x,y)

e Definition 3.8 :

The function f(x,y) is a joint probability distribution ~ (or
probability mass function ) of the discrete random vari-
ables X and Y if

For any region A in the xy-plane,

P(X,Y) e A=) ) f(x,y)
A
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Joint Probability Distribution |

e |n some experiment, we might want to study simultaneous
outcomes of several random variables.

e If X and Y are two discrete random variables, the
probability distribution for their simultaneous occurrence
can be represented by a function with values f(x,y)

o Definition 3.8 :

The function f(x,y) is a joint probability distribution  (or
probability mass function ) of the discrete random vari-
ables X and Y if

@ f(x,y) >0, forall (x,y)

For any region A in the xy-plane,

P[(X,Y) e Al = ZZ]‘ (x,y)
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Joint Probability Distribution |

e |n some experiment, we might want to study simultaneous
outcomes of several random variables.

e If X and Y are two discrete random variables, the
probability distribution for their simultaneous occurrence
can be represented by a function with values f(x,y)

o Definition 3.8 :

The function f(x,y) is a joint probability distribution  (or
probability mass function ) of the discrete random vari-
ables X and Y if

@ f(x,y) >0, forall (x,y)
0>, > fixy)=1

For any region A in the xy-plane,

P[(X,Y) e Al = ZZ]‘ (x,y)
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Joint Probability Distribution |

e |n some experiment, we might want to study simultaneous
outcomes of several random variables.

e If X and Y are two discrete random variables, the
probability distribution for their simultaneous occurrence
can be represented by a function with values f(x,y)

o Definition 3.8 :

The function f(x,y) is a joint probability distribution  (or
probability mass function ) of the discrete random vari-
ables X and Y if

@ f(x,y) >0, forall (x,y)

0> fxy)=1

O PX=xY=y)=f(x,y)
For any region A in the xy-plane,

P[(X,Y) e Al = ZZ]‘ (x,y)
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Joint Probability Distribution Il

e Example 3.14 : Two refills for a ballpoint pen are selected
at random from a box that contains 3 blue refills, 2 red
refills, and 3 green refills. If X is the number of blue refills
and Y is the number of red refills selected, find
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Joint Probability Distribution 11

e Example 3.14 : Two refills for a ballpoint pen are selected
at random from a box that contains 3 blue refills, 2 red
refills, and 3 green refills. If X is the number of blue refills
and Y is the number of red refills selected, find

e the joint probability function f(x,y)

o~ G G ) 2oy )
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Joint Probability Distribution 11

e Example 3.14 : Two refills for a ballpoint pen are selected
at random from a box that contains 3 blue refills, 2 red
refills, and 3 green refills. If X is the number of blue refills
and Y is the number of red refills selected, find

e the joint probability function f(x,y)

o= G G ) 2oy )
(2)

e P[(X,Y) € A], where A is the region {(x,y)|x +y < 1}.

P[(X,Y) €Al =P(X +Y <1)
= £(0,0) + (0, 1) + f(1,0)
s s, 9 39
28 14 ' 28 14
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Joint Probability Distribution 11

X Row
f(x,y) 0| 1| 2 | Totals
3 [ 95 [ 3 15
28 28 28 28
3 3 3
y 4 | 14 7
1 1
28 28
Column 2| =213 1
Totals
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Joint Probability Distribution IV

e Definition 3.9 :

The function f(x, y) is a joint density function
tinuous random variables X and Y if

For any region A in the xy-plane,

of the con-
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Joint Probability Distribution IV

e Definition 3.9 :

The function f(x, y) is a joint density function
tinuous random variables X and Y if

@ f(x,y) >0, forall (x,y)

For any region A in the xy-plane,

of the con-
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Joint Probability Distribution 1V

e Definition 3.9 :

The function f(x, y) is a joint density function
tinuous random variables X and Y if

@ f(x,y) >0, forall (x,y)
@ 7 7 f(xy)dxdy =1

For any region A in the xy-plane,

of the con-
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Joint Probability Distribution 1V

e Definition 3.9 :

The function f(x, y) is a joint density function
tinuous random variables X and Y if

@ f(x,y) >0, forall (x,y)

@ [T [T f(x,y)dxdy =1

(3) P[(X,Y) €Al = [ [,f(x,y)dxdy
For any region A in the xy-plane,

of the con-
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Joint Probability Distribution IV

Random Variables and

Probability
Distributions
e Definition 3.9 : PO
The function f(x, y) is a joint density function  of the con-
tinuous random variables X and Y if
@ f(x,y) >0, forall (x,y)
@ [T [T f(x,y)dxdy =1
e P[(X Y) c A] f fAf(X y)dXdy Era:jn;;brir:“t\;anables and
For any region A in the xy-plane, e o
Variable
e Example 3.15: A candy company distributes boxes of SCTEoR Ly
chocolates with a mixture of creams, toffees, and nuts

Continuous Probability
1 Distributions
coated in both light and dark chocolate.



Joint Probability Distribution 1V

e Definition 3.9 :

The function f(x, y) is a joint density function
tinuous random variables X and Y if

@ f(x,y) >0, forall (x,y)

@ [T [T f(x,y)dxdy =1

© P[(X,Y) c Al = J JAt(x,y)dxdy
For any region A in the xy-plane,

of the con-

e Example 3.15: A candy company distributes boxes of
chocolates with a mixture of creams, toffees, and nuts

coated in both light and dark chocolate.

e For randomly selected box, let X and Y, respectively, be
the proportions of the light and dark chocolates that are

creams.
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Joint Probability Distribution 1V

Definition 3.9 :

The function f(x, y) is a joint density function
tinuous random variables X and Y if

@ f(x,y) >0, forall (x,y)

@ [T [T f(x,y)dxdy =1

(3] P[(X Y) e Al = [ [,f(x,y)dxdy
For any region A in the xy-plane,

of the con-

Example 3.15 : A candy company distributes boxes of
chocolates with a mixture of creams, toffees, and nuts
coated in both light and dark chocolate.

For randomly selected box, let X and Y, respectively, be
the proportions of the light and dark chocolates that are
creams.

The joint density function is as follows:

2x+3y),0<x<1,0<y<1
f(x.y){ ( y): y }

0, elsewhere
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Joint Probability Distribution V

o Verify [ [ f(x,y)dxdy =1

/Oo /oo f(x,y)dxdy:/l/1 g(2x—s—3y)dxdy
/(21+6xy “bdy = /( - —(—+—)lo

*5

U'I\N
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Joint Probability Distribution V

Random Variables and
Probability
Distributions

° Verify f_oooo fjooo f(X7y)dXdy =1 Dr. Cem Ozdo §an

oo co 1 1
/ / f(x,y)dxdy:/o/o%(2x+3y)dxdy Q%‘%

L 2x2  BXY .|yt 12 ey 2y  3y? .,
—/0 (?+?)|x=od}’—/o (g+§)d)’—(§+?)|o

Random Variables and

Probability
2 3 Distributions
e 1 Concept of a Random
5 5 Variable
Discrete Probability
Distributions
- - Continuous Probability
e P[(X,Y) € A], where A is the region S

x,y)0<x<ii<y<i,

PI(X,Y)eAl=PO0<X <+ 1 vl

24 2
'z (22 '3 2%% BXY | xo1
_ < _ 2 DAY\ =2
= [, [ & ey = [F+ STy
1
2 3y y 3y’ i 13
= (= s D ydy = (L Yy = 22
/N.w*s” (16 72071} = 160




Joint Probability Distribution VI

e Definition 3.10 :

The marginal distributions
are

for the discrete case

— 00

for the continuous case

g(x) =Y _f(x,y)and h(y) = > f(x,y)
y X

a0)= [ txy)dy and hiy) = [ (x.y)ax

of X alone and of Y alone

— 00
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Joint Probability Distribution VII

Example 3.16 : Show that the column and row totals of the
following table give the marginal distribution of X alone and of

Y alone.

X Row
f(x,y) 0| 1| 2 | Totals
3 | 81 3 15
28 28 28 28
3 3 3
y 14 | 14 7
1 1
28 28
Column =2 =213 1

Totals
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Joint Probability Distribution VIII

Solution:
2
P(X = Z (0,y) =f(0,0) +f(0,1) +(0,2)
3 3+i75
28" 28 14
2
P(X = Z (1,y) =f(1,0) +f(1,1) +f(1,2)
3+i+o »
28 ' 14 28
2
P(X=2)=9g(2) =) f(2,y) =f(2,0)+f(2,1) +f(2,2)
y=0
3 3
%“FO-‘FO—%
X 0 1 2
909 | 7 | 2 | %
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Joint Probability Distribution IX

e Example 3.17 : Find g(x) and h(y) for the following joint

density function.

f(X,y)z{ §

2x+3y),0<x<1,0<y<1
y y
,elsewhere

|
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Joint Probability Distribution IX

Random Variables and

Probability
Distributions
e Example 3.17 : Find g(x) and h(y) for the following joint Dr. Gem 6zdo gan
density function.
2
z <x < <y <
f(x,y) = £(2x+3y),0<x<1,0<y<1 giég iﬂ
0, elsewhere
Random Variables and
* g(x) bistiasions
0o 1 2 Saurr;:glztafaRandcm
/ sy = / 5(2x +3y)dy ooy
=C€3 0 Continuous Probability
5 4Xy 6y2 y:1 5 4X + 3 Distributions
=05 Tagh=="3
for 0<x <1, 0<y <1andg(x) =0, elsewhere




Joint Probability Distribution IX

Random Variables and

Probability
Distributions
e Example 3.17 : Find g(x) and h(y) for the following joint Dr. Gem 6zdo gan
density function.
2
z <x < <y <
f(x,y) = £(2x+3y),0<x<1,0<y<1 giég iﬂ
0, elsewhere
Random Variables and
* g(x) bistiasions
o 1 2 Sau:;;;l;;mfal?andcm
= / e = / 5(2x +3y)dy ooy
=€3 0 Continuous Probability
B (4& 6L2)|y:1 B 4X + 3 Distributions
-5 10’Y=0" 5
for 0<x <1, 0<y <1andg(x)=0, elsewhere
* h(y)

_2x% BYX\ o1 2+ 6y
*(?Jr?)‘x:of 5
for 0<x <1, 0<y <1landh(y)=0, elsewhere




Joint Probability Distribution X e oatity
e Definition 3.11 :

Distributions
- . Dr. Cem Ozdo gan
Let X and Y be two random variables, discrete or

continuous. The conditional distribution

of the random
variable Y, given that X = x, is

flyp) = oY)

Random Variables and
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Distributions

Similarly, the conditional distribution of the random vari-| e "
able X, giventhatY =y, is

Discrete Probability
Distributions

Continuous Probabilty

f X7 Distributions
F(xly) = T%:Y)




Joint Probability Distribution X e oatity
e Definition 3.11 :

Distributions

Dr. Cem Ozdo gan
Let X and Y be two random variables, discrete or ’
continuous. The conditional distribution  of the random
variable Y, given that X = x, is

f(ybo = o3 ax) > 0

Random Variables and

Probability
Distributions
. . s . . . . Concept of a Random
Similarly, the conditional distribution of the random vari- Vere
. . Discrete Probability
able X, giventhatY =y, is Distibutons
Continuous Probability
Distributions
f(x,y) _
f(xly) =

e Evaluate the probability that X falls between a and b given
that Y is known.

Pla<X <bly =y)= Zf(x\y), for the discrete case
X

b
Pl@a<X <blY =y) = / f(x|y), for the continuous case
Ja



Joint Probability Distribution XI

e Example 3.18 : Referring to Example 3.14, find the

conditional distribution of X, given that Y = 1, and use it to
determine P(X = 0]Y = 1).
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Joint Probability Distribution XI

e Example 3.18 : Referring to Example 3.14, find the

conditional distribution of X, given that Y = 1, and use it to
determine P(X =0]Y = 1).

e Solution:
h(yzl):if(x.,l)f 134+%+0:§
x=0
F(x|1) = fﬁ((’s) ~ Tfx,1),x = 0,1,2
£(0/1) = ;f(o, 1) = % ; % _ %
f(1/1) = ;f(l,l) = o % _ %
f(201) = 26(2.2) = L +0=0

X
NIR O
NI =
N
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Joint Probability Distribution XII RSB

E’ro_bab_ility

e Example 3.19: The joint density for the random variables (X,Y), Pt
where X is the unit temperature change and Y is the proportion
of spectrum shift that a certain atomic particle produces is

10xy%, 0<x <y <1
focy)={ 0% y<rl
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0, elsewhere
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Joint Probability Distribution XII

e Example 3.19: The joint density for the random variables (X,Y),
where X is the unit temperature change and Y is the proportion
of spectrum shift that a certain atomic particle produces is

_ [ 10xy?, 0<x<y<1
f(x,y) = { 0, elsewhere }

e Find the marginal densities g(x), h(y), and the conditional
density f(y|x).

- - :
9(x) :/ f(x,y)dy =/ 10xy2dy = 22X =xT)

8
) = [ texy)ax = [ 10xy%ax
0o J0
f(x,y) 10xy? 3y?
f(y|x) =

gix) B ~ (1)
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Joint Probability Distribution XII e oatity

e Example 3.19: The joint density for the random variables (X,Y), Df:;:g::_an
where X is the unit temperature change and Y is the proportion ' °
of spectrum shift that a certain atomic particle produces is

_ [ 10xy*, 0<x<y<1 hi
f(x,y) = { 0, elsewhere }

e Find the marginal densities g(x), h(y), and the conditional

Random Variables and
density f(y|x). s
o) 1 _ g Saurr;;el;;( of a Random
g (x ) = / f (x Y )dy = / 1Oxy2dy = m Dlscr:te Probability
=c® X 3 z::“i::ﬂ:mnab.my
e y Distributions
h(y) :/ f(x,y)dx :/ 10xy?dx TR G0
—oo 0
f(x, 10xy? 3y?
F(y[x) = 1Y) y y

g(x) A=)~ (I-x3)

Find the probability that the spectrum shifts more than half of the
total observations, given the temperature is increased to 0.25 unit.

1 1

P(Y > %|x = 0.25) :/

2
fyjo2sily = [ % o
1/2

Sy @—0259)Y ~9




Joint Probability Distribution XIII

e Definition 3.12 :

Let X and Y be two random variables, discrete or continu-
ous, with joint probability distribution f(x,y) and marginal
distributions g(x) and h(y), respectively. The random vari-

ables X and Y are said to be statistically independent if
and only if

f(x,y) =g(x)h(y), for all (x,y) within their range
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Joint Probability Distribution XIII

e Definition 3.12 :

Let X and Y be two random variables, discrete or continu-
ous, with joint probability distribution f(x,y) and marginal
distributions g(x) and h(y), respectively. The random vari-

ables X and Y are said to be statistically independent  if
and only if

f(x,y) =g(x)h(y), for all (x,y) within their range

e Example 3.21: Show that the random variables of
Example 3.14 are not statistically independent.

2 2

1(0,1) = 3,8(0) = Sf(0,y) = . (1) = Y (x,1) = 2

y=0

= 1(0,1) # g(0) x h(1)
therefore X and Y are not statistically independent.

Random Variables and
Probability
Distributions

Dr. Cem Ozdo gan

R

Random Variables and
Probability
Distributions

Concept of a Random
Variable

Discrete Probability
Distributions

Continuous Probabilty
Distributions



Joint Probability Distribution XIV

e Example : In a binary communications channel, let X
denote the bit sent by the transmitter and let Y denote the
bit received at the other end of the channel. Due to noise
in the channel we do not always have Y = X. A joint
probability distribution is given as
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Joint Probability Distribution XIV

e Example : In a binary communications channel, let X
denote the bit sent by the transmitter and let Y denote the
bit received at the other end of the channel. Due to noise
in the channel we do not always have Y = X. A joint
probability distribution is given as
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Joint Probability Distribution XIV e oatity

Distributions
e Example : In a binary communications channel, let X Dr. Com Bzdo gan
denote the bit sent by the transmitter and let Y denote the

bit received at the other end of the channel. Due to noise
in the channel we do not always have Y = X. A joint
probability distribution is given as

X Random Variables and
0 1 h(y) Probability
istributions
y | 0 | 045003048 et ot arion
Variable
0.05 | 0.47 | 0.52 b probaty
g (X ) O. 5 O. 5 Distributions

Continuous Probabilty
Distributions



Joint Probability Distribution XIV

e Example : In a binary communications channel, let X
denote the bit sent by the transmitter and let Y denote the
bit received at the other end of the channel. Due to noise
in the channel we do not always have Y = X. A joint
probability distribution is given as

X X
0 1 | hy) 0 1 | h(y)
y| O | 045|003 048 y | 0 |[f0,0) [f(1,0) | h()
1 | 005|047 | 052 1 | f0,1) | f(1,1) | h(1)
g(x) | 05 | 05 g(x) | 9(0) | g(1)
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Joint Probability Distribution XIV

e Example : In a binary communications channel, let X
denote the bit sent by the transmitter and let Y denote the
bit received at the other end of the channel. Due to noise
in the channel we do not always have Y = X. A joint
probability distribution is given as

X X
0 1 h(y) 0 1 h(y)
y 0 0.45 | 0.03 | 0.48 y 0 f(0,0) | f(2,0) | h(0)
1 |005] 047 | 052 1 | f(0,1) | f(1,1) | h(1)
g(x) | 05 | 05 g(x) | 9(0) | 9(1)

e X and Y are not independent because

£(0,0) # g(0)h(0) = 0.45 # 0.5 x 0.48
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Probability
Distributions
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Joint Probability Distribution XIV

e Example : In a binary communications channel, let X
denote the bit sent by the transmitter and let Y denote the
bit received at the other end of the channel. Due to noise
in the channel we do not always have Y = X. A joint
probability distribution is given as

X X
0 1 h(y) 0 1 h(y)
y 0 0.45 | 0.03 | 0.48 y 0 f(0,0) | f(2,0) | h(0)
1 0.05 | 0.47 | 0.52 1 f(0,1) | f(1,1) | h(1)
g(x) | 05 | 05 g(x) | 9(0) | 9(1)

e X and Y are not independent because
f(0,0) # g(0)h(0) = 0.45 #£ 0.5 % 0.48

e P(X=x,Y =y)=P[X =x)Nn(Y =y)]: itis the
probability that X = x and Y =y simultaneously.

Random Variables and
Probability
Distributions
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Joint Probability Distribution XIV

e Example : In a binary communications channel, let X
denote the bit sent by the transmitter and let Y denote the
bit received at the other end of the channel. Due to noise
in the channel we do not always have Y = X. A joint
probability distribution is given as

X X
0 | 1 |hgy) 0 | 1 | hey)
y| 0 | 045|003 048 y | 0 |00 | f10) | h()
1 | 0.05 | 0.47 | 0.52 1 | f0,1) | f(L.1) | h(1)
g(x) | 05 | 05 g(x) | 9(0) | 9(1)

e X and Y are not independent because
f(0,0) # g(0)h(0) = 0.45 #£ 0.5 % 0.48

e P(X=x,Y =y)=P[X =x)n(Y =y)]: itisthe
probability that X = x and Y =y simultaneously.
e f(0,0)=P(X =0,Y =0)=P[(X =0)n (Y =0)]
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Joint Probability Distribution XIV
e Example : In a binary communications channel, let X

denote the bit sent by the transmitter and let Y denote the
bit received at the other end of the channel. Due to noise

in the channel we do not always have Y = X. A joint

probability distribution is given as

X X
0 | 1 |hgy) 0 | 1 | hey)
y| 0 | 045|003 048 0 | f(0,0) | (1,0) | h(0)
1 | 0.05 | 0.47 | 0.52 1 | f0,1) | f(L.1) | h(1)
g(x) | 05 | 05 g(x) | 9(0) | 9(1)

e X and Y are not independent because

=P[(X =0)n(Y =0)]+P[(X =0)N(Y

£(0,0) # g(0)h(0) => 0.45 # 0.5 % 0.48

e P(X=x,Y =y)=P[X =x)n(Y =y)]: itisthe
probability that X = x and Y =y simultaneously.

e f(0,0)=P(X=0,Y =0)=P[(X =0)n (Y =0)]

e S0g(0) =P[X =0]

— 1)] = £(0,0)+f(0,1)
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Joint Probability Distribution XIV

e Example : In a binary communications channel, let X
denote the bit sent by the transmitter and let Y denote the
bit received at the other end of the channel. Due to noise
in the channel we do not always have Y = X. A joint
probability distribution is given as

| X X |
0 1 h(y) 0 1 h(y)
\ y 0 0.45 | 0.03 | 0.48 y 0 f(0,0) | f(2,0) [ h(0)
1 0.05 | 0.47 | 0.52 1 f(0,1) | f(1,1) | h(1)

l g(x) | 05 | 05 9(x) | 90 | 9@ |

e X and Y are not independent because

=P[(X = 0)N(Y = 0)]+P[(X = 0)n(Y

. P[Y —0[X = 0] = P[(X=0)n(Y=0)] _ f(0,0)

£(0,0) # g(0)h(0) => 0.45 # 0.5 % 0.48

P(X =x,Y =y) =P[(X =x)N(Y =y)]: itis the
probability that X = x and Y =y simultaneously.

f(0,0) =P(X =0,Y =0) =P[(X =0)N (Y = 0)]
So g(0) = P[X = 0]

1)] = (0,0)+f(0,1)

P[X=0]

9(0)
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Joint Probability Distribution XV e oatity
e Sent 0 & Received 0: NO error.

Distributions
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Joint Probability Distribution XV e oatity
e Sent 0 & Received 0: NO error.

Distributions
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f 4

90 ~ 09 ~°2° gi%‘%
e Sent 1 & Received 0: ERROR

f(1,0) 0.03 ,
P Y — X = l = ’ = —— =0. Random Variables and
W =0X=4="q) =05 ~°% e

Concept of a Random
Variable

Discrete Probability
Distributions

Continuous Probabilty
Distributions



Joint Probability Distribution XV e oatity
e Sent 0 & Received 0: NO error.

Distributions
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p1y — oix — 0] — [(©:0) _ 045

=50 ~ 09~ ;@‘%
e Sent 1 & Received 0: ERROR

— — — f(l’ 0) — 0.03 — Random Variables and
P =0 =4="5) =05 ~ %% Crvemtis

e Sent 0 & Received 1: ERROR

Concept of a Random

Discrete Probability
f(0,1) 0.05 e
P Y p— l X f— O =2 = — = Ol Distributions
[ | ] g(0) 0.5



Joint Probability Distribution XV e oatity
e Sent 0 & Received 0: NO error.

Distributions
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p1y — oix — 0] — [(©:0) _ 045

=50 ~ 09~ ;@‘%
e Sent 1 & Received 0: ERROR

f(1,0) 0.03 ,
P Y — 0 x — 1 — U — — 006 Random Variables and
Y =0X=1="310 ~ 05 o
« Sent 0 & Received 1: ERROR
f(0,1) 0.05 ot probaity
P[Y e 1|x e 0] P u = — 0 1 Distributions

g(0) 0.5
e Sent 1 & Received 1: NO error.

PIY = 11X = 1] = f(1,1) 0.47




Joint Probability Distribution XV RSB

Probability

e Sent 0 & Received 0: NO error. Dr,Df;::Z,-‘fj;an
f(0,0 0.45
PlY =0|X =Q] (@,0)

=0X =01= T =55 =09 %
e Sent 1 & Received 0: ERROR

pry —ox —1)— [(1.0) _ 0.03

o) 05 %
e Sent 0 & Received 1: ERROR
f(0,1) 0.05 P
P Y = 1 X = 0 = 2 = — = 01 Distributions
[ | ] g(0) 05
e Sent 1 & Received 1: NO error.
f(1, 1) 0.47
PlY = 1|X = ——— =094
[ X =1]= g(1) 05

e Notice that
P[Y =0X =0]+P[Y =1|]X =0] =1
PI[Y =0X =1]+P[Y =1|X =1] =1
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Probability
Distributions

Dr. Cem Ozdo gan

Definition 3.13 :
Let X1, X5, ..., X, be n random variables, discrete or con-

Random Variables and

tinuous, with joint probability distribution f(X1,X2,...,Xn) GioLablityjg
and marginal distributions f(x;),f(x2),...,f(Xn), respec- onceptof a Racom
tively. The random variables X3, X5, ..., X, are said to be B Ftely
mutually statistically independent if and only if Contiuaus Probabiy

Joint Probability Distribution

f(X1, X2, ...) = fa(Xa)f2(X2) . . . fa(Xn)

for all (X1, Xa, . . ., Xn) Within their range.




Joint Probability Distribution XVII

e Example 3.22: Suppose that the shelf life, in years, of a
certain perishable food product packaged in cardboard

containers is a random variable whose probability density
function is given by

f(x,y):{ e X, x>0 }

0, elsewhere
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Joint Probability Distribution XVII

Random Variables and
Probability

Distributions
e Example 3.22: Suppose that the shelf life, in years, of a Dr. Cem Ozdo gan
certain perishable food product packaged in cardboard

containers is a random variable whose probability density
function is given by

f(x,y):{ e X, x>0 }

Random Variables and

0, elsewhere

Probability
Distributions
Concept of a Random
1 /ariable
o Let X1, Xy, ..., X, represent the shelf lives for three of e sy
these containers selected independently and find istiuons

P(X1<2,1<X;<3,X3>2)

Distributions



Joint Probability Distribution XVII

e Example 3.22: Suppose that the shelf life, in years, of a
certain perishable food product packaged in cardboard

containers is a random variable whose probability density
function is given by

f(x,y):{ e X, x>0 }

0, elsewhere

e Let Xy, X5, ..., X, represent the shelf lives for three of
these containers selected independently and find
P(X1<2,1<X;<3,X3>2)

e Solution:

f (X1, %2, X3) = f(x1)f (X2)f (X3) = @ 747727

for X1, X2, X3 > 0 and f(x1, X2, x3) = 0 elsewhere

() 8 2
P(X1 < 2, 1< X< 3,X3 > 2) = / / / eixlix?idexldXQdX:g
J2 J1 JO

=(1-e?)(et—e e ?=00372
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